首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leukocyte common (CD45) Ag is essential for normal T lymphocyte function and alternative splicing at the N terminus of the gene is associated with changes in T cell maturation and differentiation. Recently, a statistically significant association was reported in a large series of human thymus samples between phenotypically abnormal CD45 splicing and the presence of the CC chemokine receptor 5 deletion 32 (CCR5del32) allele, which confers resistance to HIV infection in homozygotes. We show here that abnormal splicing in these thymus samples is associated with the presence of the only established cause of CD45 abnormal splicing, a C77G transversion in exon A. In addition we have examined 227 DNA samples from peripheral blood of healthy donors and find no association between the exon A (C77G) and CCR5del32 mutations. Among 135 PBMC samples, tested by flow cytometric analysis, all those exhibiting abnormal splicing of CD45 also showed the exon A C77G transversion. We conclude that the exon A (C77G) mutation is a common cause of abnormal CD45 splicing and that further disease association studies of this mutation are warranted.  相似文献   

2.
NPC1 gene mutations in Japanese patients with Niemann-Pick disease type C   总被引:3,自引:0,他引:3  
Complementary and genomic DNAs isolated from the fibroblasts of 10 Japanese (7 late infantile, 2 juvenile, and 1 adult form of the disease) and one Caucasian patient with Niemann-Pick disease type C were analyzed for mutations in the NPC1 gene. Fourteen novel mutations were found including small deletions and point mutations. A one-base deletion and a point mutation caused splicing errors. The mutations were not clustered in any particular region of the gene and were found both in and out of the transmembrane domains. Three patients were homozygous, five were compound heterozygous, and the remaining three were suspected of being compound hetrozygous with an unknown error in one of their NPC1 alleles. Of the 14 mutations, the G1553A substitution that caused a splicing error of exon 9 appeared to be relatively common in Japanese patients, because two patients were homozygous and one patient was compound heterozygous for this mutation. Electronic Publication  相似文献   

3.
Fructose-1,6-bisphosphatase (FBPase) deficiency is an autosomal recessive inherited disorder and may cause sudden unexpected infant death. We reported the first case of molecular diagnosis of FBPase deficiency, using cultured monocytes as a source for FBPase mRNA. In the present study, we confirmed the presence of the same genetic mutation in this patient by amplifying genomic DNA. Molecular analysis was also performed to diagnose another 12 Japanese patients with FBPase deficiency. Four mutations responsible for FBPase deficiency were identified in 10 patients from 8 unrelated families among a total of 13 patients from 11 unrelated families; no mutation was found in the remaining 3 patients from 3 unrelated families. The identified mutations included the mutation reported earlier, with an insertion of one G residue at base 961 in exon 7 (960/961insG) (10 alleles, including 2 alleles in the Japanese family from our previous report [46% of the 22 mutant alleles]), and three novel mutations--a G-->A transition at base 490 in exon 4 (G164S) (3 alleles [14%]), a C-->A transversion at base 530 in exon 4 (A177D) (1 allele [4%]), and a G-->T transversion at base 88 in exon 1 (E30X) (2 alleles [9%]). FBPase proteins with G164S or A177D mutations were enzymatically inactive when purified from E. coli. Another new mutation, a T-->C transition at base 974 in exon 7 (V325A), was found in the same allele with the G164S mutation in one family (one allele) but was not responsible for FBPase deficiency. Our results indicate that the insertion of one G residue at base 961 was associated with a preferential disease-causing alternation in 13 Japanese patients. Our results also indicate accurate carrier detection in eight families (73%) of 11 Japanese patients with FBPase deficiency, in whom mutations in both alleles were identified.  相似文献   

4.
5.
PCR of cDNA produced from patient fibroblasts allowed us to determine the paternal mutation in the first patient reported with beta-glucuronidase-deficiency mucopolysaccharidosis type VII (MPS VII). The G-->T transversion 1,881 bp downstream of the ATG translation initiation codon destroys an MboII restriction site and converts Trp627 to Cys (W627C). Digestion of genomic DNA PCR fragments with MboII indicated that the patient and the father were heterozygous for this missense mutation in exon 12. Failure to find cDNAs from patient RNA which did not contain this mutation suggested that the maternal mutation leads to greatly reduced synthesis or reduced stability of mRNA from the mutant allele. In order to identify the maternal mutation, it was necessary to analyze genomic sequences. This approach was complicated by the finding of multiple unprocessed pseudogenes and/or closely related genes. Using PCR with a panel of human/rodent hybrid cell lines, we found that these pseudogenes were present over chromosomes 5-7, 20, and 22 and the Y chromosome. Conditions were defined which allowed us to amplify and characterize genomic sequences for the true beta-glucuronidase gene despite this background of related sequences. The patient proved to be heterozygous for a second mutation, in which a C-->T transition introduces a termination codon (R356STOP) in exon 7. The mother was also heterozygous for this mutation. Expression of a cDNA containing the maternal mutation produced no enzyme activity, as expected. Expression of the paternal mutation in COS-7 cells produced a surprisingly high (65% of control) level of activity. However, activity was 13% of control in transiently transfected murine MPS VII cells. The level of activity of this mutant allele appears to correlate with the level of overexpression, suggesting that high concentrations of mutant monomers can drive the folding and tetramerization of mutant enzyme to produce an active and stable enzyme.  相似文献   

