首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Acetate metabolism was studied in 2 strains of the green alga Pandorina morum. Both strains were capable of mixotrophic growth in the light, but only one strain was capable of heterotrophic growth in the dark. 14C-2-acetate uptake by both strains was studied in the light and dark, in the presence and absence of CO2 and 3(3,4-dichlorophenyl)-1,1-dimethylurea (10?5M). The distribution of radioactivity incorporated into the insoluble, aqueous and chloroform soluble fractions of the cells was determined. The strain incapable of heterotrophic growth in the dark was found to incorporate very little acetate in the dark, and its ability to incorporate acetate into the insoluble fraction was severely limited under all conditions. Incorporation into the aqueous and chloroform-soluble fractions in the light was similar in both strains. The reduced incorporation into the insoluble fraction was almost totally the result of limited incorporation of acetate into polysaccharides by the obligate phototrophic strain.  相似文献   

2.
A rod-shaped, motile, phototrophic bacterium, strain SiCys, was enriched and isolated from a marine microbial mat, with cysteine as sole substrate. During phototrophic anaerobic growth with cysteine, sulfide was produced as an intermediate, which was subsequently oxidized to sulfate. The molar growth yield with cysteine was 103 g mol–1, in accordance with complete assimilation of electrons from the carbon and the sulfur moiety into cell material. Growth yields with alanine and serine were proportionally lower. Thiosulfate, sulfide, hydrogen, and several organic compounds were used as electron donors in the light, whereas cystine, sulfite, or elemental sulfur did not support phototrophic anaerobic growth. Aerobic growth in the dark was possible with fructose as substrate. Cultures of strain SiCys were yellowish-brown in color and contained bacteriochlorophyll a, spheroidene, spheroidenone, and OH-spheroidene as major photosynthetic pigments. Taking the morphology, photosynthetic pigments, aerobic growth in the dark, and utilization of sulfide for phototrophic growth into account, strain SiCys was assigned to the genus Rhodovulum (formerly Rhodobacter) and tentatively classified as a strain of R. sulfidophilum. In cell-free extracts in the presence of pyridoxal phosphate, cysteine was converted to pyruvate and sulfide, which is characteristic for cysteine desulfhydrase activity (l-cystathionine γ-lyase, EC 4.4.1.1). Received: 15 December 1995 / Accepted: 1 April 1996  相似文献   

3.
A new marine phototrophic purple sulfur bacterium (strain CE2203) was isolated in pure culture from a man-made coastal lagoon located on the Atlantic coast (Arcachon Bay, France). Single cells were coccus-shaped, did not contain gas vesicles, and were highly motile. Intracellular photosynthetic membranes were of the vesicular type. Bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series were present as photosynthetic pigments. Hydrogen sulfide, thiosulfate, elemental sulfur, and molecular hydrogen were used as electron donors during photolithotrophic growth under anoxic conditions, while carbon dioxide was utilized as carbon source. Acetate, propionate, lactate, glycolate, pyruvate, fumarate, succinate, fructose, sucrose, ethanol, and propanol were photoassimilated in the presence of hydrogen sulfide. During growth on sulfide, elemental sulfur globules were stored inside the cells. Chemotrophic growth under microoxic conditions in the dark was possible. The DNA base composition was 66.9 mol% G+C. Comparative sequence analysis of the 16S rRNA gene confirmed the membership of strain CE2203 in the family Chromatiaceae. Morphological characteristics of strain CE2203 indicated a close affiliation to the genera Thiocystis and Thiocapsa. However, the phylogenetic treeing revealed no closer relationship to Thiocystis spp. than to Thiocapsa roseopersicina or other known members of the Chromatiaceae. Consequently, strain CE2203 is proposed as the type strain of a new genus and species, Thiorhodococcus minus gen. nov., sp. nov. Received: 23 December 1996 / Accepted: 27 March 1997  相似文献   

4.
Comparison of Chloroflexus aurantiacus J-10-fl cells by freeze-fracture electron microscopy showed that cell shape and dimensions did not depend on oxygen tension or light intensity during growth. The major morphological difference between cells cultured anaerobically in the light and aerobically in the dark was the absence of chlorosomes in aerobically grown cells. C. aurantiacus cells cultured aerobically in the dark began bacteriochlorophyll synthesis immediately when shifted to either phototrophic or semiaerobic conditions. Cells adapting to phototrophic conditions grew to the same density and synthesized as much bacteriochlorophyll as nonadapting phototrophic cultures grown at the same light intensity. Cells adapting to reduced oxygen tension (semiaerobic conditions) in the dark entered an 8- to 12-h growth lag during which the bacteriochlorophyll content increased significantly. Despite variations in the initial bacteriochlorophyll content and in the length of the growth lag, the amounts of bacteriochlorophyll a and c were constant at the end of the semiaerobic growth lag. At later times during adaptation to semiaerobic conditions, after growth resumed, variations in the ratio of bacteriochlorophyll c/bacteriochlorophyll a were observed and suggested independent regulation of the two bacteriochlorophylls.  相似文献   

