首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether the effects of fatty acids on the diabetic heart during ischemia involve altered glycolytic ATP and proton production, we measured energetics and intracellular pH (pH(i)) by using (31)P NMR spectroscopy plus [2-(3)H]glucose uptake in isolated rat hearts. Hearts from 7-wk streptozotocin diabetic and control rats, perfused with buffer containing 11 mM glucose, with or without 1.2 mM palmitate or the ketone bodies, 4 mM beta-hydroxybutyrate plus 1 mM acetoacetate, were subjected to 32 min of low-flow (0.3 ml x g wet wt(-1) x min(-1)) ischemia, followed by 32 min of reperfusion. In control rat hearts, neither palmitate nor ketone bodies altered the recovery of contractile function. Diabetic rat hearts perfused with glucose alone or with ketone bodies, had functional recoveries 50% lower than those of the control hearts, but palmitate restored recovery to control levels. In a parallel group with the functional recoveries, palmitate prevented the 54% faster loss of ATP in the diabetic, glucose-perfused rat hearts during ischemia, but had no effect on the rate of ATP depletion in control hearts. Palmitate decreased total glucose uptake in control rat hearts during low-flow ischemia, from 106 +/- 17 to 52 +/- 12 micromol/g wet wt, but did not alter the total glucose uptake in the diabetic rat hearts, which was 42 +/- 5 micromol/g wet wt. Recovery of contractile function was unrelated to pH(i) during ischemia; the glucose-perfused control and palmitate-perfused diabetic hearts had end-ischemic pH(i) values that were significantly different at 6.36 +/- 0.04 and 6.60 +/- 0.02, respectively, but had similar functional recoveries, whereas the glucose-perfused diabetic hearts had significantly lower functional recoveries, but their pH(i) was 6.49 +/- 0.04. We conclude that fatty acids, but not ketone bodies, protect the diabetic heart by decreasing ATP depletion, with neither having detrimental effects on the normal rat heart during low-flow ischemia.  相似文献   

2.
Magnesium-diltiazem cardioplegia was evaluated in the intact, perfused rat heart to determine whether the joint administration of these agents would adversely affect myocardial contractile and high-energy phosphate recovery following intermittent, normothermic global ischemic arrest. Sequential metabolic and functional analyses were performed on isolated perfused rat hearts during each phase of the experimental protocol: control (10 min), normoxic cardioplegia (10 min), intermittent global ischemic arrest (two 15-min periods separated by 2 min infusion of the normoxic cardioplegic perfusate), and normoxic postischemic control reperfusion (60 min). Four different cardioplegic solutions were evaluated: 30 mM KCl, 30 mM KCl with 2 mg diltiazem/liter, 20 mM MgCl2, and 20 mM MgCl2 with 2 mg diltiazem/liter. Myocardial phosphatic metabolite levels and intracellular pH were analyzed nondestructively in the intact hearts by phosphorus-31 NMR spectroscopy. Corresponding measurements of peak left intraventricular pressure, rate of peak pressure development (dP/dt), and contraction frequency were performed at the midpoint during each 5-min interval of 31P NMR signal averaging. Magnesium plus diltiazem-treated hearts were distinguished from all other groups by a marked delay in postischemic functional recovery consisting of a prolonged depression in contractility (34% of control, P less than 0.01) that persisted throughout the first 50 min of postischemic reperfusion. Diltiazem in combination with magnesium cardioplegia was detrimental to postischemic functional recovery, despite a rapid restoration of high-energy phosphate stores. The apparent adverse interactive effects of excess magnesium and diltiazem suggest that elective ischemic arrest with magnesium cardioplegia in combination with diltiazem may be contraindicated clinically. The mechanistic basis and drug specificity of this response require further clarification. The present findings appear to exclude ATP and PCr production, and structural causes as the basis for the observed aberrant functional recovery from global ischemia of magnesium plus diltiazem-arrested hearts.  相似文献   

