首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Domino SE  Hurd EA 《Glycobiology》2004,14(2):169-175
The secretor gene (FUT2) encodes an alpha(1,2)fucosyltransferase (E.C. 2.4.1.69) that elaborates alpha(1,2)fucose residues on mucosal epithelium and secreted mucins. Though uterine alpha(1,2)fucosylated glycans have been proposed to be involved in embryo adhesion, mice with a homozygous null mutation of Fut2 displayed normal fertility. To help develop alternative hypotheses for function, the cell type and regulation of Fut2 expression during the estrous cycle, hormone replacement, and pregnancy was examined in Fut2-LacZ reporter mice containing targeted replacement of Fut2 with bacterial lacZ. LacZ expression in the reproductive tract of Fut2-LacZ mice is most prominent in the glandular epithelium of the endocervix during estrus and pregnancy. Nuclear LacZ expression identifies cell-specific expression of Fut2 in mucus-secreting cells of the endocervix, uterine glands, foveolar pit and chief cells of the stomach, and goblet cells of the colon. In ovariectomized Fut2-LacZ mice, estradiol treatment stimulates X-gal staining in endocervix and uterus but does not affect expression in stomach and colon. Northern blot analysis in wild-type mice shows 15-fold elevations of Fut2 steady-state mRNA with estradiol treatment, whereas Fut1 varies little. Fut2 levels in the glandular stomach and distal colon remain constant, and uterine Fut2 levels vary eightfold during the estrous cycle. These data represent the first demonstration of a glycosyltransferase gene under tissue-specific hormonal regulation in a LacZ reporter mouse model. Endocervical expression of Fut2 in estrus and pregnancy may modify cervical mucus barrier properties from microbial infection analogous to the potential role of mucosal glycans in humans.  相似文献   

3.
The alpha(1,2)fucosyltransferases (FUT1 and FUT2) contribute to the formation of blood group antigen structures, which are present on cell membranes and in secretions. In the present study we demonstrate that both FUT1 and FUT2 are expressed in the pig small intestine. FUT1 polymorphisms influence adhesion of F18 fimbriated Escherichia coli (ECF18) to intestinal mucosa, and FUT2 is associated with expression of erythrocyte antigen 0. The FUT1 polymorphisms result in amino acid substitutions at positions 103 (Ala-->Thr) and 286 (Arg-->Glu). Tightly controlled expression of the FUT2 gene results in either an abundance or an absence of mRNA in small intestinal mucosa. ECF18-resistant animals were shown to be homozygous for threonine at amino acid 103 of the FUT1 enzyme. Susceptibility to ECF18 adhesion appeared to be solely dependent on the activity of FUT1 in intestinal epithelia. In intestinal mucosae of ECF18-resistant pigs which expressed FUT1 but not FUT2 RNA, the levels of alpha(1,2)fucosyltransferase activity were significantly lower (28- to 45-fold, P<0.001) than in susceptible pigs. Moreover, lysates of CHO cells transfected with FUT1 constructs encoding threonine at amino acid position 103 also showed significantly reduced enzyme activity compared with constructs encoding alanine at this position. Our genetic and enzymatic studies support the hypothesis that the FUT1 enzyme, and particularly the amino acid at position 103, is likely important in the synthesis of a structure that enables adhesion of ECF18 bacteria to small intestinal mucosa.  相似文献   

4.
Clarke  JL; Watkins  WM 《Glycobiology》1999,9(2):191-202
Previous investigations on the monkey kidney COS cell line demonstrated the weak expression of fucosylated cell surface antigens and presence of endogenous fucosyltransferase activities in cell extracts. RT-PCR analyses have now revealed expression of five homologs of human fucosyltransferase genes, FUT1, FUT4, FUT5, FUT7, and FUT8, in COS cell mRNA. The enzyme in COS cell extracts acting on unsialylated Type 2 structures is closely similar in its properties to the alpha1,3- fucosyltransferase encoded by human FUT4 gene and does not resemble the product of the FUT5 gene. Although FUT1 is expressed in the COS cell mRNA, it has not been possible to demonstrate alpha1,2- fucosyltransferase activity in cell extracts but the presence of Le(y) and blood-group A antigenic determinants on the cell surface imply the formation of H-precursor structures at some stage. The most strongly expressed fucosyltransferase in the COS cells is the alpha1,6-enzyme transferring fucose to the innermost N -acetylglucosamine unit in N - glycan chains; this enzyme is similar in its properties to the product of the human FUT8 gene. The enzymes resembling the human FUT4 and FUT8 gene products both had pH optima of 7.0 and were resistant to 10 mM NEM. The incorporation of fucose into asialo-fetuin was optimal at 5.5 and was inhibited by 10 mM NEM. This result initially suggested the presence of a third fucosyltransferase expressed in the COS cells but we have now shown that triantennary N- glycans with terminal nonreducing galactose units, similar to those present in asialo-fetuin, are modified by a weak endogenous beta-galactosidase in the COS cell extracts and thereby rendered suitable substrates for the alpha1,6- fucosyltransferase.   相似文献   