6.
Niemann-Pick type C (NPC) disease is an autosomal recessive lipid-storage disorder usually characterized by hepatosplenomegaly and severe progressive neurological dysfunction, resulting from mutations affecting either the NPC1 gene (in 95% of the patients) or the yet-to-be-identified NPC2 gene. Our initial study of 25 patients with NPC1 identified a T3182-->C transition that leads to an I1061T substitution in three patients. The mutation, located in exon 21, affects a putative transmembrane domain of the protein. PCR-based tests with genomic DNA were used to survey 115 unrelated patients from around the world with all known clinical and biochemical phenotypes of the disease. The I1061T allele constituted 33 (14.3%) of the 230 disease-causing alleles and was never found in controls (>200 alleles). The mutation was particularly frequent in patients with NPC from Western Europe, especially France (11/62 alleles) and the United Kingdom (9/32 alleles), and in Hispanic patients whose roots were in the Upper Rio Grande valley of the United States. The I1061T mutation originated in Europe and the high frequency in northern Rio Grande Hispanics results from a founder effect. All seven unrelated patients who were homozygous for the mutation and their seven affected siblings had a juvenile-onset neurological disease and severe alterations of intracellular LDL-cholesterol processing. The mutation was not found (0/40 alleles) in patients with the severe infantile neurological form of the disease. Testing for this mutation therefore has important implications for genetic counseling of families affected by NPC.  相似文献   

7.
Niemann-Pick disease, an autosomal recessive lysosomal storage disorder, is caused by deficiency of acid sphingomyelinase. Sequence analysis of mRNA and genomic DNA of fibroblasts of a type A patient showed a single G1729 to A nucleotide transition. This mutation resulted in a substitution of serine for normal glycine at position 577 of the peptide sequence. Amplification of the genomic DNA region around the mutation and subsequent sequencing yielded exclusively the same base change found at the cDNA level. Expression studies with this abnormal cDNA in COS-1 cells revealed a complete loss of enzymatic activity of the mutated protein. These findings indicate that this mutation is responsible for the clinical disease of the patient.  相似文献   

8.
We have developed a procedure for the determination of a common mutation in exon 9 of the human lipoprotein lipase (LPL) gene. The mutation is due to a C-G transversion which creates a premature termination codon (Ser447-Ter) and results in a truncated LPL molecule lacking the C-terminal dipeptide SER-GLY. The mutation can be detected by polymerase chain reaction (PCR) amplification of exon 9 using a modified 3' amplimer that produces a 140 bp product containing a site for the restriction enzyme Hinf-1 in the presence of the mutation (G allele). The G allele was in strong linkage disequilibrium with a Hind-III restriction fragment length polymorphism (RFLP) allele in intron 8. Genotype determinations for the mutation can be performed by PCR amplification of genomic DNA, digestion with Hinf-1, and analysis of the products by polyacrylamide gel electrophoresis. The allelic frequency of the Ser447-Ter mutation in normal male Caucasian controls was 0.11. The frequency of the mutation was lower in a group of subjects with primary hypertriglyceridemia compared to normolipidemic controls.  相似文献   

9.
Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at −30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (−30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.  相似文献   

10.
11.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency always causing hyperuricemia presents various degrees of neurological manifestations, the most severe which is Lesch–Nyhan syndrome. The HPRT gene is situated in the region Xq26-q27.2 and consists of 9 exons. At least 300 different mutations at different sites in the HPRT coding region from exon 1 to exon 9 have been identified. A new mutation in the HPRT gene has been determined in one patient with complete deficiency of erythrocyte activity, with hyperuricemia and gout but without Lesch–Nyhan disease. Analysis of cultured fibroblasts revealed minimal residual HPRT activity mainly when guanine was the substrate. Genomic DNA sequencing demonstrated patient's mother heterozygosity for the mutation and no mutation in her brother. The mutation consists in a C→T transversion at cDNA base 463 (C463T) in exon 6, resulting in proline to serine substitution at codon 155 (P155S). This mutation had not been reported previously and has been designated HPRTSardinia. The mutation identified in this patient allows some expression of functional enzyme in nucleated cells such as fibroblasts, indicating that such cell type may add further information to conventional blood analysis. A multicentre survey gathering patients with variant neurological forms could contribute to understand the pathophysiology of the neurobehavioral symptoms of HPRT deficiency.  相似文献   

