首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ca2+ currents, charge movements, and intracellular Ca2+ transients of mouse dihydropyridine receptor (DHPR) beta 1-null myotubes expressing a mouse DHPR beta 1 cDNA have been characterized. In beta 1-null myotubes maintained in culture for 10-15 days, the density of the L-type current was approximately 7-fold lower than in normal cells of the same age (Imax was 0.65 +/- 0.05 pA/pF in mutant versus 4.5 +/- 0.8 pA/pF in normal), activation of the L-type current was significantly faster (tau activation at +40 mV was 28 +/- 7 ms in mutant versus 57 +/- 8 ms in normal), charge movements were approximately 2.5-fold lower (Qmax was 2.5 +/- 0.2 nC/microF in mutant versus 6.3 +/- 0.7 nC/microF in normal), Ca2+ transients were not elicited by depolarization, and spontaneous or evoked contractions were absent. Transfection of beta 1-null cells by lipofection with beta 1 cDNA reestablished spontaneous or evoked contractions in approximately 10% of cells after 6 days and approximately 30% of cells after 13 days. In contracting beta 1-transfected myotubes there was a complete recovery of the L-type current density (Imax was 4 +/- 0.9 pA/pF), the kinetics of activation (tau activation at +40 mV was 64 +/- 5 ms), the magnitude of charge movements (Qmax was 6.7 +/- 0.4 nC/microF), and the amplitude and voltage dependence of Ca2+ transients evoked by depolarizations. Ca2+ transients of transfected cells were unaltered by the removal of external Ca2+ or by the block of the L-type Ca2+ current, demonstrating that a skeletal-type excitation-contraction coupling was restored. The recovery of the normal skeletal muscle phenotype in beta 1-transfected beta-null myotubes shows that the beta 1 subunit is essential for the functional expression of the DHPR complex.  相似文献   

2.
The Ca2+ currents, charge movements, and intracellular Ca2+ transients in mouse skeletal muscle cells homozygous for a null mutation in the cchb1 gene encoding the beta 1 subunit of the dihydropyridine receptor have been characterized. I beta null, the L-type Ca2+ current of mutant cells, had a approximately 13-fold lower density than the L-type current of normal cells (0.41 +/- 0.042 pA/pF at + 20 mV, compared with 5.2 +/- 0.38 pA/pF in normal cells). I beta null was sensitive to dihydropyridines and had faster kinetics of activation and slower kinetics of inactivation than the L-type current of normal cells. Charge movement was reduced approximately 2.8-fold, with Qmax = 6.9 +/- 0.61 and Qmax = 2.5 +/- 0.2 nC/microF in normal and mutant cells, respectively. Approximately 40% of Qmax was nifedipine sensitive in both groups. In contrast to normal cells, Ca2+ transients could not be detected in mutant cells at any test potential; however, caffeine induced a robust Ca2+ transient. In homogenates of mutant muscle, the maximum density of [3H]PN200-110 binding sites (Bmax) was reduced approximately 3.9-fold. The results suggest that the excitation-contraction uncoupling of beta 1-null skeletal muscle involves a failure of the transduction mechanism that is due to either a reduced amount of alpha 1S subunits in the membrane or the specific absence of beta 1 from the voltage-sensor complex.  相似文献   

3.
The properties of the gating currents (nonlinear charge movements) of human cardiac L-type Ca2- channels and their relationship to the activation of the Ca2+ channel (ionic) currents were studied using a mammalian expression system. Cloned human cardiac alpha1 + rabbit alpha 2 subunits or human cardiac alpha 1 + rabbit alpha 2 + human beta 3 subunits were transiently expressed in HEK293 cells. The maximum Ca2+ current density increased from -3.9 +/- 0.9 pA/pF for the alpha 1 + alpha 2 subunits to -11.6 +/- 2.2 pA/pF for alpha 1 + alpha 2 + beta 3 subunits. Calcium channel gating currents were recorded after the addition of 5 mM Co2+, using a -P/5 protocol. The maximum nonlinear charge movement (Qmax) increased from 2.5 +/- 0.3 nC/muF for alpha 1 + alpha 2 subunit to 12.1 +/- 0.3 nC/muF for alpha 1 + alpha 2 + beta 3 subunit expression. The QON was equal to the QOFF for both subunit combinations. The QON-Vm data were fit by a sum of two Boltzmann expressions and ranged over more negative potentials, as compared with the voltage dependence for activation of the Ca2+ conductance. We conclude that 1) the beta subunit increases the number of functional alpha 1 subunits expressed in the plasma membrane of these cells and 2) the voltage-dependent activation of the human cardiac L-type calcium channel involves the movements of at least two nonidentical and functionally distinct gating structures.  相似文献   