3.
Quantitative 31P-NMR and enzymatic analysis of high-energy phosphates were used to characterize an isolated perfused working rabbit heart preparation. In this model, the left side of the heart works against a physiological after-load. Two perfusates, Krebs-Henseleit saline and the perfluorocarbon emulsion FC-43 (perfluorotributylamine), were evaluated in their ability to maintain cardiac function and high-energy phosphate metabolites over a period of 2-3 h. Adenine nucleotides ATP, ADP, phosphocreatine and inorganic phosphate (Pi) were measured by 31P-NMR while monitoring cardiac output and coronary flow. Intracellular pH was determined using the chemical shift of Pi. At the end of each experiment, hearts were freeze clamped and enzymatically assayed for adenine nucleotides, phosphocreatine and Pi. In every experiment, hearts perfused with FC-43 emulsion maintained the same rate of cardiac output as hearts perfused with Krebs-Henseleit saline, but with half the coronary flow rate: FC-43, 22 +/- 2.5 (n = 5), Krebs-Henseleit saline 42 +/- 2.7 (n = 6) ml/min, P less than 0.001. Hearts perfused with FC-43 emulsion showed higher [phosphocreatine] and [ATP] measured by 31P-NMR. For [phosphocreatine]: FC-43 3.2 +/- 0.7 (n = 5), Krebs-Henseleit saline 1.7 +/- 0.2 (n = 6) mumol/g wet wt., P less than 0.01. For [ATP]: FC-43 1.8 +/- 0.7 (n = 5), Krebs-Henseleit saline 0.9 +/- 0.2 (n = 6) mumol/g wet wt., P less than 0.02. [phosphocreatine] and [ATP] determined by 31P-NMR values were identical within experimental error to those values obtained by enzymatic analysis. Comparing [Pi] determined by both methods, 36% of Pi in FC-43-perfused hearts, and only 24% of Pi in Krebs-Henseleit saline-perfused hearts were visible by NMR, indicating that a large proportion of Pi is bound in the intact functioning heart. Similar results were obtained for [ADP]. Using the combined techniques of 31P-NMR and enzymatic assay, we have shown in this model of the isolated working rabbit heart preparation, that FC-43 emulsion maintains significantly better function and high-energy phosphate levels than Krebs-Henseleit saline.  相似文献   

4.
The effects of L-carnitine on myocardial glycolysis, glucose oxidation, and palmitate oxidation were determined in isolated working rat hearts. Hearts were perfused under aerobic conditions with perfusate containing either 11 mM [2-3H/U-14C]glucose in the presence or absence of 1.2 mM palmitate or 11 mM glucose and 1.2 mM [1-14C]palmitate. Myocardial carnitine levels were elevated by perfusing hearts with 10 mM L-carnitine. A 60-min perfusion period resulted in significant increases in total myocardial carnitine from 4376 +/- 211 to 9496 +/- 473 nmol/g dry weight. Glycolysis (measured as 3H2O production) was unchanged in carnitine-treated hearts perfused in the absence of fatty acids (4418 +/- 300 versus 4547 +/- 600 nmol glucose/g dry weight.min). If 1.2 mM palmitate was present in the perfusate, glycolysis decreased almost 2-fold compared with hearts perfused in the absence of fatty acids. In carnitine-treated hearts this drop in glycolysis did not occur (glycolytic rates were 2911 +/- 231 to 4629 +/- 460 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively. Compared with control hearts, glucose oxidation rates (measured as 14CO2 production from [U-14C]glucose) were unaltered in carnitine-treated hearts perfused in the absence of fatty acids (1819 +/- 169 versus 2026 +/- 171 nmol glucose/g dry weight.min, respectively). In the presence of 1.2 mM palmitate, glucose oxidation decreased dramatically in control hearts (11-fold). In carnitine-treated hearts, however, glucose oxidation was significantly greater than control hearts under these conditions (158 +/- 21 to 454 +/- 85 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively). Palmitate oxidation rates (measured as 14CO2 production from [1-14C]palmitate) decreased in the carnitine-treated hearts from 728 +/- 61 to 572 +/- 111 nmol palmitate/g dry weight.min. This probably occurred secondary to an increase in overall ATP production from glucose oxidation (from 5.4 to 14.5% of steady state myocardial ATP production). The results reported in this study provide direct evidence that carnitine can stimulate glucose oxidation in the intact fatty acid perfused heart. This probably occurs secondary to facilitating the intramitochondrial transfer of acetyl groups from acetyl-CoA to acetylcarnitine, thereby relieving inhibition of the pyruvate dehydrogenase complex.  相似文献   

