首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kinins are potent vasoactive peptides generated in blood and tissues by the kallikrein serine proteases. Two distinct kinin receptors have been described, one constitutive (subtype B2) and one inducible (subtype B1), and many physiological functions have been attributed to these receptors, including glucose homeostasis and control of vascular permeability. In this study we show that mice lacking the kinin B1 receptor (B1-/- mice) have lower fasting plasma glucose concentrations but exhibit higher glycemia after feeding when compared to wild-type mice. B1-/- mice also present pancreas abnormalities, characterized by fewer pancreatic islets and lower insulin content, which leads to hypoinsulinemia and reduced insulin release after a glucose load. Nevertheless, an insulin tolerance test indicated higher sensitivity in B1-/- mice. In line with this phenotype, pancreatic vascular permeability was shown to be reduced in B1 receptor-ablated mice. The B1 agonist desArg9bradykinin injected intravenously can induce the release of insulin into serum, and this effect was not observed in the B1-/- mice or in isolated islets. Our data demonstrate the importance of the kinin B1 receptor in the control of pancreatic vascular homeostasis and insulin release, highlighting a new role for this receptor in the pathogenesis of diabetes and related diseases.  相似文献   

2.
Das VA  Chathu F  Paulose CS 《Life sciences》2006,79(16):1507-1513
Sympathetic stimulation inhibits insulin secretion. alpha(2)-Adrenergic receptor is known to have a regulatory role in the sympathetic function. We investigated the changes in the alpha(2)-adrenergic receptors in the brain stem and pancreatic islets using [(3)H]Yohimbine during pancreatic regeneration in weanling rats. Brain stem and pancreatic islets of experimental rats showed a significant decrease (p<0.001) in norepinephrine (NE) content at 72 h after partial pancreatectomy. The epinephrine (EPI) content showed a significant decrease (p<0.001) in pancreatic islets while it was not detected in brain stem at 72 h after partial pancreatectomy. Scatchard analysis of [(3)H]Yohimbine showed a significant decrease (p<0.05) in B(max) and K(d) at 72 h after partial pancreatectomy in the brain stem. In the pancreatic islets, Scatchard analysis of [(3)H]Yohimbine showed a significant decrease (p<0.001) in B(max) and K(d) (p<0.05) at 72 h after partial pancreatectomy. The binding parameters reversed to near sham by 7 days after pancreatectomy both in brain stem and pancreatic islets. This shows that pancreatic insulin secretion is influenced by central nervous system inputs from the brain stem. In vitro studies with yohimbine showed that the alpha(2)-adrenergic receptors are inhibitory to islet DNA synthesis and insulin secretion. Thus our results suggest that decreased alpha(2)-adrenergic receptors during pancreatic regeneration functionally regulate insulin secretion and pancreatic beta-cell proliferation in weanling rats.  相似文献   

3.
It was recently proposed that in rat pancreatic islets exposed to 8.3 mM D-glucose, alpha-D-glucose-6-phosphate undergoes enzyme-to-enzyme channelling between hexokinase isoenzyme(s) and phosphoglucoisomerase. To explore the identity of the hexokinase isoenzyme(s) involved in such a tunnelling process, the generation of 3HOH from the alpha- and beta-anomers of either D-[2-3H]glucose or D-[5-3H]glucose was now measured over 60 min incubation at 4 degrees C in pancreatic islets exposed only to 2.8 mM D-glucose, in order to decrease the relative contribution of glucokinase to the phosphorylation of the hexose. Under these experimental conditions, the ratio for 3HOH production from D-[2-3H]glucose/D-[5-3H]glucose at anomeric equilibrium (39.7 +/- 11.6%) and the beta/alpha ratios for the generation of 3HOH from either the D-[2-3H]glucose anomers (70.9 +/- 12.6%) or the D-[5-3H]glucose anomers (59.6 +/- 12.4%) indicated that a much greater fraction of alpha-D-glucose-6-phosphate escapes from the process of enzyme-to-enzyme channelling in the islets exposed to 2.8 mM, rather than 8.3 mM D-glucose. These findings suggest, therefore, that the postulated process of enzyme-to-enzyme channelling involves mainly glucokinase.  相似文献   