4.
The origin of Ibetanull, the Ca2+ current of myotubes from mice lacking the skeletal dihydropyridine receptor (DHPR) beta1a subunit, was investigated. The density of Ibetanull was similar to that of Idys, the Ca2+ current of myotubes from dysgenic mice lacking the skeletal DHPR alpha1S subunit (-0.6 +/- 0.1 and -0.7 +/- 0.1 pA/pF, respectively). However, Ibetanull activated at significantly more positive potentials. The midpoints of the GCa-V curves were 16.3 +/- 1.1 mV and 11.7 +/- 1.0 mV for Ibetanull and Idys, respectively. Ibetanull activated significantly more slowly than Idys. At +30 mV, the activation time constant for Ibetanull was 26 +/- 3 ms, and that for Idys was 7 +/- 1 ms. The unitary current of normal L-type and beta1-null Ca2+ channels estimated from the mean variance relationship at +20 mV in 10 mM external Ca2+ was 22 +/- 4 fA and 43 +/- 7 fA, respectively. Both values were significantly smaller than the single-channel current estimated for dysgenic Ca2+ channels, which was 84 +/- 9 fA under the same conditions. Ibetanull and Idys have different gating and permeation characteristics, suggesting that the bulk of the DHPR alpha1 subunits underlying these currents are different. Ibetanull is suggested to originate primarily from Ca2+ channels with a DHPR alpha1S subunit. Dysgenic Ca2+ channels may be a minor component of this current. The expression of DHPR alpha1S in beta1-null myotubes and its absence in dysgenic myotubes was confirmed by immunofluorescence labeling of cells.  相似文献   

5.
Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle.  相似文献   

6.
We have examined the ability of BI (class A) Ca2+ channels, cloned from rabbit brain, to mediate excitation-contraction (E-C) coupling in skeletal muscle. Expression plasmids carrying cDNA encoding BI channels were microinjected into the nuclei of dysgenic mouse myotubes grown in primary culture. Ionic currents and intramembrane charge movements produced by the BI channels were recorded using the whole-cell patch- clamp technique. Injected myotubes expressed high densities of ionic BI Ca2+ channel current (average 31 pA/pF) but did not display spontaneous contractions, and only very rarely displayed evoked contractions. The expressed ionic current was pharmacologically distinguished from the endogenous L-type current of dysgenic skeletal muscle (Idys) by its insensitivity to the dihydropyridine antagonist (+)-PN 200-110. Peak BI Ca2+ currents activated with a time constant (tau a) of approximately 2 ms and inactivated with a time constant (tau h) of approximately 260 ms (20-23 degrees C). The time constant of inactivation (tau h) was not increased by substituting Ba2+ for Ca2+ as charge carrier, demonstrating that BI channels expressed in dysgenic myotubes do not undergo Ca(2+)-dependent inactivation. The average maximal Ca2+ conductance (Gmax) produced by the BI channels was quite large (approximately 534 S/F). In contrast, the average maximal charge movement (Qmax) produced in the same myotubes (approximately 2.7 nC/microF) was quite small, being barely larger than Qmax in control dysgenic myotubes (approximately 2.3 nC/microF). Thus, the ratio Gmax/Qmax for the BI channels was considerably higher than previously found for cardiac or skeletal muscle L-type Ca2+ channels expressed in the same system, indicating that neuronal BI Ca2+ channels exhibit a much higher open probability than these L-type Ca2+ channels.  相似文献   

