首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.  相似文献   

2.
Site-specific mutagenesis was used to introduce amino acid substitutions at the asparagine codons of four conserved potential N-linked glycosylation sites within the gp120 envelope protein of human immunodeficiency virus (HIV). One of these alterations resulted in the production of noninfectious virus particles. The amino acid substitution did not interfere with the synthesis, processing, and stability of the env gene polypeptides gp120 and gp41 or the binding of gp120 to its cellular receptor, the CD4 (T4) molecule. Vaccinia virus recombinants containing wild-type or mutant HIV env genes readily induced syncytia in CD4+ HeLa cells. These results suggest that alterations involving the second conserved domain of the HIV gp120 may interfere with an essential early step in the virus replication cycle other than binding to the CD4 receptor. In long-term cocultures of a T4+ lymphocyte cell line and colon carcinoma cells producing the mutant virus, revertant infectious virions were detected. Molecular characterization of two revertant proviral clones revealed the presence of the original mutation as well as a compensatory amino acid change in another region of HIV gp120.  相似文献   

3.
4.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

5.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

6.
There is evidence that the initial interaction between HIV-1 and the host that is essential for infection is the specific binding of the viral envelope glycoprotein, gp120, to the CD4 molecule found on certain T cells and monocytes. Most individuals infected with HIV develop antibodies against the gp120 protein. Although in vitro treatment of CD4+ T cells with mAb to a specific epitope of the CD4 molecule (T4a) blocks virus binding, syncytia formation, and infectivity, it is unclear if antibodies to gp120 from an infected individual that can inhibit the binding of gp120 to CD4 is in any way related to the clinical course of disease. Our present study characterizes the binding of 125I-labeled rgp120 to CD4+ cells, and describes an assay system that measures a potentially relevant form of immunity to HIV infection, i.e., the blocking of HIV binding to CD4+ cells. Optimal binding conditions included a 2-h incubation at 22 degrees C, 4 x 10(6) CD4+ cells, and 1 nM gp120. The dissociation constant (KD) for gp120 binding to cell surface CD4 was 5 nM, and was inhibited by soluble CD4 and by mAb to T4a but not to T3 or T4. For the binding inhibition assay, negative controls included healthy seronegatives, seronegatives with connective tissue diseases, patients with HTLV-1 disease, and patients infected with HIV-2. In studying over 100 sera, the assay was highly sensitive (98%) and specific (100%). The majority of HIV+ sera could inhibit binding at dilutions of 1/100 to 1/1000. No correlation was noted between binding inhibition (BI) titer in this assay and clinical stage of HIV infection. In addition, there was no correlation between BI titer and HIV neutralizing activity. The BI titer was correlated with the titer of anti-gp160 (r = 0.63) and the titer of anti-gp120 (r = 0.52) antibodies determined by Western blot dilution. As with neutralizing antibodies and other forms of immune response to HIV, it is unclear what role antibody blocking of HIV binding to CD4+ cells may play in active immunity to HIV in infected individuals. This activity may prove to have some value in protection against initial HIV infection and, thus, the assay may be of use in monitoring vaccine trials.  相似文献   

7.
A soluble form of recombinant gp120 of human immunodeficiency virus type 1 was used as an immunogen for production of murine monoclonal antibodies. These monoclonal antibodies were characterized for their ability to block the interaction between gp120 and the acquired immunodeficiency syndrome virus receptor, CD4. Three of the monoclonal antibodies were found to inhibit this interaction, whereas the other antibodies were found to be ineffective at blocking binding. The gp120 epitopes which are recognized by these monoclonal antibodies were mapped by using a combination of Western blot (immunoblot) analysis of gp120 proteolytic fragments, immunoaffinity purification of fragments of gp120, and antibody screening of a random gp120 gene fragment expression library produced in the lambda gt11 expression system. Two monoclonal antibodies which blocked gp120-CD4 interaction were found to map to adjacent sites in the carboxy-terminal region of the glycoprotein, suggesting that this area is important in the interaction between gp120 and CD4. One nonblocking antibody was found to map to a position that was C terminal to this CD4 blocking region. Interestingly, the other nonblocking monoclonal antibodies were found to map either to a highly conserved region in the central part of the gp120 polypeptide or to a highly conserved region near the N terminus of the glycoprotein. N-terminal deletion mutants of the soluble envelope glycoprotein which lack these highly conserved domains but maintain the C-terminal CD4 interaction sites were unable to bind tightly to the CD4 receptor. These results suggest that although the N-terminal and central conserved domains of intact gp120 do not appear to be directly required for CD4 binding, they may contain information that allows other parts of the molecule to form the appropriate structure for CD4 interaction.  相似文献   