5.
S Masson  B Quistorff 《Biochemistry》1992,31(33):7488-7493
The 31P NMR visibility of ATP of the perfused rat liver was tested over a wide range of metabolic conditions, including normoxic and hypoxic perfusions, fructose loads, and various intervals of normothermic ischemia, for both ad libitum fed and 24-h fasted rats. The 31P NMR signal of ATP was compared to the concentration of ATP determined by enzymatic assays on liver biopsies performed at the end of NMR acquisition. In a first series of experiments, the NMR resonance of intracellular ATP was quantitated in absolute terms by applying the 1H NMR water signal as internal reference: during normoxic and hypoxic perfusions, a constant amount of ATP (0.43 +/- 0.19 mM, mean +/- SD), approximately 12% of the cellular ATP, is not detected by NMR. Nevertheless, there is a high correlation (slope = 0.96 +/- 0.09; r2 = 0.93) between the measurements of ATP by 31P NMR spectroscopy and by biochemical analysis. In a second series of experiments, there was a highly significant correlation between the NMR and analytical biochemical measurements of ATP for whole range of metabolic states, i.e., fructose loads (1.0-10 mM) and various intervals of normothermic ischemia (ranging from 2 to 12 min), indicating unchanged ATP visibility. Thus, as opposed to the studies of Murphy et al. [Murphy, E., et al. (1988) Biochemistry 27, 526-528], it is concluded that ATP at 37 degrees C remains almost entirely visible in the perfused rat liver, also during ischemia.  相似文献   

6.
Rabbit hearts were perfused with Krebs-Henseleit bicarbonate buffer supplemented with 15 mM glucose and 10 mU/ml of insulin +/- Pi. At the end of 60 min the hearts were freeze-clamped and the content of ATP, creatine phosphate, creatine, lactate, pyruvate, DHAP and 3-P glycerate were determined enzymatically in neutralized perchloric acid tissue extracts. The free cytosolic ADP and Pi and the cytosolic NAD+ redox and phosphorylation potentials were calculated from the measured metabolite concentrations. Pi free perfusion resulted in increased creatine, free cytosolic ADP and cytosolic phosphorylation potential, decreased calculated free Pi and no change in cardiac ATP and creatine phosphate content. The increase in the cytosolic phosphorylation potential was due to the lowering of cytosolic free Pi. The increase in ADP was due to the increase in creatine. The increase in creatine appeared to be due to an inhibition of creatine efflux from the heart during Pi free perfusion which was mediated by an enhanced Na+ electrochemical gradient.  相似文献   

7.
The objective of this study was to define the relationship among AMP-activated protein kinase (AMPK) activity, AMP concentration ([AMP]), and [ATP] in perfused rat hearts. Bromo-octanoate, an inhibitor of beta-oxidation, and amino-oxyacetate, an inhibitor of the malate-aspartate shuttle, were used to modify substrate flux and thus increase cytosolic [AMP]. Cytosolic [AMP] was calculated using metabolites measured by (31)P NMR spectroscopy. Rat hearts were perfused with Krebs-Henseleit solution containing glucose and either no inhibitor, the inhibitors, or the inhibitors plus butyrate, a substrate that bypasses the metabolic blocks. In this way, [AMP] changed from 0.2 to 27.9 microm, and [ATP] varied between 11.7 and 6.8 mm. AMPK activity ranged from 7 to 60 pmol.min(-1).microg of protein(-1). The half-maximal AMPK activation (A(0.5)) was 1.8 +/- 0.3 microm AMP. Measurements in vitro have reported similar AMPK A(0.5) at 0.2 mm ATP, but found that A(0.5) increased 10-20-fold at 4 mm ATP. The low A(0.5) of this study despite a high [ATP] suggests that in vivo the ATP antagonism of AMPK activation is reduced, and/or other factors besides AMP activate AMPK in the heart.  相似文献   