7.
Skeletal muscle knockout cells lacking the beta subunit of the dihydropyridine receptor (DHPR) are devoid of slow L-type Ca(2+) current, charge movements, and excitation-contraction coupling, despite having a normal Ca(2+) storage capacity and Ca(2+) spark activity. In this study we identified a specific region of the missing beta1a subunit critical for the recovery of excitation-contraction. Experiments were performed in beta1-null myotubes expressing deletion mutants of the skeletal muscle-specific beta1a, the cardiac/brain-specific beta2a, or beta2a/beta1a chimeras. Immunostaining was used to determine that all beta constructs were expressed in these cells. We examined the Ca(2+) conductance, charge movements, and Ca(2+) transients measured by confocal fluo-3 fluorescence of transfected myotubes under whole-cell voltage-clamp. All constructs recovered an L-type Ca(2+) current with a density, voltage-dependence, and kinetics of activation similar to that recovered by full-length beta1a. In addition, all constructs except beta2a mutants recovered charge movements with a density similar to full-length beta1a. Thus, all beta constructs became integrated into a skeletal-type DHPR and, except for beta2a mutants, all restored functional DHPRs to the cell surface at a high density. The maximum amplitude of the Ca(2+) transient was not affected by separate deletions of the N-terminus of beta1a or the central linker region of beta1a connecting two highly conserved domains. Also, replacement of the N-terminus half of beta1a with that of beta2a had no effect. However, deletion of 35 residues of beta1a at the C-terminus produced a fivefold reduction in the maximum amplitude of the Ca(2+) transients. A similar observation was made by deletion of the C-terminus of a chimera in which the C-terminus half was from beta1a. The identified domain at the C-terminus of beta1a may be responsible for colocalization of DHPRs and ryanodine receptors (RyRs), or may be required for the signal that opens the RyRs during excitation-contraction coupling. This new role of DHPR beta in excitation-contraction coupling represents a cell-specific function that could not be predicted on the basis of functional expression studies in heterologous cells.  相似文献   

8.
Intramembrane charge movement and Ca2+ release from sarcoplasmic reticulum was studied in foetal skeletal muscle cells from normal and mutant mice with 'muscular dysgenesis' (mdg/mdg). It was shown that: 1) unlike normal myotubes, in dysgenic myotubes membrane depolarization did not evoke calcium release from the sarcoplasmic reticulum; 2) when all ionic currents are pharmacologically suppressed, membrane depolarization produced an asymmetric intramembrane charge movement in both normal and dysgenic myotubes. The relationship between the membrane potential and the amount of charge movement in these muscles could be expressed by a two-state Boltzmann equation; 3) the maximum amount of charge movement associated with depolarization (Qon max) in normal and in dysgenic myotubes was 6.3 +/- 1.4 nC/microF (n = 6) and 1.7 +/- 0.3 nC/microF (n = 6) respectively; 4) nifedipine (1-20 microM) applied to the bath reduced Qon max by about 40% in normal muscle cells. In contrast, the drug had no significant effect on the charge movement of dysgenic myotubes; and 5) the amount of nifedipine-resistant charge movement in normal and in dysgenic myotubes was 3.5 nC/microF (n = 3) and 1.7 nC/microF 1 maximum (n = 3), respectively.  相似文献   

