首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main complication sensory organs (the palpal organ and the tarsal sensory complex) of several species of gamasid mites were studied in scanning electron microscope. The species examined included permanent ectoparasites (Laelaps agilis, Laelaptidae), parasites of the nasal cavity and respiratory tract of birds (Sternostoma tracheocolum and Ptilonyssus reguli, Rhinonyssidae), dwellers of the sea littoral zone (Parasitus kempersi, Parasitus immanis, Parasitidae), and mites found on soil and on plants (Amblyseius barkeri, Parasitidae). Similar sensillar types, including olfactory SW-WP sensilla, contact chemo-mechanosensory (SW-UP and DW-UP) sensilla, termo-chemo-mechanosensitive (DW-WP) sensilla of two types, and tactile (NP) sensilla were found in all these species, excluding endoparasites, where some sensillar types (in particular, DW-WP sensilla with slit-like pores) are absent. It was shown that the topography of olfactory SW-WP sensilla of the tarsal complex reflects taxonomic position and phylogenetic history of mite genera, whereas the number of certain sensillar types and the degree of their development reflect ecological specialization of species. The palpal organ is characterized by rather uniform structure in mites of different families, dwellers of different environments, except for the endoparasites of the family Rhinonyssidae, where this organ is strongly reduced.  相似文献   

2.
Palpal and tarsal sensilla of mites parasitizing in the nasal cavity of the Great Tit Parus major (Ptilonyssus sairae, Ptilonyssus pari), the Rock Dove Columba livia (Mesonyssus melloi), and the Eurasian Coot Fulica atra (Rallinyssus caudistigmus), were examined under a scanning electron microscope. Differences in the topography of the tarsal organ reflect phylogenetic relations of species and genera, whereas differences in the structure of palpal receptors reflect the ecological peculiarities of parasitism.  相似文献   

3.
Studies of sensory organs in ticks and mites of the order Parasitiformes by methods of electron microscopy and electrophysiology started in Russia in the middle of the 1970s due to the activity of Prof. Balashov and with his personal participation. A review of the data accumulated since that time allowed tracing the main evolutionary trends in the morphology of the main composite sensory organs (palpal and tarsal organs of mites, Haller’s organ of ticks, and eyes). Close association between the evolution of questing behavior and the evolution of sensory organs is demonstrated.  相似文献   

4.
The structure of the sensory organs situated on palps and chelicerae of the quill mite Syringophilopsis fringilla (Fritsch, 1958) was examined with the use of scanning and transmitting electron microscopy. The tarsal segment of the palps bears 8 sensilla of three types: two contact chemo-mechanoreceptor sensilla, a single chemoreceptor (olfactory) sensillum, and five tactile mechanoreceptor sensilla. All other sensilla situated on basal palpal segments and on cheliceral stylets are represented exclusively by tactile mechanoreceptors. A proprioceptor sensillum was revealed in the movable digit of chelicerae; the modified cilia of dendrites of 5 sensory neurons of this sensillum run inside the inner non-sclerotized core of the stylet and end at different levels in its apical part, attaching to electron-dense rods connected with a sclerotized sheath of the stylet. The authors assume that the proprioceptor sensillum of the stylet detects the strength of the pressure of the stylet of the movable digit on the quill wall during its piercing, and palpal sensilla determine the optimal place for this process.  相似文献   

5.
Spider males have evolved a remarkable way of transferring sperm by using a modified part of their pedipalps, the so-called palpal organ. The palpal organ is ontogenetically derived from tarsal claws; however, no nerves, sensory organs or muscles have been detected in the palpal bulb so far, suggesting that the spider male copulatory organ is numb and sensorily blind. Here, we document the presence of neurons and a nerve inside the male palpal organ of a spider for the first time. Several neurons that are located in the embolus are attached to the surrounding cuticle where stresses and strains lead to a deformation (stretching) of the palpal cuticle on a local scale, suggesting a putative proprioreceptive function. Consequently, the male copulatory organ of this species is not just a numb structure but likely able to directly perceive sensory input during sperm transfer. In addition, we identified two glands in the palpal organ, one of which is located in the embolus (embolus gland). The embolus gland appears to be directly innervated, which could allow for rapid modulation of secretory activity. Thus, we hypothesize that the transferred seminal fluid can be modulated to influence female processes.  相似文献   