4.
M. Grün  G. Franz 《Planta》1981,152(6):562-564
Biosynthetic studies with cell-free extracts from Aloe arborescens Mill. demonstrate the transfer of the glucose moiety from UDP-glucose to aloe emodin anthrone, forming the C-glycosidic linkage in the anthracene derivative aloin. The pH-dependence and the specificity of UDP-glucose and aloe emodin anthrone for the biosynthesis of the C-glycosidic bond in aloin are shown.Abbreviations ADP-Glc adenosine-5-diphosphate glucose - AEA aloe emodin anthrone (1,8-dihydroxy-3-(hydroxymethyl)-9(10 H)-anthracenone) - CoASAc acetyl coenzyme A - GDP-Glc guanosine-5-diphosphate glucose - Glc glucose - Glc-1-P glucose-1-phosphate - HPLC high performance liquid chromatography - TLC thin layer chromatography - UDP-Gal uridine-5-diphosphate galactose - UDP-Glc uridine-5-diphosphate glucose  相似文献   

5.
L M Rosario 《FEBS letters》1985,188(2):302-306
The effects of apamin and quinine on glucose-induced electrical activity in pancreatic islets from ob/ob mice (Norwich colony) were compared. Apamin (40-400 nM) increased the duration of the bursts of electrical activity, whereas quinine (50-100 microM) affected only slightly the steady-state electrical response to glucose. This sensitivity to apamin and poor response to quinine contrast with the resistance to apamin and sensitivity to quinine previously reported for pancreatic islets from albino mice. The results give further support to the idea that pancreatic beta-cells from ob/ob mice have a modified Ca2+-activated K+ permeability.  相似文献   

6.
In pancreatic islets, glucose metabolism is a key process for insulin secretion, and pregnancy requires an increase in insulin secretion to compensate for the typical insulin resistance at the end of this period. Because a low-protein diet decreases insulin secretion, this type of diet could impair glucose homeostasis, leading to gestational diabetes. In pancreatic islets, we investigated GLUT2, glucokinase and hexokinase expression patterns as well as glucose uptake, utilization and oxidation rates. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. The insulin secretion in 2.8 mmol l(-1) of glucose was higher in islets from LPP rats than that in islets from CP, CNP and LPNP rats. Maximal insulin release was obtained at 8.3 and 16.7 mmol l(-1) of glucose in LPP and CP groups, respectively. The glucose dose-response curve from LPNP group was shifted to the right in relation to the CNP group. In the CP group, the concentration-response curve to glucose was shifted to the left compared with the CNP group. The LPP groups exhibited an "inverted U-shape" dose-response curve. The alterations in the GLUT2, glucokinase and hexokinase expression patterns neither impaired glucose metabolism nor correlated with glucose islet sensitivity, suggesting that β-cell sensitivity to glucose requires secondary events other than the observed metabolic/molecular events.  相似文献   

7.
Plants containing aloin A, aloe emodin, and structurally related anthraquinones have long been used as traditional medicines and in the formulation of retail products such as laxatives, dietary supplements, and cosmetics. Since a recent study indicated that topically applied aloe emodin increases the sensitivity of skin to UV light, we examined the events following photoexcitation of aloin A and aloe emodin. We determined that incubation of human skin fibroblasts with 20 microM aloe emodin for 18 h followed by irradiation with UV or visible light resulted in significant photocytotoxicity. This photocytotoxicity was accompanied by oxidative damage in both cellular DNA and RNA. In contrast, no photocytotoxicity was observed following incubation with up to 500 microM aloin A and irradiation with UVA light. In an attempt to explain the different photobiological properties of aloin A and aloe emodin, laser flash photolysis experiments were performed. We determined that the triplet state of aloe emodin was readily formed following photoexcitation. However, no transient intermediates were formed following photoexcitation of aloin A. Therefore, generation of reactive oxygen species and oxidative damage after irradiation of aloin A is unlikely. Although aloin A was not directly photocytotoxic, we found that human skin fibroblasts can metabolize aloin A to aloe emodin.  相似文献   

