首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tumour vasculature is known to be aberrant,tortuous and erratic which can have significant implications for fluid flow.Fluid dynamics in tumour tissue plays an ...  相似文献   

2.
3.
In order to accomplish the transition from avascular to vascular growth, solid tumours secrete a diffusible substance known as tumour angiogenesis factor (TAF) into the surrounding tissue. Endothelial cells which form the lining of neighbouring blood vessels respond to this chemotactic stimulus in a well-ordered sequence of events comprising, at minimum, of a degradation of their basement membrane, migration and proliferation. Capillary sprouts are formed which migrate towards the tumour eventually penetrating it and permitting vascular growth to take place. It is during this stage of growth that the insidious process of invasion of surrounding tissues can and does take place. A model mechanism for angiogenesis is presented which includes the diffusion of the TAF into the surrounding host tissue and the response of the endothelial cells to the chemotactic stimulus. Numerical simulations of the model are shown to compare very well with experimental observations. The subsequent vascular growth of the tumour is discussed with regard to a classical reaction-diffusion pre-pattern model.  相似文献   

4.
5.
The early development of solid tumours has been extensively studied, both experimentally via the multicellular spheroid assay, and theoretically using mathematical modelling. The vast majority of previous models apply specifically to multicell spheroids, which have a characteristic structure of a proliferating rim and a necrotic core, separated by a band of quiescent cells. Many previous models represent these as discrete layers, separated by moving boundaries. Here, the authors develop a new model, formulated in terms of continuum densities of proliferating, quiescent and necrotic cells, together with a generic nutrient/growth factor. The model is oriented towards an in vivo rather than in vitro setting, and crucially allows for nutrient supply from underlying tissue, which will arise in the two-dimensional setting of a tumour growing within an epithelium. In addition, the model involves a new representation of cell movement, which reflects contact inhibition of migration. Model solutions are able to reproduce the classic three layer structure familiar from multicellular spheroids, but also show that new behaviour can occur as a result of the nutrient supply from underlying tissue. The authors analyse these different solution types by approximate solution of the travelling wave equations, enabling a detailed classification of wave front solutions.  相似文献   

6.
Under the assumption that the elongated shape assumed by a growing nerve cell is caused by surface tension forces between the cell, its fluid medium, and a fibrous substrate track along which the cell grows, equations of elongation and conditions insuring elongation are derived. One specific type of cell-substrate contact is considered. Equations of elongation and conditions for elongation are treated in both the nonfrictional and frictional types of motion of the cell-process.  相似文献   

7.
A theoretical study of the growing nerve cell filopodium is made using the assumptions of volume constancy, cylindrical shape, and substrate track of an earlier paper, but assuming additionally that a retarding force per unit area proportional to the rate of elongation is also acting. Equations of elongation for two different cases are derived.  相似文献   

8.
A mathematical model of the stress induced during avascular tumour growth   总被引:1,自引:0,他引:1  
In this paper a mathematical model is developed to describe the effect of nonuniform growth on the mechanical stress experienced by cells within an avascular tumour. The constitutive law combines the stress-strain relation of linear elasticity with a growth term that is derived by analogy with thermal expansion. To accommodate the continuous nature of the growth process, the law relates the rate of change of the stress tensor to the rate of change of the strain (rather than relating the stress to the strain directly). By studying three model problems which differ in detail, certain characteristic features are identified. First, cells near the tumour boundary, where nutrient levels and cell proliferation rates are high, are under compression. By contrast, cells towards the centre of the tumour, where nutrient levels are low and cell death dominant, are under tension. The implications of these results and possible model developments are also discussed. Received: 15 November 1999 / Published online: 5 May 2000  相似文献   

9.
Recent studies in this laboratory have suggested that proteoglycan may function as a Ca ion-exchanger in the calcification of epiphyseal growth plate cartilage. Specifically, it has been proposed that phosphate liberated from hypertrophic chondrocytes may displace calcium ions bound to the anionic groups of proteoglycans, thereby raising the Ca x PO4 activity product above the threshold for precipitation of hydroxyapatite. In order to determine whether this mechanism is quantitatively feasible, a mathematical model of the interaction between Ca, Na, proteoglycan and phosphate has now been developed. This model is based on a general binding theory, and utilizes previously-determined values for the binding constants of the Ca-proteoglycan interaction, inhibition constants for the effect of Na and phosphate on this interaction, and literature values for the concentrations of proteoglycan, Na and Ca in epiphyseal cartilage. Using this approach, it was predicted that the free Ca concentration in epiphyseal cartilage in the absence of phosphate will be 1.55 mM. At 0.7 mM phosphate, the approximate concentration in non-calcified cartilage matrix, the free Ca concentration will be 2.40 mM, corresponding to a Ca x PO4 product of 1.68 (mM)2. In order to achieve a Ca x PO4 product sufficient for spontaneous precipitation of hydroxyapatite [approximately 4.3 (mM)2], a phosphate concentration of approximately 1.40 mM is required. Therefore, calcification of epiphyseal cartilage matrix by the mechanism described above will require an approximate doubling of the phosphate concentration in the pre-calcifying zones, indicating that the release of a fraction of the intracellular phosphate could trigger the calcification process.  相似文献   