8.
The bioenergetic basis by which the Krebs cycle substrate pyruvate increased cardiac contractile function over that observed with the Embden-Meyerhof substrate glucose was investigated in the isovolumic guinea pig heart. Alterations in the content of the high energy phosphate metabolites and the rate of high energy phosphate turnover were measured by 31P NMR. These were correlated to the changes in contractile function and rates of myocardial oxygen consumption. Maximum left ventricular developed pressure (LVDP) and high energy phosphates were observed with 16 mM glucose or 10 mM pyruvate. In hearts perfused with 16 mM glucose, the intracellular phosphocreatine (PCr) concentration was 15.2 +/- 0.6 mM with a PCr/Pi ratio of 10.3 +/- 0.9. The O2 consumption was 5.35 mumol/g wet weight/min, and these hearts exhibited a LVDP of 97 +/- 3.7 mm Hg at a constant paced rate of 200 beats/min. In contrast, when hearts were switched to 10 mM pyruvate, the PCr concentration was 18.3 +/- 0.4 mM, the PCr/Pi ratio was 30.4 +/- 2.2, the O2 consumption was 6.67 mumol/g wet weight/min, and the LDVP increased to 125 +/- 3.3 mm Hg. From NMR saturation transfer experiments, the steady-state flux of ATP synthesis from PCr was 4.9 mumol/s/g of cell water during glucose perfusion and 6.67 mumol/s/g of cell water during pyruvate perfusion. The flux of ATP synthesis from ADP was measured to be 0.99 mumol/s/g of cell water with glucose and calculated to be 1.33 mumol/s/g of cell water with pyruvate. These results suggest that pyruvate quite favorably alters myocardial metabolism in concert with the increased contractile performance. Thus, as a mechanism to augment myocardial performance, pyruvate appears to be unique.  相似文献   

9.
Hearts from 4 week-old weanling pigs were capable of continuous work output when perfused with Krebs-Henseleit buffer containing 11 mM glucose. Perfused hearts metabolized either glucose or fatty acids, but optimum work output was achieved by a combination of glucose plus physiological concentrations (0.1 mM) of either palmitate or erucate. Higher concentrations of free fatty acids increased their rate of oxidation but also resulted in a large accumulation of neutral lipids in the myocardium, as well as a tendency to increased acetylation and acylation of coenzyme A and carnitine. When hearts were perfused with 1 mM fatty acids, the work output declined below control values. Erucic acid is known to be poorly oxidized by isolated rat heart mitochondria and, to a lesser degree, by perfused rat hearts. In addition, it has been reported that erucic acid acts as an uncoupler of oxidative phosphorylation. In isolated perfused pig hearts used in the present study, erucic acid oxidation rates were as high as palmitate oxidation rates. When energy coupling was measured by 31P-NMR, the steady-state levels of ATP and phosphocreatine during erucic acid perfusion did not change noticeably from those during glucose perfusion. It was concluded that the severe decrease in oxidation rates and ATP production resulting from the exposure of isolated pig and heart mitochondria to erucic acid are not replicated in the intact pig heart.  相似文献   

10.
AMP-activated protein kinase (AMPK) acts as a cellular energy sensor: it responds to an increase in AMP concentration ([AMP]) or the AMP-to-ATP ratio (AMP/ATP). Metformin and phenformin, which are biguanides, have been reported to increase AMPK activity without increasing AMP/ATP. This study tests the hypothesis that these biguanides increase AMPK activity in the heart by increasing cytosolic [AMP]. Groups of isolated rat hearts (n = 5-7 each) were perfused with Krebs-Henseleit buffer with or without 0.2 mM phenformin or 10 mM metformin, and (31)P-NMR-measured phosphocreatine, ATP, and intracellular pH were used to calculate cytosolic [AMP]. At various times, hearts were freeze-clamped and assayed for AMPK activity, phosphorylation of Thr(172) on AMPK-alpha, and phosphorylation of Ser(79) on acetyl-CoA carboxylase, an AMPK target. In hearts treated with phenformin for 18 min and then perfused for 20 min with Krebs-Henseleit buffer, [AMP] began to increase at 26 min and AMPK activity was elevated at 36 min. In hearts treated with metformin, [AMP] was increased at 50 min and AMPK activity, phosphorylated AMPK, and phosphorylated acetyl-CoA carboxylase were elevated at 61 min. In metformin-treated hearts, HPLC-measured total AMP content and total AMP/ATP did not increase. In summary, phenformin and metformin increase AMPK activity and phosphorylation in the isolated heart. The increase in AMPK activity was always preceded by and correlated with increased cytosolic [AMP]. Total AMP content and total AMP/ATP did not change. Cytosolic [AMP] reported metabolically active AMP, which triggered increased AMPK activity, but measures of total AMP did not.  相似文献   