8.
The aim of this study was to investigate the effect of an organic cannabis extract on β-cell secretory function in an in vivo diet-induced obese rat model and determine the associated molecular changes within pancreatic tissue. Diet-induced obese Wistar rats and rats fed on standard pellets were subcutaneously injected with an organic cannabis extract or the vehicle over a 28-day period. The effect of diet and treatment was evaluated using the intraperitoneal glucose tolerance tests (IPGTTs) and qPCR analysis on rat pancreata harvested upon termination of the experiment. The cafeteria diet induced an average weight difference of 32g and an overall increase in body weight in the experimental groups occurred at a significantly slower rate than the control groups, irrespective of diet. Area under the curve for glucose (AUC(g)) in the obese group was significantly lower compared to the lean group (p<0.001), with cannabis treatment significantly reducing the AUC(g) in the lean group (p<0.05), and remained unchanged in the obese group, relative to the obese control group. qPCR analysis showed that the cafeteria diet induced down-regulation of the following genes in the obese control group, relative to lean controls: UCP2, c-MYC and FLIP. Cannabis treatment in the obese group resulted in up-regulation of CB1, GLUT2, UCP2 and PKB, relative to the obese control group, while c-MYC levels were down-regulated, relative to the lean control group. Treatment did not significantly change gene expression in the lean group. These results suggest that the cannabis extract protects pancreatic islets against the negative effects of obesity.  相似文献   

9.
Previous studies have reported both positive and negative effects of culture of islets at high glucose concentrations on regulated insulin secretion. Here, we have reexamined this question in mouse islets and determined the role of changes in lipid synthesis in the effects of glucose. Glucose-stimulated insulin secretion (GSIS) and gene expression were examined in islets from C57BL/6 mice or littermates deleted for sterol-regulatory element binding protein-1 (SREBP1) after 4 days of culture at high glucose concentrations. Culture of control islets at 30 versus 8 mmol/l glucose led to enhanced secretion at both basal (3 mmol/l) and stimulatory (17 mmol/l) glucose concentrations and to enhanced triacylglycerol accumulation. These changes were associated with increases in the expression of genes involved in glucose sensing (glucose transporter 2, glucokinase, sulfonylurea receptor 1, inwardly rectifying K(+) channel 6.2), differentiation (pancreatic duodenal homeobox 1), and lipogenesis (Srebp1, fatty acid synthase, acetyl-coenzyme A carboxylase 1, stearoyl-coenzyme A desaturase 1). When cultured at either 8 or 30 mmol/l glucose, SREBP1-deficient (SREBP1(-/-)) islets displayed reduced GSIS and triacylglycerol content compared with normal islets. Correspondingly, glucose induction of the above genes in control islets was no longer observed in SREBP1(-/-) mouse islets. We conclude that enhanced lipid synthesis mediated by SREBP1c-dependent genes is required for the adaptive changes in islet gene expression and insulin secretion at high glucose concentrations.  相似文献   

10.
Mouse pancreatic islets cultured in vitro were infected with a tissue culture-adapted or a mouse pancreas-adapted strain of Coxsackie B4 (CB4) virus. The effects of the viruses on the islets were assessed by examination of their biochemical functions. It was found that the mouse pancreas-adapted strain of CB4 induced a 'leakage' of insulin from islets incubated at a basal (2 mmol l-1) glucose concentration, both at two and four days following infection. However, at a stimulatory concentration of glucose (20 mmol l-1) the rate of insulin secretion appeared to be normal in these islets. At two days the rate of total protein synthesis in islets infected with mouse pancreas-adapted CB4, incubated at high glucose concentration, was reduced; at four days the degree of inhibition was more severe, the rate at basal glucose concentration falling to half that of the control islets and at the stimulatory glucose concentration to a quarter of the control islets. (Pro)insulin biosynthesis was also inhibited, the rate being reduced to less than half the mean control value in islets infected with mouse pancreas-adapted CB4 virus at 20 mmol l-1 glucose at two days; at four days the rate was greatly reduced at both 2 and 20 mmol l-1 glucose. It is concluded from this study that only certain strains of CB4 virus can infect mouse pancreatic islets in vitro and that infection with strains of virus tropic for the islets leads to an impairment of metabolic functions of the B-cells, and is not necessarily lytic.  相似文献   