9.
Chimeras consisting of the homologous skeletal dihydropyridine receptor (DHPR) beta1a subunit and the heterologous cardiac/brain beta2a subunit were used to determine which regions of beta1a were responsible for the skeletal-type excitation-contraction (EC) coupling phenotype. Chimeras were transiently transfected in beta1 knockout myotubes and then voltage-clamped with simultaneous measurement of confocal fluo-4 fluorescence. All chimeras expressed a similar density of DHPR charge movements, indicating that the membrane density of DHPR voltage sensors was not a confounding factor in these studies. The data indicates that a beta1a-specific domain present in the carboxyl terminus, namely the D5 region comprising the last 47 residues (beta1a 478-524), is essential for expression of skeletal-type EC coupling. Furthermore, the location of beta1aD5 immediately downstream from conserved domain D4 is also critical. In contrast, chimeras in which beta1aD5 was swapped by the D5 region of beta2a expressed Ca(2+) transients triggered by the Ca(2+) current, or none at all. A hydrophobic heptad repeat is present in domain D5 of beta1a (L478, V485, V492). To determine the role of this motif, residues in the heptad repeat were mutated to alanines. The triple mutant beta1a(L478A/V485A/V492A) recovered weak skeletal-type EC coupling (DeltaF/F(max) = 0.4 +/- 0.1 vs. 2.7 +/- 0.5 for wild-type beta1a). However, a triple mutant with alanine substitutions at positions out of phase with the heptad repeat, beta1a(S481A/L488A/S495A), was normal (DeltaF/F(max) = 2.1 +/- 0.4). In summary, the presence of the beta1a-specific D5 domain, in its correct position after conserved domain D4, is essential for skeletal-type EC coupling. Furthermore, a heptad repeat in beta1aD5 controls the EC coupling activity. The carboxyl terminal heptad repeat of beta1a might be involved in protein-protein interactions with ryanodine receptor type 1 required for DHPR to ryanodine receptor type 1 signal transmission.  相似文献   

10.
In skeletal muscle, coupling between the 1,4-dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) underlies excitation-contraction (EC) coupling. The III-IV loop of the DHPR alpha(1S) subunit binds to a segment of RyR1 in vitro, and mutations in the III-IV loop alter the voltage dependence of EC coupling, raising the possibility that this loop is directly involved in signal transmission from the DHPR to RyR1. To clarify the role of the alpha(1S) III-IV loop in EC coupling, we examined the functional properties of a chimera (GFP-alpha(1S)[III-IVa]) in which the III-IV loop of the divergent alpha(1A) isoform replaced that of alpha(1S). Dysgenic myotubes expressing GFP-alpha(1S)[III-IVa] yielded myoplasmic Ca(2+) transients that activated at approximately 10 mV more hyperpolarized potentials and that were approximately 65% smaller than those of GFP-alpha(1S). A similar reduction was observed in voltage-dependent charge movements for GFP-alpha(1S)[III-IVa], indicating that the chimeric channels trafficked less well to the membrane but that those that were in the membrane functioned as efficiently in EC coupling as GFP-alpha(1S). Relative to GFP-alpha(1S), L-type currents mediated by GFP-alpha(1S)[III-IVa] were approximately 40% smaller and activated at approximately 5 mV more hyperpolarized potentials. The altered gating of GFP-alpha(1S)[III-IVa] was accentuated by exposure to +/-Bay K 8644, which caused a much larger hyperpolarizing shift in activation compared with its effect on GFP-alpha(1S). Taken together, our observations indicate that the alpha(1S) III-IV loop is not directly involved in EC coupling but does influence DHPR gating transitions important both for EC coupling and activation of L-type conductance.  相似文献   