6.
The tarsal sensory complex of the red chicken mite Dermanyssus gallinae is situated on dorsal surface of each fore leg near the claw. It comprises 28 sensilla of 5 morphological types: 4 SW-UP (single-wall upper-pore) (gustatory organs), 8 SW-WP (single-wall wall-pore) (olfactory organs), 8 DW-WP (double-wall wall-pore) of two subtypes (thermo-chemoreceptory organs), 6 NP-TB (no pore--tubular body) (tactile organs), and 2 reduced sensilla. No sex or stage dimorphism was revealed. Morphological data point to the fact that tarsal sensory complex of the red chicken mite is mainly an organ detecting temperature changes and olfactory stimula.  相似文献   

7.
The hygro- and thermoreceptive tarsal organ in the wandering spider Cupiennius salei is located on the tarsus of each walking leg and pedipalp, and consists of a tiny air-filled capsule in the cuticle. This capsule communicates with the outside world through a small aperture and contains seven nipple-shaped sensilla, each with a pore at its tip. In both their external morphology and internal structure, the sensilla are indistinguishable, although one sensillum is innervated by only two sensory cells, whereas the other six sensilla contain three sensory cells. Their dendrites are unbranched and terminate at the tip-pore, where they are enveloped by amorphous material that appears to limit their exposure to the atmosphere. Cobalt fillings reveal that each tarsal organ projects to three different areas within the suboesophageal ganglionic mass: (1) the sensory longitudinal tract 3 and 4; (2) the corresponding pedipalpal or leg ganglion; (3) a structured neuropil (here termed the Blumenthal neuropil) beneath the oesophagus. The multiple representation of sensory afferents from each tarsal organ in different regions of the suboesophageal ganglionic mass suggests parallel processing of hygro-/thermoreceptive information.  相似文献   

8.
本文进一步研究了:④厩真厉螨截肢前后的爬行行为,表明第1对足其感觉功能;②用古拉广厉螨分别截各对足驱避反应的对比试验,见到只有当截去第1对足跗节时失去嗅觉功能,而截去第Ⅱ、Ⅲ、Ⅳ对足时,各组都仍有嗅觉功能;⑤对格氏血厉螨、厩真厉螨、毒厉螨和鼠颚毛厉螨进行涂漆前后的驱避试验,显示当跗感器被涂满封闭,则嗅觉功能消失;④以0.5%结晶紫或龙胆紫液染色的截肢标本,观察了厩真厉螨、毒厉螨、格氏血厉螨、古拉广厉螨及尾足螨股一种螨,足Ⅰ跗节末端凹窝中,至少都存在两类感毛,钝钉型感毛和长而尖的刚毛型感毛;⑤厩真厉螨雌螨和幼螨跗感器的钝钉毛分别为8根和5根,另外各有2根短而尖的毛,分别测定了长度,描述了形态特点;⑥透射电镜观察厩真厉螨、毒厉螨等的跗感器钝钉毛,毛外围有表皮壁,壁上有很多微孔,内有中心腔,腔内有树突。属化感器——嗅觉器;⑦电生理技术研究,当用氨和醋酸的气体刺激厩真厉螨、毒厉螨的离体足Ⅰ时,均产生明显的应激电位差,充分证明足Ⅰ辩节有嗅觉功能。  相似文献   