5.
For three species of anoxygenic phototrophic alphaproteobacteria differing in their reaction to oxygen and light, physiological characteristics (capacity for acetate assimilation, activity of the tricarboxylic acid (TCA) cycle enzymes, respiration, and the properties of the oxidase systems) were studied. Nonsulfur purple bacteria Rhodobacter sphaeroides, Rhodobaca bogoriensis, and aerobic anoxygenic phototrophic bacteria Roseinatronobacter thiooxidans were the subjects of investigation. All of these organisms were able to grow under aerobic conditions in the dark using the respiratory system with cytochrome aa 3 as the terminal oxidase. They differed, however, in their capacity for growth in the light, bacteriochlorophyll synthesis, and regulation of activity of the TCA cycle enzymes. Oxygen suppressed bacteriochlorophyll synthesis by Rha. sphaeroides and Rbc. bogoriensis both in the dark and in the light. Bacteriochlorophyll synthesis in Rna. thiooxidans occurred only in the dark and was suppressed by light. The results on acetate assimilation by the studied strains reflected the degree of their adaptation to aerobic growth in the dark. Acetate assimilation by light-grown Rha. sphaeroides was significantly higher than by the dark-grown ones. Unlike Rha. sphaeroides, acetate assimilation by Rbc. bogoriensis in the light under anaerobic and aerobic conditions was much less dependent on the growth conditions. Aerobic acetate assimilation by all studied bacteria was promoted by light. In Rha. sphaeroides, activity of the TCA cycle enzymes increased significantly in the cells grown aerobically in the dark. In Rbc. bogoriensis, activity of most of the TCA cycle enzymes under aerobic conditions either decreased or remained unchanged. Our results confirm the origin of modern chemoorganotrophs from anoxygenic phototrophic bacteria. The evolution from anoxygenic photoorganotrophs to aerobic chemoorganotrophs included several stages: nonsulfur purple bacteria → nonsulfur purple bacteria similar to Rbc. bogoriensis → aerobic anoxygenic phototrophs → chemoorganotrophs.  相似文献   

6.
Abstract The wild-type strain Rhodobacter sphaeroides DSM 158 is a nitrate-reducing bacterium with a periplasmic nitrate reductase. Addition of chlorate to the culture medium causes a stimulation of the phototrophic growth, indicating that this strain is able to use chlorate as an ancillary oxidant. Several mutant strains of R. sphaeroides deficient in nitrate reductase activity were obtained by transposon Tn5 mutagenesis. Mutant strain NR45 exhibited high constitutive nitrate and chlorate reductase activities and phototrophic growth was also increased by the presence of chlorate. In contrast, the stimulation of growth by chlorate was not observed in mutant strains NR8 and NR13, in which transposon Tn5 insertion causes the simultaneous loss of both nitrate and chlorate reductase activities. Tn5 insertion probably does not affect molybdenum metabolism since NR8 and NR13 mutants exhibit both xanthine dehydrogenase and nitrogenase activities. These results that a single enzyme could reduce both nitrate and chlorate in R. sphaeroides DSM 158.  相似文献   

7.
Nutrient requirements of Gonium multicoccum (strains 7–1 and 7–2) were investigated in detail. Acetate supported, most efficiently growth in both continuous light and dark. Acetate could be replaced with pyruvate or lactate in the continuous light, but not in the dark. Sugars were completely ineffective. Thiamine was required for optimum growth. The addition of B12 reduced lag phase, but it did not change the final yield. As the sole nitrogen source, nitrate, ammonia, and urea were equally effective. Nitrite, arginine, glutamine, and uric acid, supported scant growth. Examination of the major and minor mineral requirements resulted, in an optimal medium. A growth rate as high as 5.8 doublings per day was obtained at 25 C in continuous light.  相似文献   