11.
The objective of this study was to determine the contribution of myocardial triglycerides to overall ATP production in isolated working rat hearts. Endogenous lipid pools were initially prelabeled (pulsed) by perfusing hearts for 60 min with Krebs-Henseleit buffer containing 1.2 mM [1-14C]palmitate. During a subsequent 60-min period (chase), hearts were perfused with either no fat, low fat (0.4 mM [9,10-3H] palmitate), or high fat (1.2 mM [9,10-3H]palmitate). All buffers contained 11 mM glucose. During the "chase," 14CO2 production (a measure of endogenous fatty acid oxidation) and 3H2O production (a measure of exogenous fatty acid oxidation) were determined. Oxidative rates of endogenous fatty acids during the chase were 279 +/- 50, 88 +/- 14, and 88 +/- 8 nmol of [14C]palmitate oxidized per g dry weight.min in the no fat, low fat, and high fat groups, respectively, compared to exogenous palmitate oxidation rates of 0, 361 +/- 68, and 633 +/- 60 nmol of [3H]palmitate/g dry weight.min, in the no fat, low fat, and high fat groups, respectively. Endogenous [14C]palmitate oxidation rates were matched by loss of [14C]palmitate from endogenous myocardial triglycerides. Overall triglyceride content decreased during the no fat and low fat chase perfusion but did not change during the high fat chase. Loss of triglyceride [14C]palmitate during the high fat chase was matched by incorporation of exogenous [3H]palmitate in triglycerides. In a second series of perfusions, three groups of hearts were perfused under similar conditions, except that unlabeled palmitate was used during the "pulse" and that 11 mM [2-3H/U-14C]glucose and unlabeled palmitate was present during the chase. During the chase, both glycolysis (3H2O production) and glucose oxidation (14CO2 production) rates were measured. Rates of glucose oxidation were inversely related to the fatty acid concentration in the perfusate (1257 +/- 158, 366 +/- 40, and 124 +/- 26 nmol of glucose oxidized per min.g dry weight in the no fat, low fat, and high fat groups, respectively), while rates of glycolysis were not significantly different between these groups. Calculation of overall ATP production from both oxidative and glycolytic sources determined that even in the presence of high concentrations of fatty acids, myocardial triglyceride turnover can provide over 11% of steady state ATP production in the aerobically perfused heart. In the absence of fatty acids, myocardial triglyceride fatty acids can become the major energy substrate of the heart.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We examined the effect of inhibition of p38 mitogen-activated protein kinase (MAPK) alpha/beta during ischemia and preconditioning by using the inhibitor SB-202190. Isolated rat hearts were perfused with Krebs-Henseleit buffer, while left ventricular developed pressure (LVDP) and (31)P nuclear magnetic resonance spectra were acquired continuously. After 20 min of ischemia and 25 min of reperfusion, recovery of LVDP in untreated hearts was 32 +/- 4%, whereas hearts treated with SB-202190 5 min before ischemia recovered 59 +/- 7% of their pretreatment LVDP. Preconditioning improved functional recovery to 65 +/- 5%, which was unaffected by SB-202190 treatment, added either throughout the preconditioning protocol (56 +/- 5% recovery) or during the final reperfusion period of preconditioning (71 +/- 11% recovery). Necrosis was assessed after 40 min of ischemia and 2 h of reperfusion using 2,3,5-triphenyltetrazolium chloride (TTC) staining and creatine kinase release. The untreated group had 54 +/- 8% necrotic myocardium, whereas the SB-202190-treated group had 32 +/- 7% and the preconditioned group had 21 +/- 4% necrotic tissue by TTC staining.  相似文献   