12.
13.
The abnormality in the gene coding for the beta-hexosaminidase alpha subunit was analyzed in a non-Jewish patient with clinically typical infantile Tay-Sachs disease. The family was Catholic, and the father and the mother were of Irish and German descent, respectively. A hitherto undescribed single nucleotide transversion was found within exon 11 (G1260----C; Trp420----Cys). The coding sequence was otherwise entirely normal. Expression in the COS I cell system confirmed that the mutant gene does not produce functional enzyme protein. The mutation can be identified rapidly and reliably because it abolishes one of the two KpnI sites in the coding sequence. The patient was a compound heterozygote with one allele carrying this mutation. The nature of the abnormality in the other allele remains unidentified. Examination of genomic DNA from the parents demonstrated that this "Kpn mutation" was inherited from the maternal side of the family.  相似文献   

14.
BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature.  相似文献   

15.
Murine albinism is characterized by complete lack of melanin pigments in skin and retina. In order to study the molecular basis of albinism, we have cloned and characterized the tyrosinase gene of BALB/c mice (c/c). Sequence analysis of this gene reveals a point mutation at nucleotide residue 387 (G----C transversion) causing a Cys----Ser substitution at position 85 in one of the cysteine-rich domains of the tyrosinase molecule. Since this G----C transversion creates an additional DdeI site, we were able to confirm that this mutation is actually present in BALB/c genomic DNA using DNA amplification techniques. In contrast, both C57BL/6 (C/C) and DBA/2 (C/C) mouse strains carry the G residue at the same position, suggesting that this point mutation is specific for the albino mutation at the c locus. Moreover, we were able to show that the tyrosinase containing Ser-85 is not functional in transient expression of its cDNA. We therefore suggest that a G----C transversion at nucleotide residue 387 of the tyrosinase gene could lead to the albino phenotype of BALB/c mouse.  相似文献   

16.
17.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency always causing hyperuricemia presents various degrees of neurological manifestations, the most severe which is Lesch-Nyhan syndrome. The HPRT gene is situated in the region Xq26-q27.2 and consists of 9 exons. At least 300 different mutations at different sites in the HPRT coding region from exon 1 to exon 9 have been identified. A new mutation in the HPRT gene has been determined in one patient with complete deficiency of erythrocyte activity, with hyperuricemia and gout but without Lesch-Nyhan disease. Analysis of cultured fibroblasts revealed minimal residual HPRT activity mainly when guanine was the substrate. Genomic DNA sequencing demonstrated patient's mother heterozygosity for the mutation and no mutation in her brother. The mutation consists in a C-->T transversion at cDNA base 463 (C463T) in exon 6, resulting in proline to serine substitution at codon 155 (P155S). This mutation had not been reported previously and has been designated HPRT(Sardinia). The mutation identified in this patient allows some expression of functional enzyme in nucleated cells such as fibroblasts, indicating that such cell type may add further information to conventional blood analysis. A multicentre survey gathering patients with variant neurological forms could contribute to understand the pathophysiology of the neurobehavioral symptoms of HPRT deficiency.  相似文献   

18.
19.
A case of inherited homozygous complement C3 deficiency (C3D) in a patient with systemic lupus erythematosus (SLE) and the molecular basis for this deficiency are reported. A 22-year-old Japanese male was diagnosed as having SLE and his medical history revealed recurrent tonsillitis and pneumonia. He was diagnosed as having C3D because of undetectable serum C3 level. His parents were consanguineous. Sequence analysis of C3D cDNA revealed a homozygous deletion of exon 39 (84bp). A single base substitution (AG to GG) in the 3'-splice acceptor site of intron 38 was identified by sequencing the genomic DNA. Expression of C3Delta(ex39) cDNA, the C3cDNA lacking exon 39, in COS-7 cells revealed that C3Delta(ex39) was retained in endoplasmic reticulum-Golgi intermediate compartment because of defective secretion. These data indicate that a novel AG-->GG 3'-splice acceptor site mutation in intron 38 caused aberrant splicing of exon 39, resulting in defective secretion of C3.  相似文献   

20.
We identified a splicing mutation in a patient with Ehlers-Danlos syndrome type IV, a heritable connective tissue disorder associated with dysfunctions of type III collagen. The mutation was first localized in the patient's type III procollagen mRNA by amplifying the reverse transcribed product in several overlapping fragments using the polymerase chain reaction. Amplified products spanning exon 24-26 sequences displayed two distinct fragments, one of normal size and the other lacking the 99 base pairs of exon 25. Sequencing of amplified genomic products identified a G to T transversion at position +5 of the splice donor site of intron 25 in one of the patient's procollagen III genes. Expression of allelic minigene constructs correlated the T for G substitution with skipping of exon 25 sequences. Like previously characterized splicing mutations in other collagen genes, lowering the temperature at which the patient's fibroblasts were incubated nearly abolished exon skipping. As a part of this study, we also identified a highly polymorphic, intronic DNA sequence whose different allelic forms can be detected easily by the polymerase chain reaction technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号