8.
M Pollich  C Wersig    G Klug 《Journal of bacteriology》1996,178(24):7308-7310
The bluF gene of Rhodobacter capsulatus is the first gene of the bluFEDCB operon which is involved in late steps of the cobalamin synthesis. To determine the function of the bluF gene product, a bluF::omega-Km mutant strain was constructed and characterized. This vitamin B12 auxotrophic mutant strain shows a 3.5-times higher vitamin B12 requirement under phototrophic growth conditions than under chemotrophic growth conditions. Surprisingly, the bluF promoter activity does not respond to alterations to the oxygen tension or vitamin B12 concentration.  相似文献   

9.
A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could also be used as sole electron source. Complexed ferric iron was slowly reduced to ferrous iron in the dark, with hydrogen as electron source. Similar to Chlorobium limicola, the phototrophic bacterium contained bacteriochlorophyll c and chlorobactene as photosynthetic pigments, and also resembled representatives of this species morphologically. On the basis of 16S rRNA sequence comparisons, this organism clusters with Chlorobium, Prosthecochloris, and Pelodictyon species within the green sulfur bacteria phylum. Since the phototrophic partner in the coculture KoFox is only moderately related to the other members of the cluster, it is proposed as a new species, Chlorobium ferrooxidans. The chemoheterotrophic partner bacterium, strain KoFum, was isolated in pure culture with fumarate as sole substrate. The strain was identified as a member of the ɛ-subclass of the Proteobacteria closely related to “Geospirillum arsenophilum” on the basis of physiological properties and 16S rRNA sequence comparison. The “Geospirillum” strain was present in the coculture only in low numbers. It fermented fumarate, aspartate, malate, or pyruvate to acetate, succinate, and carbon dioxide, and could reduce nitrate to dinitrogen gas. It was not involved in ferrous iron oxidation but possibly provided a thus far unidentified growth factor to the phototrophic partner. Received: 17 November 1998 / Accepted: 26 April 1999  相似文献   

10.
光合细菌在水处理和水生态修复领域应用前景广阔, 对其生理特性研究具有重要价值。从武汉东湖分离得到一株不产氧光合细菌PUF1, 通过对菌落形态、细胞超微结构、特征吸收光谱以及系统发育等分析, 初步确定为红假单胞菌属(Rhodopseudomonas sp.)紫色非硫光合细菌。PUF1细胞呈直的或稍弯曲的杆状, 长3.05—10.06 μm, 直径0.32—0.68 μm, 具有片层膜结构。PUF1培养物呈深紫红色, 主要色素为细菌叶绿素a (Bchl. a)和类胡萝卜素。初始pH 6.0—8.0, 光照强度500—3000 lx, 稳定期细菌生物量无显著差异, 但培养液pH>8.0会显著抑制PUF1最大光量子产量(Fv/Fm)。试验进一步研究了细菌不同生长阶段粗蛋白含量、ATP酶(ATPase)活性及Fv/Fm的变化规律。结果表明, PUF1不同生长阶段其蛋白含量有所差异, 以稳定期为最高(>60%), 而ATPase活性随培养时间的延长而逐渐降低。此外, PUF1光合作用与其生长状态也有一定的关系, 具体表现为细菌生长周期内Fv/Fm变化规律适用单峰高斯模型, 且以对数期Fv/Fm为最高。研究结果可为光合细菌生理生化特性研究提供重要的参考依据。  相似文献   

11.
31P and 13C nuclear magnetic resonance (NMR) experiments were performed on suspensions of the phototrophic bacterium Chromatium vinosum incubated anaerobically in the dark. 31P NMR spectra revealed that during prolonged dark incubation high ATP levels are maintained. This phenomenon was independent of the presence of the energy reserves polyglucose and polyphosphate. 13C NMR experiments revealed that the amino acids glutamate, aspartate, and alanine are the major products of acetate incorporation in the dark. Apart from these amino acids, poly-beta-hydroxybutyrate was also formed. Acetate metabolism was markedly stimulated by the presence of polyglucose. The specific 13C activity of glutamate C-2 was approximately 50% that of glutamate C-4. The idea is discussed that this difference is the consequence of the maintenance of redox balance during entry of acetate into cell metabolism.  相似文献   

12.
Abstract: The growth of phototrophic sulfur bacteria in benthic systems is restricted to well-defined layers within the sedimentary oxygen, sulfide, pH and light gradients. In order to culture these microorganisms under more ecologically relevant conditions, we have developed a Benthic Gradient Chamber (BGC) in which phototrophic sulfur bacteria can be grown within experimentally imposed solute and light gradients. The new autoclavable device is composed of a reconstituted sand core sandwiched in between a lower anoxic sulfide-containing compartment and an upper oxic compartment. The core can be illuminated from above by a collimated light beam. An axenic biofilm of Thiocapsa roseopersicina strain EP 2204 developed from a tiny inoculum within the sand core, using a 5-week incubation period and a 16:8 h light/dark illumination regime. The metabolic activities in this biofilm were inferred from the analyses of oxygen, sulfide and pH profiles, and their shifts during light-dark cycles.  相似文献   