5.
The complete coding sequences of three rat alpha1,2fucosyltransferase genes were obtained. Sequence analysis revealed that these genes, called FTA, FTB and FTC, were homologous to human FUT1, FUT2 and Sec1, respectively. A distance analysis between all alpha1,2fucosyltransferase sequences available showed that the two domains of the catalytic region evolved differently with little divergence between the FUT2 and Sec1 N-terminal domains, quite distant from that of FUT1. At variance, FUT1 and FUT2 C-terminal domains were less distant while a high evolutionary rate was noted for Sec1 C-terminal domain. Whereas FTA and FTB encode typical glycosyltransferases, FTC lacks the homologous start codon and encodes a protein devoid of intracellular and transmembrane domains. It is located on rat chromosome 1q34. Transfection experiments revealed that unlike FTA and FTB, FTC does not generate enzyme activity. Analysis by flow cytometry showed that H type 2 epitopes were synthesized in Chinese hamster ovary cells transfected by both FTA and FTB cDNA, but only FTB transfectants possessed H type 3 determinants. In REG rat carcinoma cells, both FTA and FTB allowed synthesis of H type 2 and H type 3 at the cell surface. Western blots showed that, in both cell types, FTA was able to synthesize H type 2 epitopes on a larger set of glycoproteins than FTB. Analysis of the kinetic parameters obtained using small oligosaccharides revealed only a slight preference of FTA for type 2 over other types of acceptor substrates, whereas FTB was barely able to fucosylate this substrate.  相似文献   

6.
7.
Based on PCR strategies and expression studies, we define the genomic organization of the FUT8b gene. This gene encodes the only known mammalian enzyme transferring fucose in an alpha1-->6 linkage on the asparagine-branched GlcNAc residue of the chitobiose unit of complex N:-glycans. The intron/exon organization of the bovine coding sequence determines five successive functional domains. The first exon encodes a domain homologous to cytoskeleton proteins, the second presents a proline-rich region including a motif XPXPPYXP similar to the peptide ligand of the SH3-domain proteins, the third encodes a gyrase-like domain (an enzyme which can bind nucleotides), and the fourth encodes a peptide sequence homologous to the catalytic domain of proteins transferring sugars. Finally, the last exon encodes a domain homologous to the SH3 conserved motif of the SH2-SH3 protein family. This organization suggests that intramolecular interactions might give a tulip-shaped scaffolding, including the catalytic pocket of the enzyme in the Golgi lumen. Deduced from the published sequence of chromosome 14 (AL109847), the human gene organization of FUT8 seems to be similar to that of bovine FUT8b, although the exon partition is more pronounced (bovine exons 1 and 2 correspond to human exons 1-6). The mosaicism and phylogenetic positions of the alpha6-fucosyltransferase genes are compared with those of other fucosyltransferase genes.  相似文献   