11.
Ca2+ sparks are miniature Ca2+ release events from the sarcoplasmic reticulum of muscle cells. We examined the kinetics of Ca2+ sparks in excitation-contraction uncoupled myotubes from mouse embryos lacking the beta1 subunit and mdg embryos lacking the alpha1S subunit of the dihydropyridine receptor. Ca2+ sparks occurred spontaneously without a preferential location in the myotube. Ca2+ sparks had a broad distribution of spatial and temporal dimensions with means much larger than those reported in adult muscle. In normal myotubes (n = 248 sparks), the peak fluorescence ratio, DeltaF/Fo, was 1.6 +/- 0.6 (mean +/- SD), the full spatial width at half-maximal fluorescence (FWHM) was 3.6 +/- 1.1 micrometer and the full duration of individual sparks, Deltat, was 145 +/- 64 ms. In beta-null myotubes (n = 284 sparks), DeltaF/Fo = 1.9 +/- 0.4, FWHM = 5.1 +/- 1.5 micrometer, and Deltat = 168 +/- 43 ms. In mdg myotubes (n = 426 sparks), DeltaF/Fo = 1 +/- 0.5, the FWHM = 2.5 +/- 1.1 micrometer, and Deltat = 97 +/- 50 ms. Thus, Ca2+ sparks in mdg myotubes were significantly dimmer, smaller, and briefer than Ca2+ sparks in normal or beta-deficient myotubes. In all cell types, the frequency of sparks, DeltaF/Fo, and FWHM were gradually decreased by tetracaine and increased by caffeine. Both results confirmed that Ca2+ sparks of resting embryonic muscle originated from spontaneous openings of ryanodine receptor channels. We conclude that dihydropyridine receptor alpha1S and beta1 subunits participate in the control of Ca2+ sparks in embryonic skeletal muscle. However, excitation-contraction coupling is not essential for Ca2+ spark formation in these cells.  相似文献   

12.
We investigated the contribution of the carboxyl terminus region of the beta1a subunit of the skeletal dihydropyridine receptor (DHPR) to the mechanism of excitation-contraction (EC) coupling. cDNA-transfected beta1 KO myotubes were voltage clamped, and Ca(2+) transients were analyzed by confocal fluo-4 fluorescence. A chimera with an amino terminus half of beta2a and a carboxyl terminus half of beta1a (beta2a 1-287/beta1a 325-524) recapitulates skeletal-type EC coupling quantitatively and was used to generate truncated variants lacking 7 to 60 residues from the beta1a-specific carboxyl terminus (Delta7, Delta21, Delta29, Delta35, and Delta60). Ca(2+) transients recovered by the control chimera have a sigmoidal Ca(2+) fluorescence (DeltaF/F) versus voltage curve with saturation at potentials more positive than +30 mV, independent of external Ca(2+) and stimulus duration. In contrast, the amplitude of Ca(2+) transients expressed by the truncated variants varied with the duration of the pulse, and for Delta29, Delta35, and Delta60, also varied with external Ca(2+) concentration. For Delta7 and Delta21, a 50-ms depolarization produced a sigmoidal DeltaF/F versus voltage curve with a lower than control maximum fluorescence. Moreover, for Delta29, Delta35, and Delta60, a 200-ms depolarization increased the maximum fluorescence and changed the shape of the DeltaF/F versus voltage curve, from sigmoidal to bell-shaped, with a maximum at approximately +30 mV. The change in voltage dependence, together with the external Ca(2+) dependence and additional controls with ryanodine, indicated a loss of skeletal-type EC coupling and the emergence of an EC coupling component triggered by the Ca(2+) current. Analyses of d(DeltaF/F)/dt showed that the rate of cytosolic Ca(2+) increase during the Ca(2+) transient was fivefold faster for the control chimera than for the severely truncated variants (Delta29, Delta35, and Delta60) and was consistent with the kinetics of the DHPR Ca(2+) current. In summary, absence of the beta1a-specific carboxyl terminus (last 29 to 60 residues of the control chimera) results in a loss of the fast component of the Ca(2+) transient, bending of the DeltaF/F versus voltage curve, and emergence of EC coupling triggered by the Ca(2+) current. The studies underscore the essential role of the carboxyl terminus region of the DHPR beta1a subunit in fast voltage dependent EC coupling in skeletal myotubes.  相似文献   

