首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The psaC gene product from Synechococcus sp. PCC 7002 and the psaD gene product from Nostoc sp. PCC 8009 were synthesized in Escherichia coli and purified to homogeneity. Incubation of the PsaC apoprotein with the Synechoccus sp. PCC 6301 photosystem I core protein in the presence of FeCl3, Na2S, and beta-mercaptoethanol resulted in a time-dependent transition in the flash-induced absorption change from a 1.2-ms, P700+ FX- back-reaction to a long-lived, P700+ [FA/FB]- back-reaction. ESR studies showed that FB and FA were photoreduced about equally at 19 K, and while the resonances were shifted upfield, they remained as broad as in the free PsaC holoprotein. When the reconstituted complex was purified in a sucrose gradient containing 0.1% Triton X-100, most of the optical absorption transient reverted to that characteristic of the P700+ FX- back-reaction. Addition of purified PsaD to the incubation mixture led to a greater extent of recovery of electron flow to FA/FB for any given concentration of PsaC. ESR studies showed that FA, rather than FB, became the preferred electron acceptor at 19 K; moreover, the resonances moved upfield and sharpened to become nearly identical with those of a control photosystem I complex. When the sample was purified in a sucrose gradient containing 0.1% Triton X-100, the long-lived P700+ [FA/FB]- optical transient remained stable. Analysis by denaturing polyacrylamide gel electrophoresis showed that the PsaC and PsaD proteins had rebound to the photosystem I core. The data indicate that although PsaC can bind loosely, the presence of PsaD leads to a stable, isolatable photosystem I complex which is spectroscopically indistinguishable from the native complex. Since a PsaC1 fusion protein which contains an amino-terminal extension of five amino acids (MEHSM...) does not bind in the absence of PsaD [Zhao, J., et al. (1990) FEBS Lett. 276, 175-180], the N-terminus of the PsaC protein could provide a site of interaction with the photosystem I core. We propose that the binding of PsaC to the PsaA/PsaB heterodimer is potentiated by insertion of the FA/FB clusters into PsaC, and stabilized by the presence of PsaD.  相似文献   

2.
Plastocyanin is specifically cross-linked by incubation with N-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) to a subunit of photosystem I in stroma lamellae and in isolated photosystem I complex. SDS-PAGE shows the disappearance of a 18.5 kDa subunit and the appearance of a new 31.5 kDa protein which was recognized by anti-plastocyanin antibodies. The isolated subunit was identified by its N-terminal amino acid sequence as the mature peptide coded by the nuclear gene psaF [Steppuhn et al. (1988) FEBS Lett. 237, 218–224]. P700+ was reduced by cross-linked plastocyanin with the same halftime of 13 μs as found in the native complex. This is evidence that cross-linking conserved the orientation of the complex and that the 18.5 kDa subunit provides the conformation of photosystem I necessary for the extremely rapid electron transfer from plastocyanin to P700+.  相似文献   

3.
The cyanobacterium Synechocystis sp. PCC 6803 carries out oxygenic photosynthesis analogous to higher plants. Its photosystem I contains seven different polypeptide subunits. The cartridge mutagenesis technique was used to inactivate the psaD gene which encodes subunit II of photosystem I. A mutant strain lacking subunit II was generated by transforming wild type cells with cloned DNA in which psaD gene was interrupted by a gene conferring kanamycin resistance. The photoautotrophic growth of mutant strain is much slower than that of wild type cells. The membranes prepared from mutant cells lack subunit II of photosystem I. Studies on the purified photosystem I reaction center revealed that the complex lacking subunit II is assembled and is functional in P700 photooxidation but at much reduced rate. Therefore, subunit II of photosystem I is required for efficient function of photosystem I.  相似文献   

4.
Electron transfer from plastocyanin to photosystem I.   总被引:9,自引:3,他引:6       下载免费PDF全文
Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site-specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C-terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid-targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix-assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.  相似文献   