8.
9.
10.
It has been hypothesized that hormonally regulated histamine production plays a role in preparation of the uterus for implantation. Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine production. The current study was designed to determine intrauterine expression of HDC mRNA expression during pregnancy in the mouse. High levels of HDC mRNA expression were observed in the preimplantation mouse uterus with peak expression occurring on day 4. High levels of HDC mRNA expression were also detected in the post-implantation uterus. In an effort to determine whether HDC mRNA is regulated by pro-inflammatory cytokines, the HDC mRNA pattern was compared to intrauterine expression of mRNA's for interleukin-1alpha (IL-1alpha), IL-1beta, macrophage chemotactic protein-1 (MCP-1) and RANTES (regulated on activation, normal T expressed and secreted) during the peri-implantation period. IL-1beta, MCP-1 and RANTES mRNA levels were increased in the uterus on days 1-2 and on days 4-5. Increased expression of IL-1alpha mRNA was observed on days 1-2 and days 5-7. There was no clear relationship between HDC mRNA expression and cytokine/chemokine mRNA expression. Progesterone-stimulated intrauterine expression of HDC mRNA. Intrauterine cytokine/chemokine mRNA was also hormonally regulated. This data allowed the possibility that one or more of these pro-inflammatory cytokines could be involved in regulating intrauterine HDC mRNA production. Recombinant IL-1alpha, IL-1beta, MCP-1 and RANTES all failed to induce HDC mRNA expression in the preimplantation uterus in a mouse pseudopregnancy model. At the same time, IL-1beta induced the expression of mRNA for each of the four cytokines/chemokines. Despite the fact that these were also produced in the uterus during pregnancy and were hormonally regulated, none of these cytokines induced intrauterine HDC mRNA expression. The data suggest that progesterone is involved in the regulation of HDC mRNA expression in the preimplantation uterus, but IL-1alpha/beta, MCP-1 and RANTES, which have been reported to regulate histamine synthesis during inflammatory processes, do not appear to play a role.  相似文献   

11.
胚胎与子宫内膜上皮细胞之间的黏附是胚胎成功植入的关键. 岩藻糖基转移酶Ⅳ (FUT4)对胚胎细胞与子宫内膜细胞黏附的影响未见报道.本研究以人子宫内膜细胞 (HEC-1A)和胚胎细胞(JAR)为体外着床模型,观察上调HEC-1A细胞中FUT4表达对JAR细 胞与HEC-1A细胞黏附的影响.RT-PCR和免疫细胞化学检测结果显示,FUT4过表达增加 HEC-1A细胞中FUT4基因及蛋白的表达;免疫细胞化学及Western印迹结果表明,上调HEC-1A细胞中FUT4增加细胞表面LeY的合成;细胞黏附实验结果显示,与未转染组相比较,FUT4过表达增加了JAR细胞与HEC-1A细胞的黏附率.本研究证明,FUT4过表达可以增加细胞表面LeY寡糖抗原的合成,从而促进胚胎细胞与子宫内膜细胞的黏附.  相似文献   

12.
Bao WB  Ye L  Pan ZY  Zhu J  Du ZD  Zhu GQ  Huang XG  Wu SL 《Molecular biology reports》2012,39(3):3131-3136
Escherichia coli F18 (ECF18) is a common porcine enteric pathogen. The pathogenicity of ECF18 bacteria depends on the existence of ECF18 receptor in the brush border membranes of piglet’s small intestinal mucosa. Alpha (1) fucosyltransferase gene (FUT1) has been identified as the candidate gene controlling the adhesion to ECF18 receptor. The genetic variations in the position of M307 nucleotide in open reading frame of FUT1 have been proposed as a marker for selecting resistant pigs. The piglets were divided into three groups, AA, AG and GG, according to the genotypes present at M307 of FUT1. Small intestinal epithelium cells of piglets with AA, AG and GG genotypes were selected to test the adhesion capability of the wild type E.coli expressing F18ab fimbriae, the recombinant E. coli expressing F18ac fimbriae or the recombinant E. coli secreting and surface-displaying the FedF subunit of F18ab fimbriae, respectively. Here, we examined the distribution and expression of porcine FUT1 mRNA in different tissues in Sutai pigs using real-time PCR. The results showed that piglets with AA genotype show resistance, whereas piglets with GG or AG genotypes are sensitive to the pathogenic E. coli F18 in Sutai piglets. FUT1 was expressed in all the tissues that were examined, and the gene’s expression was highest in the lungs. There was no significant difference in expression level among the three genotypes in the liver, lung, stomach and duodenum, where the gene expression was relatively high. The present analysis suggested that mutation at M307 in FUT1 gene determines susceptibility of small intestinal epithelium to E. coli F18 adhesion in Sutai piglet and the expression of FUT1 gene may be regulated by other factors or the mutation was likely to be in linkage disequilibrium with some cis-regulatory variants.  相似文献   