13.
The dihydropyridine receptor (DHPR) in the skeletal muscle plasmalemma functions as both voltage-gated Ca(2+) channel and voltage sensor for excitation-contraction (EC) coupling. As voltage sensor, the DHPR regulates intracellular Ca(2+) release via the skeletal isoform of the ryanodine receptor (RyR-1). Interaction with RyR-1 also feeds back to increase the Ca(2+) current mediated by the DHPR. To identify regions of the DHPR important for receiving this signal from RyR-1, we expressed in dysgenic myotubes a chimera (SkLC) having skeletal (Sk) DHPR sequence except for a cardiac (C) II-III loop (L). Tagging with green fluorescent protein (GFP) enabled identification of expressing myotubes. Dysgenic myotubes expressing GFP-SkLC or SkLC lacked EC coupling and had very small Ca(2+) currents. Introducing a short skeletal segment (alpha(1S) residues 720-765) into the cardiac II-III loop (replacing alpha(1C) residues 851-896) of GFP-SkLC restored both EC coupling and Ca(2+) current densities like those of the wild type skeletal DHPR. This 46-amino acid stretch of skeletal sequence was recently shown to be capable of transferring strong, skeletal-type EC coupling to an otherwise cardiac DHPR (Nakai, J., Tanabe, T., Konno, T., Adams, B., and Beam, K.G. (1998) J. Biol. Chem. 273, 24983-24986). Thus, this segment of the skeletal II-III loop contains a motif required for both skeletal-type EC coupling and RyR-1-mediated enhancement of Ca(2+) current.  相似文献   

14.
The skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel or ryanodine receptor (RyR1) binds four molecules of FKBP12, and the interaction of FKBP12 with RyR1 regulates both unitary and coupled gating of the channel. We have characterized the physiologic effects of previously identified mutations in RyR1 that disrupt FKBP12 binding (V2461G and V2461I) on excitation-contraction (EC) coupling and intracellular Ca2+ homeostasis following their expression in skeletal myotubes derived from RyR1-knockout (dyspedic) mice. Wild-type RyR1-, V246I-, and V2461G-expressing myotubes exhibited similar resting Ca2+ levels and maximal responses to caffeine (10 mm) and cyclopiazonic acid (30 microm). However, maximal voltage-gated Ca2+ release in V2461G-expressing myotubes was reduced by approximately 50% compared with that attributable to wild-type RyR1 (deltaF/Fmax = 1.6 +/- 0.2 and 3.1 +/- 0.4, respectively). Dyspedic myotubes expressing the V2461I mutant protein, that binds FKBP12.6 but not FKBP12, exhibited a comparable reduction in voltage-gated SR Ca2+ release (deltaF/Fmax = 1.0 +/- 0.1). However, voltage-gated Ca2+ release in V2461I-expressing myotubes was restored to a normal level (deltaF/Fmax = 2.9 +/- 0.6) following co-expression of FKBP12.6. None of the mutations that disrupted FKBP binding to RyR1 significantly affected RyR1-mediated enhancement of L-type Ca2+ channel activity (retrograde coupling). These data demonstrate that FKBP12 binding to RyR1 enhances the gain of skeletal muscle EC coupling.  相似文献   

15.
In this work we tested the hypothesis that skeletal muscle fibers from aging mice exhibit a significant decline in myoplasmic Ca(2+) concentration resulting from a reduction in L-type Ca(2+) channel (dihydropyridine receptor, DHPR) charge movement. Skeletal muscle fibers from the flexor digitorum brevis (FDB) muscle were obtained from 5-7-, 14-18-, or 21-24-month-old FVB mice and voltage-clamped in the whole-cell configuration of the patch-clamp technique according to described procedures (Wang, Z.-M., M. L. Messi, and O. Delbono. 1999. Biophys. J. 77:2709-2716). Total charge movement or the DHPR charge movement was measured simultaneously with intracellular Ca(2+) concentration. The maximum charge movement (Q(max)) recorded (mean +/- SEM, in nC microF(-1)) was 53 +/- 3.2 (n = 47), 51 +/- 3.2 (n = 35) (non-significant, ns), and 33 +/- 1.9 (n = 32) (p < 0.01), for the three age groups, respectively. Q(max) corresponding to the DHPR was 43 +/- 3.3, 38 +/- 4.1 (ns), and 25 +/- 3.4 (p < 0.01) for the three age groups, respectively. The peak intracellular [Ca(2+)] recorded at 40 mV (in microM) was 15.7 +/- 0. 12, 16.7 +/- 0.18 (ns), and 8.2 +/- 0.07 (p < 0.01) for the three age groups, respectively. No significant changes in the voltage distribution or steepness of the Q-V or [Ca(2+)]-V relationship were found. These data support the concept that the reduction in the peak intracellular [Ca(2+)] results from a larger number of ryanodine receptors uncoupled to DHPRs in skeletal muscle fibers from aging mammals.  相似文献   