8.
The noncovalent association of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) is disrupted by soluble CD4 binding, resulting in shedding of the gp120 exterior envelope glycoprotein. This observation has led to the speculation that interaction of gp120 with the CD4 receptor triggers shedding of the exterior envelope glycoprotein, allowing exposure of gp41 domains necessary for membrane fusion steps involved in virus entry or syncytium formation. To test this hypothesis, a set of HIV-1 envelope glycoprotein mutants were used to examine the relationship of soluble CD4-induced shedding of the gp120 glycoprotein to envelope glycoprotein function in syncytium formation and virus entry. All mutants with a threefold or greater reduction in CD4-binding ability exhibited marked decreases in gp120 shedding in response to soluble CD4, even though several of these mutants exhibited significant levels of envelope glycoprotein function. Conversely, most fusion-defective mutants with wild-type gp120-CD4 binding affinity, including those with changes in the V3 loop, efficiently shed gp120 following soluble CD4 binding. Thus, soluble CD4-induced shedding of gp120 is not a generally useful marker for conformational changes in the HIV-1 envelope glycoproteins necessary for the virus entry or syncytium formation processes. Some gp120 mutants, despite being expressed on the cell surface and capable of efficiently binding soluble CD4, exhibited decreased gp120 shedding. These mutants were still sensitive to neutralization by soluble CD4, indicating that, for envelope glycoproteins exhibiting high affinity for soluble CD4, competitive inhibition may be more important than gp120 shedding for the antiviral effect.  相似文献   

9.
HIV-1 envelope protein, gp120, is a major immunogenic protein of the AIDS virus. A specific feature of this protein is its interaction with the receptor protein, human CD4, an important component of the immune system. This interaction might affect the immunogenic properties of the gp120 and modulate the immune response towards HIV. To test this hypothesis we used human CD4-transgenic mice for immunization with gp120. The dynamics of the immune response towards gp120, CD4 and other proteins was followed. The results show that the primary immune response to gp120 (two weeks) developed somewhat faster in CD4-transgenic mice versus non-transgenic mice. Both animals, however, ultimately mounted the same level of response over time. The primary immune response to gp120 when complexed with soluble CD4 before the immunization, developed similarly in both groups. The secondary immune response was earlier and markedly stronger in non-transgenic mice compared with the transgenic mice where a less efficient memory response to gp120 was observed. The ability of gp120 to directly interact with CD4+ helper lymphocytes appears to affect the humoral response towards this antigen. Moreover, these effects illustrate how viral modulation of these cells may in turn lead to potentially different states of immunological equilibrium.  相似文献   

10.
The envelope glycoprotein, gp120, of human immunodeficiency virus type 1 (HIV-1) binds the cellular protein CD4 with high affinity. By deletion we show that 62 N- and 20 C-terminal residues along with the V1, V2 and V3 variable regions of gp 120 are unnecessary for CD4 binding. A 287 residue variant (ENV59), missing those 197 amino acids, binds to CD4 with high affinity. A polyclonal antibody failed to efficiently precipitate ENV59 which is consistent with the loss of immunodominant antigenic structures in the regions deleted. This suggests that ENV59 may have potential as an immunogen, able to elicit antibodies against more conserved regions of gp120. Additionally, complementing co-expressed gp120 fragments as well as a circularly permuted molecule bind CD4, and suggest either that the molecular termini are adjacent in the folded structure, or that an N-terminal region folds into the structure unconstrained by its method of attachment to the rest of the molecule.  相似文献   