11.
Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three‐dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100–150 μm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose‐responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re‐associated human islet cells showed an a‐typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C‐peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell–cell interactions between insuloma and/or primary islet cells.  相似文献   

12.
13.
Aloin, a natural anthracycline from aloe plant, is a hydroxyanthraquinone derivative shown to have antitumor properties. This study demonstrated that aloin exerted inhibition of cell proliferation, adhesion and invasion abilities of B16-F10 melanoma cells under non-cytotoxic concentrations. Furthermore, aloin induced melanoma cell differentiation through the enhancement of melanogenesis and transglutaminase activity. To improve the growth-inhibiting effect of anticancer agents, we found that the combined treatment of cells with aloin and low doses of cisplatin increases the antiproliferative activity of aloin. The results suggest that aloin possesses antineoplastic and antimetastatic properties, exerted likely through the induction of melanoma cell differentiation.  相似文献   

14.
OBJECTIVE: Pancreatic islets isolated from mice treated neonatally with monosodium L-glutamate (MSG) were used to study insulin secretion. MATERIALS AND METHODS: Total acetylcholinesterase (AchE) activity of tissue extract was measured as a cholinergic activity marker. Obesity recorded in 90-day-old MSG mice (OM) by Lee index reached 366.40 +/- 1.70, compared to control mice (CM) 324.40 +/- 1.10 (p < 0.0001). Glucose 5.6 mM induced insulin secretion of 36 +/- 5 pg/15 min from islets of CM and 86 +/- 13 from OM (p < 0.001). When glucose was raised to 16.7 mM, islets from OM secreted 1,271 +/- 215 and 1,017 +/- 112 pg/30 min to CM. AchE activity of pancreas from OM was 0.64 +/- 0.02 nmol of substrate hydrolyzed/min/mg of tissue and 0.52 +/- 0.01 to CM (p < 0.0001). Liver of obese animals also presented increase of AchE activity. RESULTS: These indicate that OM insulin oversecretion in low glucose may be attributed, at least in part, to an enhancement of parasympathetic tonus.  相似文献   

15.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

16.
芦荟叶内芦荟素细胞的发育和蒽醌类物质的积累   总被引:11,自引:0,他引:11  
应用石蜡切片、半薄切片、组织化学和荧光显微镜观察相结合的方法研究了木立芦荟叶内芦荟素细胞的发生、发育以及其蒽醌类物质的积累过程。结果表明,在叶内原形成层束分化成维管束初期,原形成层束外侧的一层细胞发育成维管束鞘。原生韧皮部筛管产生时,其外方尚保留1—2层原形成层细胞,当后生韧皮部和木质部开始分化时,此层细胞分裂。在后生韧皮部和木质部发育成熟过程中,这些细胞体积逐渐增大,并液泡化,发育成为大型薄壁细胞(芦荟素细胞),位于筛管外侧。据此,芦荟叶维管束内的大型薄壁细胞的来源与韧皮部相同,属于特化的韧皮部薄壁组织细胞。用醋酸铅处理过的上述材料的切片观察表明,芦荟素细胞在细胞体积增大,并液泡化时,在液泡内出现蒽醌类物质沉淀物,在成熟细胞的大液泡中充满沉淀物,此时,在荧光显微镜下芦荟素细胞发出桔黄色荧光。可见,此种芦荟素细胞是芦荟叶内蒽醌类物质的主要储存场所。  相似文献   