16.
Single- (whole-cell patch) and two-electrode voltage-clamp techniques were used to measure transient (Ifast) and sustained (Islow) calcium currents, linear capacitance, and slow, voltage-dependent charge movements in freshly dissociated fibers of the flexor digitorum brevis (FDB) muscle of rats of various postnatal ages. Peak Ifast was largest in FDB fibers of neonatal (1-5 d) rats, having a magnitude in 10 mM external Ca of 1.4 +/- 0.9 pA/pF (mean +/- SD; current normalized by linear fiber capacitance). Peak Ifast was smaller in FDB fibers of older animals, and by approximately 3 wk postnatal, it was so small as to be unmeasurable. By contrast, the magnitudes of Islow and charge movement increased substantially during postnatal development. Peak Islow was 3.6 +/- 2.5 pA/pF in FDB fibers of 1-5-d rats and increased to 16.4 +/- 6.5 pA/pF in 45-50-d-old rats; for these same two age groups, Qmax, the total mobile charge measurable as charge movement, was 6.0 +/- 1.7 and 23.8 +/- 4.0 nC/microF, respectively. As both Islow and charge movement are thought to arise in the transverse-tubular system, linear capacitance normalized by the area of fiber surface was determined as an indirect measure of the membrane area of the t-system relative to that of the fiber surface. This parameter increased from 1.5 +/- 0.2 microF/cm2 in 2-d fibers to 2.9 +/- 0.4 microF/cm2 in 44-d fibers. The increases in peak Islow, Qmax, and normalized linear capacitance all had similar time courses. Although the function of Islow is unknown, the substantial postnatal increase in its magnitude suggests that it plays an important role in the physiology of skeletal muscle.  相似文献   

17.
The skeletal muscle L-type calcium channel or dihydropyridine receptor (DHPR) plays an integral role in excitation-contraction (E-C) coupling. Its activation initiates three sequential events: charge movement (Q(r)), calcium release, and calcium current (I(Ca,L)). This relationship suggests that changes in Q(r) might affect release and I(Ca,L). Here we studied the effect of gabapentin (GBP) on the three events generated by DHPRs in skeletal myotubes in culture. GBP specifically binds to the alpha(2)/delta(1) subunit of the brain and skeletal muscle DHPR. Myotubes were stimulated with a protocol that included a depolarizing prepulse to inactivate voltage-dependent proteins other than DHPRs. Gabapentin (50 microM) significantly increased Q(r) while decreasing the rate of rise of calcium transients. Gabapentin also reduced the maximum amplitude of the I(Ca,L) (as we previously reported) without modifying the kinetics of activation. Exposure of GBP-treated myotubes to 10 microM nifedipine prevented the increase of Q(r) promoted by this drug, indicating that the extra charge recorded originated from DHPRs. Our data suggest that GBP dissociates the functions of the DHPR from the initial voltage-sensing step and implicates a role for the alpha(2)/delta(1) subunit in E-C coupling.  相似文献   