13.
【目的】菌株MIM37为具有两种光能利用途径的光合异养细菌,分析其基因组和光照对生长的影响,为理解光能利用途径、光营养生物多样性以及光合作用的进化和功能等提供线索。【方法】采用平板涂布划线法分离菌株,结合形态观察及16S rRNA基因和光合基因序列同源性与系统发育分析进行初步分类鉴定;以分光光度法和荧光显微观察法测定光照和黑暗培养下培养液细胞浓度和单细胞体积;构建片段长度为300?500 bp的Illumina PE文库,以Illumina Hiseq2000进行基因组测序,以SOAPdenovo和GapCloser组装序列,以RAST在线软件注释基因组。【结果】从内蒙古腾格里沙漠天鹅湖表层水中分离获得一株细菌MIM37,经16S rRNA基因、pufM和视紫质基因同源性和系统发育分析均显示其与Sphingomonas属亲缘关系最为密切;相对黑暗培养,光照刺激下的最大细胞浓度和单细胞体积大小分别提高了1.2和5.6倍;基因组注释显示MIM37代谢途径多样,含典型好氧菌的呼吸电子传递链,具有完整的好氧不产氧细菌的光合基因簇及xanthorhodopsin-like视紫质蛋白基因,合成铁载体,还原重金属,降解微囊藻毒素和多环芳烃类等。【结论】MIM37属于Sphingomonas属,具有两种光能利用途径,光照可明显促进其生长,多样的代谢模式可能使其在自然环境中极具竞争力、分布广泛并具有应用于修复环境污染的潜力。  相似文献   

14.
Here we report the full genome sequence of marine phototrophic bacterium Erythrobacter sp. strain NAP1. The 3.3-Mb genome contains a full set of photosynthetic genes organized in one 38.9-kb cluster; however, it does not contain genes for CO(2) or N(2) fixation, thereby confirming that the organism is a photoheterotroph.  相似文献   

15.
16.
Enrichment cultures of phototrophic purple bacteria rapidly oxidized up to 10 mM dimethyl sulfide (DMS) to dimethyl sulfoxide (DMSO). DMSO was qualitatively identified by proton nuclear magnetic resonance. By using a biological assay, DMSO was always quantitatively recovered from the culture media. DMS oxidation was not detected in cultures incubated in the dark, and it was slow in cultures exposed to full daylight. Under optimal conditions, the second-order rate constant for DMS oxidation was 6 day−1 mg of protein−1 ml−1. The rate constant was reduced in the presence of high concentration of sulfide (>1 mM), but was not affected by the addition of acetate. DMS was also oxidized to DMSO by a pure strain (tentatively identified as a Thiocystis sp.) isolated from the enrichment cultures. DMS supported growth of the enrichment cultures and of the pure strain by serving as an electron source for photosynthesis. A determination of the amount of protein produced in the cultures and an estimation of the electron balance suggested that the two electrons liberated during the oxidation of DMS to DMSO were quantitatively used to reduce carbon dioxide to biomass. The oxidation of DMS by phototrophic purple bacteria may be an important source of DMSO detected in anaerobic ponds and marshes.  相似文献   

17.
The interaction between phototrophic dinitrogen fixers and methanogens was examined in soil slurries amended with rice straw using 2-bromoethanesulfonic acid (BES), a specific methanogenic inhibitor. Slurries incubated in light increased phototrophic nitrogenase activity (acetylene reducing activity), and showed growth of phototrophic purple bacteria and reduction of CH(4) emission, indicating outcompetition of purple bacteria with methanogens in photic zones. Adding BES effectively inhibited methane production and markedly increased phototrophic acetylene reducing activity accompanied with acetate accumulation, but did not affect populations of purple bacteria in the slurries. More acetate accumulated in the inhibited slurries incubated in dark. We suggest that increased availability of organic substrates for purple bacteria after stopping methanogenic consumption by BES caused the increased phototrophic acetylene reducing activity. These results indicate that, after purple bacteria grow enough, performance of their N(2) fixation may be limited by substrate availability, which methanogenesis may profoundly influence.  相似文献   