13.
The coding sequences ( approximately 1 kb) of FUT2 [ABO-Secretor type alpha(1,2)fucosyltransferase] and of FUT6 [plasma alpha(1,3)fucosyltransferase] were analyzed for allelic polymorphism by direct sequencing in five populations. The nucleotide diversities of FUT2 estimated from pairwise sequence differences were 0.0045, 0.0042, 0.0042, 0.0009, and 0.0008 in Africans, European-Africans, Iranians, Chinese, and Japanese, respectively. The nucleotide diversities of FUT6 were 0.0024, 0.0016, 0.0015, 0.0017, and 0.0020 in Africans, European-Africans, Iranians, Chinese, and Japanese, respectively. At FUT2, excesses in pairwise sequence differences compared to the number of polymorphic sites as indicated by a significantly positive Tajima's D were observed in European-Africans and in Iranians. The data do not fit expectations of the equilibrium neutral model with an infinite number of sites. On the other hand, Tajima's D's at FUT6 in each of the five populations and at FUT2 in Africans, Chinese, and Japanese were not significantly different from zero. F(ST) between the Asians and the others measured at FUT2 was higher than at FUT6. These results suggest that natural selection was responsible for the generation of the FUT2 polymorphism in European-Africans and in Iranians.  相似文献   

14.
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.  相似文献   

15.
Blastocyst implantation and successful establishment of pregnancy require delicate interactions between the embryo and the maternal uterine milieu, which are controlled at the embryo-maternal interface by the coordinated interplay of a variety of growth factors, cytokines, hormones, and cell adhesion molecules expressed by both the decidualized endometrium and the trophoblast cells. Proper implantation of the embryo is solely dependent on the initial endometrial receptivity and the preparation of the blastocyst to glue itself to the uterine wall. Both these events are considered to be mediated by cell adhesion molecules and integrins expressed by the blastocyst as well by as the maternal endometrium. Integrin expression by the blastocyst and the uterus is a dynamic process. However, reports on the expression and the hormonal modulation of integrins and their role in blastocyst activation and uterine receptivity during implantation are meager. The present study investigates the expression and hormonal regulation of alpha4beta1 integrin by steroid hormones in the blastocyst and the receptive uterus using an in vivo, delayed-implantation mouse model system. The dormant and activated blastocysts as well as the uteri were recovered from ovariectomized mice after progesterone-alone and progesterone-plus-estrogen therapy, respectively. Immunolocalization of protein expression of alpha4 and beta1 integrin subunits indicate that steroids modulate the expression of alpha4beta1 integrin receptor in the mouse blastocyst as well as the uterus and that a differential expression is observed with exposure to progesterone and estrogen. Intrauterine blocking of alpha4 integrin by specific antibody resulted in implantation failure in normal as well as in delayed-implantation mice. Based on our data, we propose here, to our knowledge for the first time, that alpha4beta1 integrin, which is responsible for binding to fibronectin and vascular cell adhesion molecule-1, is induced by estradiol and is down-regulated by progesterone in mice during implantation. Furthermore, the results also indicate the direct role of alpha4 integrin in the process of implantation.  相似文献   

16.
17.
Fucosyltransferases appeared early in evolution, since they are present from bacteria to primates and the genes are well conserved. The aim of this work was to study these genes in the bird group, which is particularly attractive for the comprehension of the evolution of the vertebrate genome. Twelve fucosyltransferase genes have been identified in man. The orthologues of theses genes were looked for in the chicken genome and cytogenetically localized by FISH. Three families of fucosyltransferases: alpha6-fucosyltransferases, alpha3/4-fucosyltransferases, and protein-O-fucosyltransferases, were identified in the chicken with their associated genes. The alpha2-fucosyltransferase family, although present in some invertebrates and amphibians was not found in birds. This absence, also observed in Drosophila, may correspond to a loss of these genes by negative selection. Of the eight chicken genes assigned, six fell on chromosome segments where conservation of synteny between human and chicken was already described. For the two remaining loci, FUT9 and FUT3/5/6, the location may correspond to a new small syntenic area or to an insertion. FUT4 and FUT3/5/6 were found on the same chicken chromosome. These results suggest a duplication of an ancestral gene, initially present on the same chromosome before separation during evolution. By extension, the results are in favour of a common ancestor for the alpha3-fucosyltransferase and the alpha4-fucosyltransferase activities. These observations suggest a general mechanism for the evolution of fucosyltransferase genes in vertebrates by duplication followed by divergent evolution.  相似文献   