13.
Alterations in myocardial energy substrate utilization contribute to the development of cardiomyopathic changes in insulin-dependent and non-insulin-dependent diabetic rats. Energy substrate utilization and contractile function, however, have not been characterized in insulin-resistant diabetes. In this study, we studied these parameters in the insulin-resistant obese JCR:LA-cp rat homozygous for the corpulent gene (cp/cp). Homozygous (+/+) or heterozygous (+/cp) lean non-insulin-resistant rats were used as controls. Isolated working hearts from cp/cp and lean control rats were perfused with Krebs-Henseleit buffer containing either 11 mM [U-14C]glucose and 0.4 mM palmitate or 11 mM glucose and 0.4 mM [1-14C]palmitate. Unlike control hearts, hearts from cp/cp rats were found to require high doses of insulin and Ca2+ concentrations of less than or equal to 1.75 mM to maintain mechanical function. In the presence of 2,000 microU/ml insulin, contractile function from cp/cp rat hearts was not depressed in the presence of either 1.25 or 1.75 mM Ca2+. Steady-state glucose oxidation rates in hearts perfused with 1.25 mM Ca2+ and 2,000 microU/ml insulin were 811 +/- 86 (SE) and 612 +/- 51 nmol.min-1.g dry wt-1 in cp/cp and control rats, respectively. Palmitate oxidation was 307 +/- 47 and 307 +/- 47 nmol.min-1.g dry wt-1 in cp/cp and lean control hearts, respectively. Under these perfusion conditions, 40% of myocardial ATP production was derived from glucose, whereas 60% was derived from palmitate in both cp/cp and control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
R L Barbour  C H Sotak  G C Levy  S H Chan 《Biochemistry》1984,23(25):6053-6062
A novel 31P NMR method is described that is capable of determining rapid changes in the intracellular levels of various phosphorus-containing compounds in an isolated, perfused working rat heart. This technique involves the gating of 31P NMR measurements to a heart that is alternately perfused with a modified Krebs-Henseleit medium containing 10 mM pyruvate and equilibrated with either 95% O2/5% CO2 or 95% N2/5% CO2. The experimental design allows up to three NMR measurements to be made during a single O2/N2 perfusion cycle. When these measurements are repeated at different intervals during the cycle, rapid changes in metabolite levels can be determined. Preliminary studies have shown that hearts remain hemodynamically stable to the aerobic/anoxic perfusion cycle as judged by heart rate, peak systolic pressure, aortic output, and coronary flow for at least 80 min in the magnet when subjected to cycle times of 4.5-s O2 and 1.5-s N2 perfusions. NMR measurements made under these conditions showed that a transition from full aerobic perfusion to this cycle revealed a new steady state, with an increased inorganic phosphate level from 6% total observable phosphorus to 10% and a possibly significant decreased measurement of creatine phosphate level (from 35 to 31%). Comparison of individual NMR measurements made during this perfusion cycle shows apparent rapid cyclical variations in intracellular pH and the levels of Pi, ATP, and NAD(H). These changes, expressed as variations above and below mean values measured during the cycle, showed that (a) intracellular pH, as measured by the chemical shift of Pi, reversibly decreases by more than 0.1 pH unit within 0.5-1 s following maximal anoxic perfusion and (b) coincident with a decrease in intracellular pH, Pi levels increased by a maximum of 30-40% whereas ATP levels decreased by a maximum of 15-20%. The amount of total observable phosphorous detected during the cycle is essentially constant. Unexpectedly, creatine phosphate levels are most stable, indicating that their levels are being maintained at the expense of ATP. Also unexpected is the finding that NAD(H) levels varied from maximal to undetectable levels during the perfusion cycle. The current method of aerobic/anoxic perfusion is capable of resolving metabolic events much faster than previous NMR methods and yielding information that is unobtainable by any other technique.  相似文献   