18.
In skeletal muscle, the dihydropyridine receptor (DHPR) in the plasma membrane (PM) serves as a Ca(2+) channel and as the voltage sensor for excitation-contraction (EC coupling), triggering Ca(2+) release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) membrane. In addition to being functionally linked, these two proteins are also structurally linked to one another, but the identity of these links remains unknown. As an approach to address this issue, we have expressed DHPR alpha(1S) or beta(1a) subunits, with a biotin acceptor domain fused to targeted sites, in myotubes null for the corresponding, endogenous DHPR subunit. After saponin permeabilization, the approximately 60-kD streptavidin molecule had access to the beta(1a) N and C termini and to the alpha(1S) N terminus and proximal II-III loop (residues 671-686). Steptavidin also had access to these sites after injection into living myotubes. However, sites of the alpha(1S) C terminus were either inaccessible or conditionally accessible in saponin- permeabilized myotubes, suggesting that these C-terminal regions may exist in conformations that are occluded by other proteins in PM/SR junction (e.g., RyR1). The binding of injected streptavidin to the beta(1a) N or C terminus, or to the alpha(1S) N terminus, had no effect on electrically evoked contractions. By contrast, binding of streptavidin to the proximal alpha(1S) II-III loop abolished such contractions, without affecting agonist-induced Ca(2+) release via RyR1. Moreover, the block of EC coupling did not appear to result from global distortion of the DHPR and supports the hypothesis that conformational changes of the alpha(1S) II-III loop are necessary for EC coupling in skeletal muscle.  相似文献   

19.
Intramembrane charge movement was recorded in guinea pig ventricular myocytes at 19-22 degrees C using the whole-cell patch clamp technique. From a holding potential of -110 mV, the dependence of intramembrane charge moved on test voltage (Q(V)) followed the sum of two Boltzmann components. One component had a transition voltage (V) of -48 mV and a total charge (Qmax) of congruent to 3 nC/microF. The other had a V of -18 mV and a Qmax of 11 nC/microF. Ba2+ currents through Ca channels began to activate at -45 mV and peaked at congruent to -15 mV. Na+ current peaked at -35 to -30 mV. Availability of charge (in pulses from -70 to +10 mV) depended on the voltage of conditioning depolarizations as two Boltzmann terms plus a constant. One term had a V of -88 mV and a Qmax of 2.5 nC/microF; the other had a V of -29 mV and a Qmax of 6.3 nC/microF. From the Q(V) dependence, the voltage dependence of the ionic currents, and the voltage dependence of the availability of charge, the low voltage term of Q(V) and availability was identified as Na gating charge, at a total of 3.5 nC/microF. The remainder, 11 nC/microF, was attributed to Ca channels. After pulses to -40 mV and above, the OFF charge movement had a slow exponentially decaying component. Its time constant had a bell-shaped dependence on OFF voltage peaking at 11 ms near -100 mV. Conditioning depolarizations above -40 mV increased the slow component exponentially with the conditioning duration (tau approximately equal to 480 ms). Its magnitude was reduced as the separation between conditioning and test pulses increased (tau approximately equal to 160 ms). The voltage distribution of the slow component of charge was measured after long (5 s) depolarizations. Its V was -100 mV, a shift of -80 mV from the value in normally polarized cells. This voltage was the same at which the time constant of the slow component peaked. Qmax and the steepness of the voltage distribution were unchanged by depolarization. This indicates that the same molecules that produce the charge movement in normally polarized cells also produce the slow component in depolarized cells. 100 microns D600 increased by 77% the slow charge movement after a 500-ms conditioning pulse. These results demonstrate two classes of charge movement associated with L-type Ca channels, with kinetics and voltage dependence similar to charge 1 and charge 2 of skeletal muscle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Molecular understanding of the mechanism of excitation-contraction (EC) coupling in skeletal muscle has been made possible by cultured myotube models lacking specific dihydropyridine receptor (DHPR) subunits and ryanodine receptor type 1 (RyR1) isoforms. Transient expression of missing cDNAs in mutant myotubes leads to a rapid recovery, within days, of various Ca2+ current and EC coupling phenotypes. These myotube models have thus permitted structure-function analysis of EC coupling domains present in the DHPR controlling the opening of RyR1. The purpose of this brief review is to highlight advances made by this laboratory towards understanding the contribution of domains present in alpha1S and beta1a subunits of the skeletal DHPR to EC coupling signaling. Our main contention is that domains of the alpha1S II-III loop are necessary but not sufficient to recapitulate skeletal-type EC coupling. Rather, the structural unit that controls the EC coupling signal appears to be the alpha1S/beta1a pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号