18.
We report here the application of a genetic approach to identify and isolate human DNA sequences controlling the expression of a GDP-L-fucose: beta-D-galactoside 2-alpha-L-fucosyltransferase [alpha-1,2)fucosyltransferase). Mouse L cells were chosen as host cells for this scheme since they express the necessary substrate and acceptor molecules for surface display of blood group H Fuc alpha 1----2 G al linkages constructed by (alpha-1,2) fucosyltransferases. However, they do not express cell surface blood group H structures nor detectable (alpha-1,2)fucosyltransferase activity. We therefore asked if (alpha-1,2)fucosyltransferase activity could be expressed and detected in these cells after transfection with human DNA sequences. These cells were transfected with genomic DNA isolated from a human cell line (A431) that expresses (alpha-1,2)fucosyltransferase. A panning procedure and fluorescence-activated cell sorting were used to isolate a mouse transfectant cell line that expresses cell surface H Fuc alpha 1----2 Gal linkages and a cognate (alpha-1,2)fucosyltransferase. Southern blot analysis showed that the genome of this cell line contains several hundred kilobase pairs of human DNA. Genomic DNA from this primary transfectant was used to transfect mouse L cells, and several independent, H-expressing secondary transfectants were isolated by immunological selection. Each expresses an (alpha-1,2)fucosyltransferase. Southern blot analysis demonstrated that the genome of each secondary transfectant contains common, characteristic human DNA restriction fragments. These results show that transfected human DNA sequences determine expression of the (alpha-1,2)fucosyltransferases in the mouse transfectants, that these sequences represent a single locus, and that they are within or linked to specific human restriction fragments identifiable in each secondary transfectant. These sequences may represent a human (alpha-1,2)fucosyltransferase gene.  相似文献   

19.
It is by now well established that the estrogen receptor alpha (ER alpha) is transcribed from multiple promoters. One direct consequence of multiple promoters is the generation of mRNA variants with different 5'-untranslated regions (5'-UTRs). However, the potential roles of these individual mRNA variants are not known. All 5'-UTRs of ER alpha contain between one and six upstream open reading frames. In this study the effect of the 5'-UTRs of major human and mouse ER alpha mRNA variants on translation was evaluated. Some of the 5'-UTRs were found to strongly inhibit translation of the downstream open reading frame. Mutation of the upstream AUG codons partially or completely restored translation efficiency. A toeprinting analysis and assessment of the contribution of each AUG codon to the inhibitory effect on translation showed that leaky scanning and reinitiation occurs with these mRNAs. In conclusion, the upstream open reading frames in the 5'-UTRs of ER alpha mRNAs have the potential to regulate estrogen receptor alpha expression.  相似文献   

20.
E-selectin is a cytokine-inducible, calcium-dependent endothelial cell adhesion molecule that plays a critical role in the leucocyte-endothelium interaction during inflammation and is thought to contribute to the metastatic dissemination of tumour cells. Like the other selectins, E-selectin binds to ligands carrying the tetrasaccharide sialyl-Lewis x (NeuAcalpha2,3Galbeta1,4[Fucalpha1, 3]GlcNAc)1 or its isomer sialyl-Lewis a (NeuAcalpha2, 3Galbeta1, 3[Fucalpha1,4]GlcNAc). We examined the effect of expressing the H-type alpha(1,2)-fucosyltransferase or the alpha(2, 6)-sialyltransferase on the synthesis of sialyl-Lewis x by alpha(1, 3)fucosyltransferase. We found that H-type alpha(1, 2)-fucosyltransferase but not alpha(2,6)-sialyltransferase, strongly inhibited sialyl-Lewis x expression and E-selectin adhesion. We assume that H-type alpha(1,2)-fucosyltransferase competes with the endogenous alpha(2,3)-sialyltransferase for the N-acetyllactosamine structures assigned to further serve as acceptors for alpha(1, 3)fucosyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号