11.
Human immunodeficiency virus (HIV), the retrovirus that causes the acquired immunodeficiency syndrome, is cytopathic for CD4+ T cells and binds to these cells via a complex of the 110,000 m.w. viral-envelope glycoprotein, gp110, and the CD4 molecule. We treated virus with several physical, chemical, and enzymic agents to determine their effect on the capacity of HIV to bind to the CD4+ T cell line, CEM. Reduction and alkylation (but not alkylation alone) and trypsin digestion (but not glycolytic enzyme digestions) of HIV destroyed its capacity to bind. If the tertiary protein structure conferred by disulfide bonding is not disrupted, the tertiary and secondary conformations dependent on noncovalent forces appear to be thermodynamically favored, because treatment with denaturants such as sodium dodecyl sulfate, 8 M urea, alcohol, or heat (56 degrees C or 65 degrees C for 30 min) followed by removal of the denaturants did not affect binding. Irreversible denaturation and loss of binding occurred after heating at 100 degrees C for 10 min. HIV binding to CD4+ T cells was inhibited either by murine monoclonal antibodies to the CD4 molecule or by human polyclonal or murine monoclonal antibodies to the gp110 molecule. On the basis of results of binding inhibition obtained with a panel of alpha-CD4 monoclonal antibodies, the receptor site for virus on the CD4 molecule was mapped to the amino-terminal portion of the molecule. Four candidate alpha-CD4 monoclonal antibodies that were potent inhibitors of virus binding (OKT4A, OKT4D, OKT4F, and Leu-3a) were examined for the possibility that their binding sites (idiotopes) might share structural and conformational similarity with the CD4-binding site on gp110. Polyclonal human or rabbit anti-HIV sera (that reacted with gp110 and inhibited virus binding) did not react with or inhibit the binding of these four alpha-CD4 monoclonal antibodies. Conversely, rabbit anti-idiotypic sera raised against each of the four candidate CD4 monoclonal antibodies did not react with virus or inhibit virus binding to CD4+ T cells. Further search or different approaches may yet yield an idiotype that is a structural and conformational "internal image" of the CD4-binding site of virus.  相似文献   

12.
The human immunodeficiency virus binds to CD4+ T lymphocytes through the interaction of its envelope glycoprotein (gp120) with the CD4 molecule. The src-related protein tyrosine kinase p56lck is physically associated with CD4 and is co-immunoprecipitated by CD4 monoclonal antibody (mAb). Activators of protein kinase C (PKC) cause the dissociation of p56lck from CD4. Here we report that gp120 mAb immunoprecipitated the p56lck.CD4.gp120 complex after short term treatment (20 min) of human T lymphocytes with gp120. The p56lck that was associated with the CD4.gp120 complex was dissociated by activators of PKC. This effect was abolished by pretreatment of cells with PKC inhibitors. Thus the p56lck.CD4.gp120 immune complex immunoprecipitated by gp120 mAb behaves in a similar manner, with respect to PKC activation or inhibition, to the p56lck.CD4 complex immunoprecipitated by CD4 mAb. Short term treatment of cells with gp120, followed by gp120 mAb, resulted in an increase in the tyrosine kinase activity of p56lck associated with CD4. However, the amount of enzyme associated with CD4 remained unchanged. Long term treatment (20 h) of human T lymphocytes with gp120 resulted in the down-regulation of cell surface CD4 molecules. A parallel decrease in CD4-associated gp120 was also observed. In addition, gp120 caused the dissociation of p56lck and CD4. However, the dissociation of the p56lck from CD4 occurred at much faster rate than the down-regulation of surface CD4 molecules. Such mechanisms may account for the down-regulation of cell surface CD4 molecules and the depletion of functional CD4+ T lymphocytes which are characteristic of human immunodeficiency virus infections and acquired immune deficiency syndrome pathogenesis.  相似文献   

13.
The marked cytopathic effects of human immunodeficiency virus HIV for susceptible cells are caused mainly by fusion between cells expressing viral envelope glycoproteins and cells expressing CD4 molecule. In this study, we tested the ability of different clones of HIV to induce syncytia in CD4-positive cells. We have reported marked difference in syncytium-inducing capacity of 2 clones of human T lymphotropic virus type III (HTLV-IIIB) isolate despite no detectable difference in expression of viral glycoprotein (gp120). This difference in syncytium induction could be explained by the difference detected in their infectivity and binding activities to CD4-positive cells. Meanwhile we reported difference in syncytium-inducing capacity of 2 clones of lymphadenopathy associated virus (LAV1) isolate parallel to the different amounts of gp120 and other viral proteins expressed by these 2 clones. These results suggest that viral factors like infectivity and binding affinity of the virus to the susceptible cells and the amount of viral gp120 expressed by the infected cells may interact in a complex manner affecting fusion activity and syncytium induction in CD4-positive cells.  相似文献   