9.
The first tarsal segment of the taiga tick bears 4 general types of sensilla (except for sensilla forming the Haller's sensory organ on the dorsal surface of the tarsus): tactile mechanoreceptor sensilla of 3 types, contact chemo-mechanoreceptor sensilla of 2 types, and double-walled pore sensilla. One of these types, the chemo-mechanoreceptor upper-pore sensilla, was found only in the Ixodinae, and not found in the examined representatives of the Amblyomminae. This type of sensilla was also found in the palpal receptor organ of the ixodid and argasid ticks.  相似文献   

10.
Features of the antennae, maxillary palps, and mouthparts of the females of seven species of Culicoides spp. biting midges collected from a montane rainforest site in Trinidad, West Indies, were studied by light and scanning electron microscopy. Comparisons were made with two British species, Culicoides impunctatus and Culicoides nubeculosus. Species-specific differences were demonstrated in the camber and pitch of mandibular teeth, the size and shape of the subapical labral sensilla, the size and depth of the palpal sensory pit, and the number and shape of heads of the palpal sensilla. Counts of sensilla coeloconica and palpal sensilla were suggested as being contributory features for the prediction of host preference, indicating that Culicoides darlingtonae, Culicoides glabellus, Culicoides insinuatus, Culicoides paraensis, and Culicoides pseudodiabolicus were probably mammalophilic species. The host preferences of Culicoides heliconiae and Culicoides flavivenula could not be determined accurately.  相似文献   

11.
A comparative morphological study of the apical regions of palps in Trichoptera from different evolutionary lines of the order was carried out, and a comparison was made with representatives of Lepidoptera and Mecoptera. Light and scanning electron microscopy methods were used to study the structure of palpal apices in 81 species of the order Trichoptera, 6 of Lepidoptera, and 2 species of Mecoptera. As a result, 11 types of sensilla were identified on the terminal palpal segments, and highly differentiated apical sensory zones with thick short basiconic sensilla were found on the maxillary and labial palps. The presence of an apical sensory zone in caddisflies and related orders is recognized as a plesiomorphic character.  相似文献   

12.
The sensory organs on the tarsi of the antenniform first legs of the whip spider Admetus pumilio C. L. Koch (Amblypygi, Arachnida) were examined with the scanning and transmission electron microscope. At least four different types of hair sensilla were found: (1) thick-walled bristles, which have the characteristics of contact chemoreceptors (several chemoreceptive dendrites in the lumen plus two mechanoreceptors at the base); (2) short club sensilla, innervated by 4-6 neurons which terminate in a pore on the tip; they are possibly humidity receptors; (3) porous sensilla, which are either innervated by 20-25 neurons and have typical pore tubules, or they have 40-45 neurons but no pore tubules; both types are considered to be olfactory; (4) rod sensilla occur in clusters near segmental borders; they are innervated by only one large dendrite which branches inside the lumen. Other tarsal receptors are the claws, which correspond to contact chemoreceptors, and the pit organ which resembles the tarsal organ of spiders. Compared to other arthropod sensilla, the contact chemoreceptors are very similar to those of spiders, while the porous sensilla correspond structurally to olfactory receptors in insects; the club and rod sensilla seem to be typical for amblypygids.  相似文献   

13.
Multiple mechanosensory organs form the subgenual organ complex in orthopteroid insects, located in the proximal tibia. In several Ensifera (Orthoptera), a small chordotonal organ, the so-called accessory organ, is the most posterior part of this sensory complex. In order to document the presence of this accessory organ among the Ensifera, the chordotonal sensilla and their innervation in the posterior tibia of two species of Jerusalem crickets (Stenopelmatidae: Stenopelmatus) is described. The sensory structures were stained by axonal tracing. Scolopidial sensilla occur in the posterior subgenual organ and the accessory organ in all leg pairs. The accessory organ contains 10–17 scolopidial sensilla. Both groups of sensilla are commonly spatially separated. However, in few cases neuronal fibres occurred between both organs. The two sensillum groups are considered as separate organs by the general spatial separation and innervation by different nerve branches. A functional role for mechanoreception is considered: since the accessory organ is located closely under the cuticle, sensilla may be suited to detect vibrations transferred over the leg's surface. This study extends the known taxa with an accessory organ, which occurs in several taxa of Ensifera. Comparative neuroanatomy thus suggests that the accessory organ may be conserved at least in Tettigoniidea.  相似文献   