5.
A P700-chlorophyll a-protein complex has been purified from several higher plants by hydroxylapatite chromatography of Triton X-100-dissociated chloroplast membranes. The isolated material exhibits a red wavelength maximum at 677 nm, major spectral forms of chlorophyll a at 662, 669, 677, and 686 nm, a chlorophyll/P700 ratio of 40–451, and contains only chlorophyll a and β-carotene of the photosynthetic pigments present in the chloroplast. The spectral characteristics and composition of the higher plant material are homologous to those of the P700-chlorophyll a-protein previously isolated from blue-green algae; however, unlike the blue-green algal component, cytochromes f and b6 are associated with the higher plant material. Evidence is presented that a chlorophyll a-protein termed “Complex I” which can be isolated from sodium dodecyl sulfate extracts of chloroplast membranes is a spectrally altered form of the eucaryotic P700-chlorophyll a-protein. The isolation procedure described in this paper is a more rapid technique for obtaining the heart of photosystem I than presently exists; furthermore, the P700 photooxidation and reduction kinetics in the fraction are improved over those in other isolated components showing the same enrichment of P700. It appears very probable that the heart of photosystem I is organized in the same manner in all chlorophyll a-containing organisms.  相似文献   

6.
A supercomplex containing the photosystem I (PSI) and chlorophyll a/b light-harvesting complex I (LHCI) has been isolated using a His-tagged mutant of Chlamydomonas reinhardtii. This LHCI-PSI supercomplex contained approximately 215 chlorophyll molecules of which 175 were estimated to be chlorophyll a and 40 to be chlorophyll b, based on P700 oxidation and chlorophyll a/b ratio measurements. Its room temperature long wavelength absorption peak was at 680 nm, and it emitted chlorophyll fluorescence maximally at 715 nm (77 K). The LHCI was composed of four or more different types of Lhca polypeptides including Lhca3. No LHCII proteins or other phosphoproteins were detected in the LHCI-PSI supercomplexes suggesting that the cells from which they were isolated were in State 1. Electron microscopy of negatively stained samples followed by image analysis revealed the LHCI-PSI supercomplex to have maximal dimensions of 220 A by 180 A and to be approximately 105 A thick. An averaged top view was used to model in x-ray and electron crystallographic data for PSI and Lhca proteins respectively. We conclude that the supercomplex consists of a PSI reaction center monomer with 11 Lhca proteins arranged along the side where the PSI proteins, PsaK, PsaJ, PsaF, and PsaG are located. The estimated molecular mass for the complex is 700 kDa including the bound chlorophyll molecules. The assignment of 11 Lhca proteins is consistent with a total chlorophyll level of 215 assuming that the PSI reaction center core binds approximately 100 chlorophylls and that each Lhca subunit binds 10 chlorophylls. There was no evidence for oligomerization of Chlamydomonas PSI in contrast to the trimerization of PSI in cyanobacteria.  相似文献   

7.
Heavy fragments were isolated from pea chloroplasts using digitonin treatment and differential centrifugation. The particles were characterized by a significantly lowered chlorophyll a/b ratio, contents of photosystem I (PS I) proteins and ATPase, as well as of amount of P700. The content of photosystem II (PS II) proteins decreased insignificantly, whereas that of proteins of the light-harvesting complex II did not change. The absorption and low-temperature fluorescence spectra were indicative of a decreased content of PS I. Electron microscopy of ultrathin sections of heavy fragment preparations identified them as grana with reduced content of thylakoids. The diameter of these particles was practically the same as within chloroplasts. Comparison of various characteristics of the fragments and chloroplasts from which the fragments were isolated allowed us to define a high degree of preservation of marginal regions in thylakoids present in the heavy fragment particles. Analysis of the results shows that the procedure of fragmentation produces grana with high extent of thylakoid integrity. The phenomenon of reduction of the thylakoid content in grana, occurring as our heavy fragments, is considered in the frame of our previous hypothesis concerning the peculiarities of grana organization in the transversal direction.  相似文献   