14.
The envelope glycoprotein of human immunodeficiency virus type 1 is synthesized as a precursor, gp160, that subsequently is cleaved to yield mature gp120 and gp41. In these studies, the gene encoding gp160 was mutagenized so as direct the synthesis of a truncated protein consisting of the extracellular domains of both gp120 and gp41. The variant protein, termed sgp160, consisted of 458 amino acids of gp120 and 172 amino acids of gp41. To facilitate protein purification, the normal polyglycoprotein processing site between gp120 and gp41 was deleted through the use of site-directed mutagenesis. This allowed for the synthesis of a molecule that could be purified by affinity chromatography, using acid elution, without dissociation of the gp120 polypeptide from the gp41 polypeptide. The conformation of the sgp160 variant appeared to be functionally relevant, as reflected by its ability to bind to CD4 with an affinity comparable to that of the variant rgp120. The structure of the sgp160-containing polypeptide differed from that of rgp120 in that it tended to form high-molecular-weight aggregates that could be dissociated to monomers and dimers in the presence of reducing agents. Antibodies against the sgp160 protein reacted with authentic virus-derived gp160, gp120, and gp41; neutralized viral infectivity; and inhibited the binding of rgp120 to CD4. Rabbit antibodies to the sgp160 protein differed from those raised against rgp120 in that they were enriched for populations that blocked CD4 binding but did not prevent human immunodeficiency virus type 1-induced syncytium formation.  相似文献   

15.
The T cell surface glycoprotein CD4 plays an important role in mediating cellular immunity and serves as the receptor for human immunodeficiency virus. In order to identify primary sequences within the CD4 molecule that may be involved in the binding of the HIV-I envelope, we synthesized various peptides corresponding to the V1, V2, V3, and V4 domains of CD4. We tested the ability of these peptides to block the binding of purified HIV-I gp120 to CD4+ human lymphoblastic leukemia cells (CEM) using fluorescence-activated cell sorting. One of these peptides, corresponding to CD4 amino acids (74-95), when preincubated with gp120, blocked its subsequent binding to CEM cells by 80%. A truncated form of this peptide (81-95), was found to be as efficient as the longer peptide (74-95) in inhibiting the binding of gp120 to CEM cells. The same peptide did not block the binding of OKT4A or Leu3A anti-CD4 monoclonal antibodies, which were previously shown to block HIV-I binding to CD4. The peptides were also tested for their ability to block HIV-I infection of a T cell line in vitro. Only CD4 peptide (74-95) and the shorter fragment (81-95) succeeded in protecting T cells against infection with different HIV-I strains. All the other peptides examined had no effect on gp120 binding to CEM cells and did not block syncytia formation. Goat polyclonal antibodies against the CD4 peptide (74-95) gave modest interference of gp120 binding to CEM cells. These data suggest that the CD4 region (74-95) participates in the CD4-mediated binding and/or internalization of HIV-I virion.  相似文献   

16.
Peptides selected from the HIV viral protein gp120 bind to a synthetic peptide mimicking sequence 78-89 of the human lymphocyte CD4 molecule, linked to activated Sepharose. The binding of viral fragments to the CD4 peptide-Sepharose beads was ascertained either by aid of a ninhydrin reagent or by fluorescence microscopy. A suitable alignment of these HIV peptides with the CD4 fragment showed that multiple interactions might occur between hydrophobic or charged groups of the two molecules. Although this experiment does not demonstrate that these two amino acid stretches are involved in the primary binding of gp120 to CD4 receptors, the present data suggest that the two sequences might have some kind of interaction during subsequent steps of viral infection.  相似文献   