14.
中国云南洱海周边小兽体表革螨多样性(英文)   总被引:1,自引:0,他引:1  
董文鸽  郭宪国  门兴元  钱体军  吴滇 《昆虫学报》2008,51(11):1177-1186
云南大理洱海周边是我国流行性出血热的流行地区之一。本文目的是运用Shannon-Wiener、系统聚类分析方法(SPSS 13.0软件)和Levins'niche等对该区3 303只小兽体表寄生革螨的物种多样性、群落结构、相似性、分布和生态位进行研究。选择的洱海周边三个不同方位恰好处于东部无量山、南部哀老山和西部苍山,由于洱海的天然隔离使这三个方位形成了同地域异生境的地理景观。在调查点共捕获小兽宿主3 303只属4目(啮齿目、食虫目、攀鼩目和食肉目)7科15属21种,收集到的小兽体表寄生虫革螨23 196只被鉴定为6科16属43种。研究结果表明革螨群落结构复杂,物种多样性高。在不同方位革螨和它们相对应宿主的分布是不均匀的,但是洱海周边不同方位同样优势小兽上寄生的优势革螨种是一致的。结果暗示:生境影响着革螨和它们相对应小兽的物种构成和分布,如果小兽宿主的分类地位和生境相似,那么相对应的小兽宿主上的革螨群落就相似; 不同方位小兽体表寄生虫革螨的丰富度和物种多样性主要由宿主本身和宿主所栖息的生境决定;这可能是小兽和革螨之间协同进化在生态学上的一个佐证。但通过使用革螨的生态位宽度分析,革螨的宿主特异性很低,这又可能暗示着小兽和革螨之间有协同进化,但协同进化程度不高。  相似文献   

15.
云南省锡金小鼠体表革螨感染分析   总被引:1,自引:0,他引:1  
为了解云南省锡金小鼠(Mus pahari)体表革螨的感染情况及分布规律,本研究基于1990至2015年云南省39个县(市)的调查数据,统计分析锡金小鼠体表革螨的基本感染情况和感染差异.使用聚块指数测定革螨空间分布型,用Jaccard指数计算革螨物种相似性.从捕获的720只锡金小鼠体表共采集到革螨14 098只,鉴定为...  相似文献   

16.
The sensory structures present on the palps and legs of adult Argas persicus Oken (Ixodoidea: Argasidae) were studied by light, scanning and transmission electron microscopy. The number, distribution, surface morphology and the fine structure of the prominent sensilla present on these appendages were determined. The palps have 2 morphologically prominent types of sensilla: one with a grooved surface of the hair and the other having a non-grooved hair. The TEM distinguishes at least 4 prominent subtypes in grooved sensilla with single or double lumina and dendrites occupying the periphery of the central lumen or distributed all over the central lumen. Amongst the sensilla with non-grooved hair-shaft, a rare type of Olfactory Mechanoreceptive (OM) sensillum was found on the palps and the first legs of A. persicus. At the base of the hair-shaft, the OM sensillum has 2 mechanosensory dendrites. The hair-shaft of the sensillum has a porous cuticle, characteristic of an olfactory sensillum. The lumen of the hair-shaft is invested with branching dendrites from 3–8 neurons, which are surrounded by 4 sheath cells. The sensilla on the legs, including those present in the Hallers organ, are of at least 3 prominent categories. (i) Single wall with un-innervated hair-shaft. (ii) Single wall, multiporous sensillum with dendrites present in the hair shaft. (iii) Double walls with spoke channels and dendrites present in the central lumen. Sensory projections from the crown of sensilla located on the distal end of the palp extend to the palpal and suboesophageal (SOG) ganglia. Projections in the SOG extend further to the contralateral side. Sensilla in the Hallers organ project to the first pedal ganglion and to the anterodorsal region of supraoesophageal ganglion. As expected, the primary sensory projections from the sensilla of the other 3 legs extend to the respective pedal ganglia.  相似文献   