8.
The data on the organization and function of the photosystem I pigment-protein complexes of the cyanobacterium Spirulina and the characteristics of pigment antenna of the photosystem I monomeric and trimeric core complexes are presented and discussed. We proved that the photosystem I complexes in the cyanobacterial membrane pre-exist mainly as trimers, though both types of complexes contribute to the photosynthetic electron transport. In contrast to monomers, the antenna of the photosystem I trimeric complexes of Spirulina contains the extreme long-wave chlorophyll form absorbing at 735 nm and emitting at 760 nm (77 K). The intensity of fluorescence at 760 nm depends strongly on the P700 redox state: it is maximum with the reduced P700 and strongly decreased with the oxidized P700 which is the most efficient quencher of fluorescence at 760 nm. The energy absorbed by the extreme long-wave chlorophyll form is active in the photooxidation of P700 in the trimeric complex. The data obtained indicate that the long-wave form of chlorophyll originates from interaction of the chlorophyll molecules localized on monomeric subunits forming the photosystem I trimer. Kinetic analysis of the P700 photooxidation and light-induced quenching of fluorescence at 760 nm (77 K) allows the suggestion that the excess energy absorbed by the antenna monomeric subunits within the trimer migrates via the extreme long-wave chlorophyll to the P700 cation radical and is quenched, which prevents the photodestruction of the pigment-protein complex.  相似文献   

9.
A chlorophyll-protein was isolated from a Synechococcus P700-chlorophyll a-protein complex free from small subunits (CP1-e) by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis after treatment with 2% 2-mercaptoethanol and 2% SDS. In contrast to CP1-e which, when electrophoresed under denaturating conditions, showed two polypeptide bands of 62 and 60 kDa, the chlorophyll-protein contained only the 60-kDa polypeptide and hence is called CP60. The yield of CP60 was maximal with 1-2% SDS and 2-4% sulfhydryl reagents because the chlorophyll-protein was denatured at higher concentrations of the reagents. The absorption spectrum of CP60, which retained more than half of the chlorophyll alpha molecules originally associated with the 60-kDa subunit of the photosystem I reaction center complex, showed a red band maximum at 672 nm and a small absorption band around 700 nm at liquid nitrogen temperature. CP60 emitted a fluorescence band at 717 to 725 nm at 77 degrees K. The temperature dependence of the far red band of CP60 was essentially the same as that of CP1-e between 77 and 273 degrees K. No photoresponse of P700 was detected in CP60. The results suggest that the two polypeptides resolved by SDS-gel electrophoresis from CP1-e are apoproteins of two distinct chlorophyll-proteins and that CP60 represents a chlorophyll-bearing 60-kDa subunit functioning as an intrinsic antenna protein of the photosystem I reaction center complex. It will also be shown that the temperature dependence of the far red fluorescence band is not related to the photosystem I photochemistry.  相似文献   

10.
Photosystem I reaction centers were isolated from mesophyll and bundle-sheath chloroplasts of the C4 maize plant. Both preparations were found to be free of chlorophyll b and to have the same spectral properties and chlorophyll/P700 ratio as photosystem I reaction centers isolated from C3 plants. Photosystem I reaction centers from both mesophyll and bundle sheath were found to consist of six subunits with apparent molecular masses of about 70 kDa, 20 kDa, 17 kDa, 16 kDa, 10 kDa and 8 kDa, corresponding to photosystem I reaction center subunits I, II, IV, V, VI and VII of spinach, as tested by their immunological cross-reactivity with antibody raised against the respective spinach subunits. No cross-reactivity was found with antibodies raised against subunit III of spinach, either in whole thylakoids or purified reaction centers of both bundle-sheath and mesophyll chloroplasts. It is concluded that photosystem I reaction centers of bundle-sheath and mesophyll thylakoids of maize are identical and lack the polypeptide corresponding to subunit III present in all C3 plants so far tested.  相似文献   