17.
Results and conclusions concerning the ability of HIV glycoprotein (gp) 120 to stimulate monokine secretion have been equivocal, based on observations using natural gp120 derived from infected human cells and a Chinese hamster ovary (CHO) cell-derived recombinant fusion protein. Current studies were designed to determine whether differences in recombinant gp120 proteins could result in failure to trigger monokine production. We found that natural gp120 could stimulate monocytes to release TNF-alpha, IL-1 beta, IL-6, and granulocyte-macrophage-CSF, and this effect could be blocked with soluble CD4. Full-length rgp120 either expressed from an adenovirus vector and purified from infected human cells, or derived from CHO cells, could function similarly. In contrast, full-length recombinant envelope protein expressed in a baculovirus system and a CHO cell-derived recombinant fusion protein tested previously, consistently failed to stimulate monokine production. The stimulatory capacity of both natural and full-length CHO cell-derived gp120 was eliminated by heating at 100 degrees C, and could be blocked with excess CHO cell-derived gp120 fusion protein. Inasmuch as the baculovirus-expressed gp120 and the CHO cell-derived recombinant fusion protein can bind to CD4, these results suggest that HIV gp120 binding to CD4 on the monocyte surface may of itself be insufficient for stimulation of monokine secretion. Therefore, primary protein structure, as well as posttranslational protein modifications, may determine this activity.  相似文献   

18.
Despite extensive mutational studies on the human CD4 molecule and its affinity to human immunodeficiency virus (HIV) envelope glycoprotein gp120, coreceptor functions of such mutant molecules have only been examined by indirect measurement of their affinity to class II major histocompatibility complex (MHC) molecules. In this report, coreceptor functions of mutant human CD4 molecules, which have no or reduced affinity to an HIV envelope protein, gp120, were assessed in a murine T cell receptor/class II MHC recognition system. The substitution of human C" beta strand with the murine homologous segment resulted in the loss of the coreceptor function as well as in the complete loss of gp120 binding capacity, corroborating the consensus that Phe-43 in C" beta strand plays crucial roles in both situations. However, simultaneous replacement of the C'-C" loop along with the C" beta strand by homologous murine segments rescued the coreceptor function, whereas gp120 binding capacity remained negative. Further analysis indicated that insertion of lysine between Gly-41 and Ser-42 can partially compensate for the coreceptor function lost by the Phe-43 --> Val mutation. Although the coreceptor function of these mutant CD4 molecules in a human T cell recognition system is yet to be determined, these observations necessitate a re-evaluation of the role played by Phe-43 in coreceptor function. Examination of the sensitivities of the mutant CD4 molecules expressed on HeLa cells to infection by a T cell-tropic HIV-1 strain indicated that only those mutants that had completely lost gp120 binding capacity were resistant to the infection. All mutants having whole C" substitution, irrespective of additional substitutions or their coreceptor functions, were resistant to the infection.  相似文献   

19.
We investigated the interaction between cross-reactive HIV-1 neutralizing human monoclonal antibody m18 and HIV-1YU-2 gp120 in an effort to understand how this antibody inhibits the entry of virus into cells. m18 binds to gp120 with high affinity (KD≈5 nM) as measured by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). SPR analysis further showed that m18 inhibits interactions of gp120 with both soluble CD4 and CD4-induced antibodies that have epitopes overlapping the coreceptor binding site. This dual receptor site antagonism, which occurs with equal potency for both inhibition effects, argues that m18 is not functioning as a mimic of CD4, in spite of the presence of a putative CD4-like loop formed by HCDR3 in the antibody. Consistent with this view, m18 was found to interact with gp120 in the presence of saturating concentrations of a CD4-mimicking small molecule gp120 inhibitor, suggesting that m18 does not require unoccupied CD4 Phe43 binding cavity residues of gp120. Thermodynamic analysis of the m18-gp120 interaction suggests that m18 stabilizes a conformation of gp120 that is unique from and less structured than the CD4-stabilized conformation. Conformational mutants of gp120 were studied for their impact on m18 interaction. Mutations known to disrupt the coreceptor binding region and to lead to complete suppression of 17b binding had minimal effects on m18 binding. This argues that energetically important epitopes for m18 binding lie outside the disrupted bridging sheet region used for 17b and coreceptor binding. In contrast, mutations in the CD4 region strongly affected m18 binding. Overall, the results obtained in this work argue that m18, rather than mimicking CD4 directly, suppresses both receptor binding site functions of HIV-1 gp120 by stabilizing a nonproductive conformation of the envelope protein. These results can be related to prior findings about the importance of conformational entrapment as a common mode of action for neutralizing CD4bs antibodies, with differences mainly in epitope utilization and the extent of gp120 structuring.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号