10.
Organisms orient themselves to a stimulus by two general methods. One method is by directed orientation (taxis); the other is by undirected locomotory reaction (kinesis). An equation, and the methods for finding the necessary parameters of this equation, is derived for the distribution of organisms within a container, with the following limitations: (1) the organisms have no accommodation, (2) they are always active, and (3) the stimulus changes slowly with position. Necessary modifications of the equation are then derived, so that the last two limitations may be eliminated. The equation cannot be solved excatly because of its complexity; hence an approximation method must be used. This method is discussed, an approximate solution is found, and a time constant for equilibrium to be established is derived. Applications tovarious experiments in the literature are then made with fairly satisfactory results. A new interpretation of the theory of klino-kinesis with accommodation is found upon application of the equations developed to experimental work. Further limitations and uses of these equations are then discussed. This work was done while the author was Public Health Service Research Fellow of The National Institute of Mental Halth, Federal Security Agency.  相似文献   

11.
Towards whole-organ modelling of tumour growth   总被引:3,自引:0,他引:3  
Multiscale approaches to modelling biological phenomena are growing rapidly. We present here some recent results on the formulation of a theoretical framework which can be developed into a fully integrative model for cancer growth. The model takes account of vascular adaptation and cell-cycle dynamics. We explore the effects of spatial inhomogeneity induced by the blood flow through the vascular network and of the possible effects of p27 on the cell cycle. We show how the model may be used to investigate the efficiency of drug-delivery protocols.  相似文献   

12.

Background and Purpose

Most information on the dose-response of radiation-induced cancer is derived from data on the A-bomb survivors. Since, for radiation protection purposes, the dose span of main interest is between zero and one Gy, the analysis of the A-bomb survivors is usually focused on this range. However, estimates of cancer risk for doses larger than one Gy are becoming more important for radiotherapy patients. Therefore in this work, emphasis is placed on doses relevant for radiotherapy with respect to radiation induced solid cancer.

Materials and methods

For various organs and tissues the analysis of cancer induction was extended by an attempted combination of the linear-no-threshold model from the A-bomb survivors in the low dose range and the cancer risk data of patients receiving radiotherapy for Hodgkin's disease in the high dose range. The data were fitted using organ equivalent dose (OED) calculated for a group of different dose-response models including a linear model, a model including fractionation, a bell-shaped model and a plateau-dose-response relationship.

Results

The quality of the applied fits shows that the linear model fits best colon, cervix and skin. All other organs are best fitted by the model including fractionation indicating that the repopulation/repair ability of tissue is neither 0 nor 100% but somewhere in between. Bone and soft tissue sarcoma were fitted well by all the models. In the low dose range beyond 1 Gy sarcoma risk is negligible. For increasing dose, sarcoma risk increases rapidly and reaches a plateau at around 30 Gy.

Conclusions

In this work OED for various organs was calculated for a linear, a bell-shaped, a plateau and a mixture between a bell-shaped and plateau dose-response relationship for typical treatment plans of Hodgkin's disease patients. The model parameters (α and R) were obtained by a fit of the dose-response relationships to these OED data and to the A-bomb survivors. For any three-dimensional inhomogenous dose distribution, cancer risk can be compared by computing OED using the coefficients obtained in this work.  相似文献   

13.
We propose a mathematical modelling system to investigate the dynamic process of tumour cell proliferation, death and tumour angiogenesis by fully coupling the vessel growth, tumour growth and blood perfusion. Tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction. The haemodynamic calculation is carried out on the updated vasculature. The domains of intravascular, transcapillary and interstitial fluid flow were coupled in the model to provide a comprehensive solution of blood perfusion variables. An estimation of vessel collapse is made according to the wall shear stress criterion to provide feedback on vasculature remodelling. The simulation can show the process of tumour angiogenesis and the spatial distribution of tumour cells for periods of up to 24 days. It can show the major features of tumour and tumour microvasculature during the period such as the formation of a large necrotic core in the tumour centre with few functional vessels passing through, and a well circulated tumour periphery regions in which the microvascular density is high and associated with more aggressive proliferating cells of the growing tumour which are all consistent with physiological observations. The study also demonstrated that the simulation results are not dependent on the initial tumour and networks, which further confirms the application of the coupled model feedback mechanisms. The model enables us to examine the interactions between angiogenesis and tumour growth, and to study the dynamic response of a solid tumour to the changes in the microenvironment. This simulation framework can be a foundation for further applications such as drug delivery and anti-angiogenic therapies.  相似文献   