11.
A chlorophyll (a + b)--protein complex associated with photosystem I (PSI) was isolated from a larger PSI complex (CPIa) produced by electrophoresis of barley thylakoids solubilized with 300 mM octyl glucoside. It had an apparent Mr of 35,000-43,000 on 7.5% and 10% acrylamide gels respectively, and a chlorophyll a/b ratio of 2.5 +/- 1.5. Denaturation released four polypeptides migrating between 21-24 kDa. They were well separated from the polypeptides of the two photosystem II chlorophyll a + b antenna complexes: LHCII (25-27 kDa) and CP29 (28-29 kDa). In order to study the PSI antenna complex, antibodies were raised against highly purified CPIa. The antigen appeared to be pure when electrophoresed, blotted and reacted with its antiserum, i.e. anti-CPIa detected only the 64-66-kDa CPI apoprotein and the four 21-24 kDa antenna polypeptides. However, when blotted against the whole spectrum of thylakoid proteins, it cross-reacted with both LHCII and CP29 apoproteins. Removal of anti-CPI activity from the anti-CPIa did not affect these cross-reactions, showing that they were not due to antibodies directed against CPI. To show that the same antibody population was reacting with both the photosystem I and photosystem II antenna polypeptides, anti-CPIa was adsorbed onto highly purified CPIa on nitrocellulose. The bound antibody was eluted and used again in a Western blot against whole thylakoid proteins. This selected antibody population showed the same relative strength of reaction with photosystem I and photosystem II antenna polypeptides as the original antibody population had. Similar observations have been made with antibodies to the two photosystem II antenna complexes. We therefore conclude that there are antigenic determinants in common among the chlorophyll a + b binding polypeptides, and predict that there could be amino acid sequence similarities.  相似文献   

12.
Recent studies of chloroplast architecture have emphasized the segregation of photosystem I and photosystem II in different regions of the lamellar membrane. The apparent localization of photosystem II reaction centers in regions of membrane appression and of photosystem I reaction centers in regions exposed to the chloroplast stroma has focused attention on the intervening electron carriers, carriers which must be present to catalyze electron transfer between such spatially separated reaction sites. Information regarding the stoichiometries of these intermediate carriers is essential to an understanding of the processes that work together to establish the mechanism and to determine the rate of the overall process. We have reinvestigated the numbers of photosystem I and photosystem II reaction centers, the numbers of intervening cytochrome b6/f complexes, and the numbers of molecules of the relatively mobile electron carriers plastoquinone and plastocyanin that are actively involved in electron transfer. Our investigations were based on a new experimental technique made possible by the use of a modified indophenol dye, methyl purple, the reduction of which provides a particularly sensitive and accurate measure of electron transfer. Using this dye, which accepts electrons exclusively from photosystem I, it was possible to drain electrons from each of the carriers. Thus, by manipulation of the redox condition of the various carriers and through the use of specific inhibitors we could measure the electron storage capacity of each carrier in turn. We conclude that the ratio of photosystem I reaction centers to cytochrome b6/f complexes to photosystem II reaction centers is very nearly 1:1:1. The pool of rapid donors of electrons to P700 includes not only the 2 reducing equivalents stored in the cytochrome b6/f complex but also those stored in slightly more than 2 molecules of plastocyanin per P700. More slowly available are the electrons from about 6 plastoquinol molecules per P700.  相似文献   

13.
The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.  相似文献   

14.
Treatment of spinach photosystem I particles with 2 or 4 M urea containing 5 mM ferricyanide produces a time-dependent conversion of labile sulfide to zero-valence sulfur in the membrane-bound iron-sulfur proteins. The integrity of the primary electron donor, P700, remains intact when measured as a chemical oxidized-minus-reduced difference spectrum. The effect on the light-induced oxidation of P700 is complex; the extent of the normally-fast P700 photooxidation correlates directly with the amount of labile sulfide remaining in the particle but a slow phase of photooxidation only becomes evident in increasingly depleted particles and shows no relationship with the amount of remaining labile sulfide. The data is taken as evidence for the participation of an iron-sulfur protein in the primary photochemistry of photosystem I in green plants.  相似文献   