17.
Mnesampela privata Guenée (Lepidoptera: Geometridae: Ennominae) is a native Australian geometrid that conducts considerable host assessment prior to ovipositing on its host plants, which belong to the genus Eucalyptus . The leaves of some of their hosts are covered with a particularly thick and waxy cuticle and we have shown that epicuticular waxes influence the oviposition preferences of females. This necessitates that M. privata has evolved specific chemosensory organs to assess the identity and perhaps even the quality of its hosts. In this work, we examined the morphology of tarsal taste sensilla and the sensitivity of their sensory neurones to a range of primary metabolites possibly influential on host assessment and oviposition. The ventral surface of the fifth tarsomere of females bear two parallel rows of up to eight sensilla, each loosely aligned with two parallel rows of five spines. Salts, sugars, and amino acids elicited phasi-tonic multicellular neuronal responses of variable magnitude and form. Two pairs of sensilla are closely apposed to the most distal spine in each row; the sensory neurones associated with these sensilla exhibited notably larger responses to alanine and serine compared with those of all other sensilla. The arrangement of the taste sensilla in close proximity to prominent tarsal spines is unique and could represent an adaptation that enables them to penetrate the wax layer and be brought into contact with primary metabolites present closer to the leaf surface.  相似文献   

18.
云南省小兽体表革螨名录初报   总被引:2,自引:0,他引:2  
1994年至2004年在云南省境内共调查了25个县(市),共捕获53种啮齿目、食虫目、攀口目、兔形目和翼手目小兽10803只,从其体表分检出革螨68572只,隶属10科26属80种,其中云南新记录种12种;结合相关文献记载,到目前为止,整个云南省小兽体表革螨共有10科33属112种。  相似文献   

19.
The mechanics of substrate adhesion has recently been intensively studied in insects but less is known about the sensorimotor control of substrate engagement. We characterized the responses and motor effects of tarsal campaniform sensilla in stick insects to understand how sensory signals of force could contribute to substrate grip. The tarsi consist of a chain of segments linked by highly flexible articulations. Morphological studies showed that one to four campaniform sensilla are located on the distal end of each segment. Activities of the receptors were recorded neurographically and sensilla were identified by stimulation and ablation of their cuticular caps. Responses were characterized to bending forces and axial loads, muscle contractions and to forces applied to the retractor apodeme (tendon). The tarsal sensilla effectively encoded both the rate and amplitude of loads and muscle forces, but only when movement was resisted. Mechanical stimulation of the receptors produced activation of motor neurons in the retractor unguis and tibial flexor muscles. These findings indicate that campaniform sensilla can provide information about the effectiveness of the leg muscles in generating substrate adherence. They can also produce positive force feedback that could contribute to the development of substrate grip and stabilization of the tarsal chain.  相似文献   

20.
Five types of sensilla are situated on the apical area of the labial and maxillary palpi and galea of Cicidela sexguttata. Large, conical, and peg-like sensilla are in rows on the central region of each palpus. These sensilla have a hollow cuticular peg, with an apical pore and multi-innervation. This central region of palpal sensilla is surrounded by campaniform sensilla that are disc-shaped and small conical peg sensilla. A similar type of conical sensillum as the found in the palpal central region is situated around the periphery of the palpal apex and apex of the galea. This conical peg sensillum is located in a shallow depression and is structurally similar to the other peg sensilla, but it has a mechanoreceptor neuron attached to the cuticular base of the sensillum. A long, single, trichoid sensillum is situated in the center of the galea and is hollow, thick-walled, porous, and multi-innervated. The apices of the palpi and galea have a large number of dermal gland openings that actively secrete a substance during the feeding process of the tiger beetle. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号