18.
A new type of phototrophic purple bacterium, strain 930I, was isolated from a microbial mat covering intertidal sandy sediments of Great Sippewissett Salt Marsh (Woods Hole, Mass., USA). The bacterium could only be enriched at a wavelength of 932 (± 10) nm. Cells were vibrioid- to spirilloid-shaped and motile by means of bipolar monotrichous flagellation. The intracytoplasmic membranes were of the lamellar type. Photosynthetic pigments comprised bacteriochlorophyll a and the carotenoids spirilloxanthin and lycopenal. The isolated strain exhibited an unusual, long-wavelength absorption maximum at 911 nm. Sulfide or thiosulfate served as electron donor for anoxygenic phototrophic growth. During growth on sulfide, elemental sulfur globules formed outside the cells. Elemental sulfur could not be further oxidized to sulfate. In the presence of sulfide plus bicarbonate, fructose, acetate, propionate, butyrate, valerate, 2-oxoglutarate, pyruvate, lactate, malate, succinate, fumarate, malonate, casamino acids, yeast extract, L(+)-alanine, and L(+)-glutamate were assimilated. Sulfide, thiosulfate, or elemental sulfur served as a reduced sulfur source for photosynthetic growth. Maximum growth rates were obtained at pH 7.9, 30 °C, 50 μmol quanta m–2 s–1 of daylight fluorescent tubes, and a salinity of 1–2% NaCl. The strain grew microaerophilically in the dark at a partial pressure of 1 kPa O2. The DNA base composition was 71.2 mol% G + C. Sequence comparison of 16S rRNA genes indicated that the isolate is a member of the α-Proteobacteria and is most closely related to Rhodobium orientis at a similarity level of 93.5%. Because of the large phylogenetic distance to known phototrophic species of the α-Proteobacteria and of its unique absorption spectrum, strain 930I is described as a new genus and species, Roseospirillum parvum gen. nov. and sp. nov. Received: 29 December 1998 / Accepted: 17 March 1999  相似文献   

19.
The inhibitory effects of 2-hydroxybiphenyl on various electron transport reactions of isolated membranes and growth in the presence of malate of either phototrophic or chemotrophic cells of Rhodospirillum rubrum were studied. 50% inhibition of both oxygen uptake of whole cells and growth under chemotrophic conditions (i.e. aerobiosis in the dark) was achieved in the presence of 0.09 mM 2-hydroxybiphenyl. With isolated membranes the same effect on NADH oxidase was obtained with 0.08 mM of inhibitor. Succinate dependent respiratory reactions were inhibited by 50% at a concentration of 0.36 mM. Growth under phototrophic conditions (i.e. anaerobiosis in the light) was inhibited by 50% in the presence of 0.17 mM (wild type strain) or 0.21 mM (blue-green mutant, strain VI) of 2-hydroxybiphenyl. Photophosphorylation and light dependent NAD+ reduction by succinate were inhibited by 50% at concentrations of 0.21 mM and 0.03 mM of inhibitor, respectively. After phototrophic growth of the organisms for about five doublings of cell mass in the presence of 0.18 mM of 2-hydroxybiphenyl coloured carotenoids could no longer be detected. Membrane fractions of such cultures exhibited normal activities of succinate cytochrome c reductase but activities of NADH cytochrome c reductase were decreased by 80%. In comparison with a blue green mutant, strain VI, of R. rubrum light induced absorbance changes at 865 nm as well as activities of photophosphorylation were unaffected. However, no activity of light dependent NAD+ reduction with succinate could be detected. The data indicate that cellular respiration as well as chemotrophic growth depend largely on NADH dependent respiration. Phototrophic growth, on the other hand, is limited by photophosphorylation while energy dependent reversed electron flow to NAD+, if at all, is of rathe minor importance.Abbreviation BChl bacteriochlorophyll  相似文献   

20.
Rhodopseudomonas capsulata cells were shifted from phototrophic (anaerobic, light) to chemotrophic (semiaerobic, dark, 10% air saturation) growth conditions. During the adaptation period of 4 h, the bacteriochlorophyll content of cells and membranes decreased, and a newly synthesized 65-kilodalton polypeptide of the cytochrome oxidase was incorporated into the membrane fraction. The enzymatic activity of the cytochrome oxidase increased strongly after a lag time of 2 h. The amount of cytochrome oxidase protein does not follow the same kinetics. The relative amount of a membrane-bound cytochrome c of low molecular weight, which has been proposed to be a donor for the cytochrome oxidase, increased during adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号