17.
Type II diabetes progresses with inadequate insulin secretion and prolonged elevated circulating glucose levels. Also, pancreatic islets isolated for transplantation or tissue engineering can be exposed to glucose over extended timeframe. We hypothesized that isolated pancreatic islets can secrete insulin over a prolonged period of time when incubated in glucose solution and that not all islets release insulin in unison. Insulin secretion kinetics was examined and modeled from single mouse islets in response to chronic glucose exposure (2.8‐20 mM). Results with single islets were compared to those from pools of islets. Kinetic analysis of 58 single islets over 72 h in response to elevated glucose revealed distinct insulin secretion profiles: slow‐, fast‐, and constant‐rate secretors, with slow‐secretors being most prominent (ca., 50%). Variations in the temporal response to glucose therefore exist. During short‐term (<4 h) exposure to elevated glucose few islets are responding with sustained insulin release. The model allowed studying the influence of islet size, revealing no clear effect. At high‐glucose concentrations, when secretion is normalized to islet volume, the tendency is that smaller islets secrete more insulin. At high‐glucose concentrations, insulin secretion from single islets is representative of islet populations, while under low‐glucose conditions pooled islets did not behave as single ones. The characterization of insulin secretion over prolonged periods complements studies on insulin secretion performed over short timeframe. Further investigation of these differences in secretion profiles may resolve open‐ended questions on pre‐diabetic conditions and transplanted islets performance. This study deliberates the importance of size of islets in insulin secretion. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1059–1068, 2018  相似文献   

18.
19.
芦荟叶内芦荟素细胞的发育和蒽醌类物质的积累   总被引:3,自引:0,他引:3  
应用石蜡切片、半薄切片、组织化学和荧光显微镜观察相结合的方法研究了木立芦荟叶内芦荟素细胞的发生、发育以及其蒽醌类物质的积累过程。结果表明,在叶内原形成层束分化成维管束初期,原形成层束外侧的一层细胞发育成维管束鞘。原生韧皮部筛管产生时,其外方尚保留1-2层原形成层细胞,当后生韧皮部和木质部开始分化时,此层细胞分裂。在后生韧皮部和木质部发育成熟过程中,这些细胞体积逐渐增大,并液泡化,发育成为大型薄壁细胞(芦荟素细胞),位于筛管外侧。据此,芦荟叶维管束内的大型薄壁细胞的来源与韧皮部相同,属于特化的韧皮部薄壁组织细胞。用醋酸铅处理过的上述材料的切片观察表明,芦荟素细胞在细胞体积增大,并液泡化时,在液泡内出现蒽醌类物质沉淀物,在成熟细胞的大液泡中充满沉淀物,此时,在荧光显微镜下芦荟素细胞发出桔黄色荧光。可见,此种芦荟素细胞是芦荟叶内蒽醌类物质的主要储存场所。  相似文献   

20.
Hereditary predisposition to diet-induced type 2 diabetes has not yet been fully elucidated. We recently established 2 mouse lines with different susceptibilities (resistant and prone) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-resistant [SDG-R] and -prone [SDG-P], respectively). To investigate the predisposition to HFD-induced glucose intolerance in pancreatic islets, we examined the islet morphological features and functions in these novel mouse lines. Male SDG-P and SDG-R mice were fed a HFD for 5 weeks. Before and after HFD feeding, glucose tolerance was evaluated by oral glucose tolerance test (OGTT). Morphometry and functional analyses of the pancreatic islets were also performed before and after the feeding period. Before HFD feeding, SDG-P mice showed modestly higher postchallenge blood glucose levels and lower insulin increments in OGTT than SDG-R mice. Although SDG-P mice showed greater β cell proliferation than SDG-R mice under HFD feeding, SDG-P mice developed overt glucose intolerance, whereas SDG-R mice maintained normal glucose tolerance. Regardless of whether it was before or after HFD feeding, the isolated islets from SDG-P mice showed impaired glucose- and KCl-stimulated insulin secretion relative to those from SDG-R mice; accordingly, the expression levels of the insulin secretion-related genes in SDG-P islets were significantly lower than those in SDG-R islets. These findings suggest that the innate predispositions in pancreatic islets may determine the susceptibility to diet-induced diabetes. SDG-R and SDG-P mice may therefore be useful polygenic animal models to study the gene–environment interactions in the development of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号