15.
A P700-chlorophyll a-protein complex, solubilized by the detergent Triton X-100, has been isolated by hydroxyl apatite column chromatography. The chlorophyll composition was determined by thin-layer chromatography and spectrofluorimetric analysis. This photosystem I reaction centre complex, prepared at pH 7, contained pheophytin a and P700 in a ratio of 2/1, high enough to account for a composition similar to that in the reaction centre of photosynthetic bacteria. Prepared at pH 9, the same ratio was 0.2/1, which excludes pheophytin a from having the same function as that of bacterio-pheophytin in the photosynthetic bacteria.  相似文献   

16.
Yao DC  Brune DC  Vermaas WF 《FEBS letters》2012,586(2):169-173
The half-life times of photosystem I and II proteins were determined using (15)N-labeling and mass spectrometry. The half-life times (30-75h for photosystem I components and <1-11h for the large photosystem II proteins) were similar when proteins were isolated from monomeric vs. oligomeric complexes on Blue-Native gels, suggesting that the two forms of both photosystems can interchange on a timescale of <1h or that only one form of each photosystem exists in thylakoids in vivo. The half-life times of proteins associated with either photosystem generally were unaffected by the absence of Small Cab-like proteins.  相似文献   

17.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).  相似文献   

18.
The photosystem I complex organized in cyanobacterial membranes preferentially in trimeric form participates in electron transport and is also involved in dissipation of excess energy thus protecting the complex against photodamage. A small number of longwave chlorophylls in the core antenna of photosystem I are not located in the close vicinity of P700, but at the periphery, and increase the absorption cross-section substantially. The picosecond fluorescence kinetics of trimers resolved the fastest energy transfer components reflecting the equilibration processes in the core antenna at different redox states of P700. Excitation kinetics in the photosystem I bulk antenna is nearly trap-limited, whereas excitation trapping from longwave chlorophyll pools is diffusion-limited and occurs via the bulk antenna. Charge separation in the photosystem I reaction center is the fastest of all known reaction centers.  相似文献   

19.
The effects of two molecular forms of water-soluble ferredoxin (Fd I and Fd II) on the kinetics of electron transport in bean chloroplasts (class B) were studied. The light-induced redox transitions of the photosystem I reaction center P700 were measured by the intensity of the EPR signal I produced by P700+. Both forms of ferredoxin, Fd I and Fd II, when added to the chloroplasts in catalytic amounts, stimulate the light-induced electron transfer from P700 to NADP+. Nevertheless, Fd I is a better mediator of the back reactions from NADPH to P700+. This electron transfer pathway is sensitive to the cyclic electron transport inhibitor, antimycin A, and to DCMU inhibitor of electron transport between photosystem II and plastoquinone. It may be concluded that the two molecular forms of ferredoxin, Fd I and Fd II, differ in their ability to catalyze cyclic electron transport in photosystem I. The role of Fd I and Fd II in regulation of electron transport at the acceptor site of photosystem I is discussed.  相似文献   

20.
The thermodynamic properties of electron transfer in biological systems are far less known in comparison with that of their kinetics. In this paper the enthalpy and entropy of electron transfer in the purified photosystem I trimer complexes from Synechocystis sp. PCC 6803 have been studied, using pulsed time-resolved photoacoustics on the 1 micros time scale. The volume contraction of reaction centers of photosystem I, which results directly from the light-induced charge separation forming P(700+F(A)/F(B-) from the excited-state P700*, is determined to be -26 +/- 2 A3. The enthalpy of the above electron-transfer reaction is found to be -0.39 +/- 0.1 eV. Photoacoustic estimation of the quantum yield of photochemistry in the purified photosystem I trimer complex showed it to be close to unity. Taking the free energy of the above reaction as the difference of their redox potentials in situ allows us to calculate an apparent entropy change (TDeltaS) of +0.35 +/- 0.1 eV. These values of DeltaV and TDeltaS are similar to those of bacterial reaction centers. The unexpected sign of entropy of electron transfer is tentatively assigned, as in the bacterial case, to the escape of counterions from the surface of the particles. The apparent entropy change of electron transfer in biological system is significant and cannot be neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号