14.
The role of acidity in solid tumour growth and invasion   总被引:2,自引:0,他引:2  
Acidic pH is a common characteristic of human tumours. It has a significant impact on tumour progression and response to therapies. In this paper, we develop a simple model of three-dimensional tumour growth to examine the role of acidosis in the interaction between normal and tumour cell populations. Both vascular and avascular tumour dynamics are investigated, and a number of different behaviours are observed. Whilst an avascular tumour always proceeds to a benign steady state, a vascular tumour may display either benign or invasive dynamics, depending on the value of a critical parameter. Analysis of the model allows us to assess novel therapies directed towards changing the level of acidity within the tumour.  相似文献   

15.
The growth dynamics of multicell tumour spheroids (MTS) were analysed by means of mathematical techniques derived from signal processing theory. Volume vs. time trajectories of individual spheroids were fitted with the Gompertz growth equation and the residuals (i.e. experimental volume determinations minus calculated values by fitting) were analysed by fast fourier transform and power spectrum. Residuals were not randomly distributed around calculated growth trajectories demonstrating that the Gompertz model partially approximates the growth kinetics of three-dimensional tumour cell aggregates. Power spectra decreased with increasing frequency following a 1/f(delta) power-law. Our findings suggest the existence of a source of 'internal' variability driving the time-evolution of MTS growth. Based on these observations, a new stochastic Gompertzian-like mathematical model was developed which allowed us to forecast the growth of MTS. In this model, white noise is additively superimposed to the trend described by the Gompertz growth equation and integrated to mimic the observed intrinsic variability of MTS growth. A correlation was found between the intensity of the added noise and the particular upper limit of volume size reached by each spheroid within two MTS populations obtained with two different cell lines. The dynamic forces generating the growth variability of three-dimensional tumour cell aggregates also determine the fate of spheroid growth with a strong predictive significance. These findings suggest a new approach to measure tumour growth potential.  相似文献   

16.
17.
In the present paper we propose a method of analysis of the cell kinetic characteristics of in vivo experimental tumours, that uses DNA-BrdUrd flow cytometry data at various times after the bromodeoxyuridine (BrdUrd) injection and mathematical modelling. The model of the cell population takes into account the cell-cell heterogeneity of the progression rate across cell cycle phases within the tumour, and assumes a strict correlation between the durations of S and G2M phases. The model also allows for a nonconstant DNA synthesis rate across S phase. In addition, the measurement process is modelled, considering the possibility of nonimpulsive labelling and providing a representation of the time course of the bivariate DNA-BrdUrd fluorescence distribution. Sequential DNA-BrdUrd distributions were obtained in vivo from a human ovarian carcinoma transplanted in mice and, for comparison, in vitro from a cell line of the same origin. From these data, that included the fractional density and the mean BrdUrd-fluorescence of BrdUrd-positive cells as a function of the DNA-fluorescence, kinetic parameters such as the potential doubling time (T pot) and the mean and variance of the transit times in S and G2M phases, were estimated. This study revealed the presence of a substantial heterogeneity in S and G2M phases within the in vivo cell population and of a lower heterogeneity in the in vitro population. Moreover, our analysis suggests a nonnegligible effect of the BrdUrd pharmacokinetics in the in vivo cell labelling.  相似文献   

18.
Multiscale modelling and nonlinear simulation of vascular tumour growth   总被引:1,自引:0,他引:1  
In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients.  相似文献   

19.
 In this paper we study a mathematical model that describes the growth of an avascular solid tumour. Our analysis concentrates on the stability of steady, radially-symmetric model solutions with respect to perturbations taken from the class of spherical harmonics. Using weakly nonlinear analysis, previous results are extended to show how the amplitudes of the asymmetric modes interact. Attention focuses on a special case for which the model equations simplify. Analysis of the simplified model equations leads to the identification of a two-parameter family of asymmetric steady solutions, the dimensions of whose stable and unstable manifolds depend on the system parameters. The asymmetric steady solutions limit the basin of attraction of the radially-symmetric steady state when it is linearly stable. On the basis of these numerical and analytical results we postulate the existence of fully nonlinear steady solutions which are stable with respect to time-dependent perturbations. Received: 25 October 1998 / Revised version: 20 June 1998  相似文献   

20.
In continuation of previous studies, inequalities between different parameters of the brain are derived which determine whether an individual prefers in general visual patterns consisting of a relatively small number of relatively strongly excited elements, or such patterns which consist of a very large number of relatively weakly excited elements. As has been discussed in a previous publication, the first type of pattern is usually represented by artificial human-made designs, whereas the second type of pattern is formed predominantly in natural landscapes and sceneries. Thus the inequalities established in this paper give us the biophysical conditions which determine an individual's preference for either artificial designs or for landscapes and other natural objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号