15.
Interest is growing in the role of adenosine triphosphate (ATP) on P2 receptors during hypoxic/ischemic events in the brain. However, there is no direct evidence of an increase in extracellular ATP levels during cerebral ischemia in vivo. The aim of the present study was to evaluate ATP outflow from the rat striatum by the microdialysis technique associated with focal cerebral ischemia in vivo by intraluminal occlusion of the right middle cerebral artery (MCA). Between 1 and 4h after ischemia, rats showed a clear turning behavior contralateral to the ischemic side. Twenty-four hour after MCA occlusion, ischemic rats had definite neurological deficit and striatal and cortical damage. The ATP concentration (mean+/-S.E.M.) in the striatum of normoxic rats (n = 8) was 3.10+/-0.34 nM. During 220 min after MCA occlusion, the extracellular ATP levels significantly increased two-fold, being 5.90+/-0.61 nM (p < 0.01 versus normoxic level). ATP outflow showed a tendency to increase over time during the 220 min of ischemia. Since extracellular ATP is rapidly metabolized to adenosine, we also assessed ATP outflow in the presence of the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene-adenosine diphosphate (AOPCP, 1 mM) directly perfused into the striatum. The ATP concentration in normoxic rats (n = 8) was increased three-fold in the presence of the ecto-5'-nucleotidase inhibitor (9.57+/-0.26 nM). During 220 min of ischemia, extracellular ATP levels significantly increased 1.3-fold in AOPCP-treated rats (12.62+/-0.65 nM, p < 0.01 versus normoxic level). The present study confirms that ATP is continuously released in the brain and demonstrates for the first time that ATP outflow increases during ischemia in vivo. These results confirm that ATP may be an important mediator in brain ischemia.  相似文献   

16.
A quantitative analysis of the phosphorus-31 NMR spectra of excised perfused rat liver has been carried out at 80.9 MHz using a 30-mm sample cell. The results indicate that in liver from fed rats, all intracellular ATP is detected by NMR. In contrast, only the cytosolic fractions of Pi and ADP can be observed as indicated by careful analysis of spectra obtained from perchloric acid liver extracts and intact liver under valinomycin perfusion. In well-oxygenated perfused liver the ATP concentration is 7.4 mM. Values of 5.3 mM and 0.9 mM are found respectively for Pi and ADP concentrations in the cytosolic compartment. Cytosolic pH value (pHi) is 7.25 +/- 0.05 and free magnesium concentration 0.5 mM. Addition of 70 mM (0.4%) ethanol to the perfusate of a fed rat liver induces 25% and 38% reduction of ATP and Pi levels, respectively. A large amount of sn-glycerol 3-phosphate is synthesized (up to 11 mM) in the cytosol. After ethanol withdrawal, a large overshoot in cytosolic Pi is observed, which is indicative of a net uptake of Pi across the plasma membrane that occurred during ethanol oxidation. No significant pH variation is observed during ethanol infusion. In perfused liver of rats subjected to 48-h fasts, the concentrations of cytosolic phosphorylated metabolites are 5.3 mM, 0.8 mM and 11.5 mM for ATP, ADP and Pi, respectively. The perfusion of the liver with 70 mM ethanol does not change the adenine nucleotide levels, while the Pi content is decreased by 10%. During a 4-min hypoxia, induced by reducing the perfusion flow rate from 12 ml to 3 ml min-1 (100 g body weight)-1, ATP concentration decreases to 5.8 mM in the fed rat liver. Cytosolic Pi and ADP increase to 8.7 mM and 1.6 mM, respectively. The cytosolic pH evolves to more acidic values and reaches 7.02 +/- 0.05 at the end of the 4-min hypoxic period.  相似文献   

17.
The effects of anoxia were studied in freshly isolated rat hepatocytes maintained in agarose gel threads and perfused with Krebs-Henseleit bicarbonate buffer (KHB). Cytosolic free calcium (Ca2+i) was measured with aequorin, intracellular sodium (Na+i) with SBFI, intracellular pH (pHi) with BCECF, lactic dehydrogenase (LDH) by the increase in NADH absorbance during lactate oxidation to pyruvate, ATP by 31P NMR spectroscopy in real time, and intracellular free Mg2+ (Mg2+i) from the chemical shift of beta-ATP relative to alpha-ATP in the NMR spectra. Anoxia was induced by perfusing the cells with KHB saturated with 95% N2, 5% CO2. After 1 h of anoxia, beta-ATP fell 66%, and 85% after 2 h, while the Pi/ATP ratio increased 10-fold from 2.75 to 28.3. Under control conditions, the resting cytosolic free calcium was 127 +/- 6 nM. Anoxia increased Ca2+i in two distinct phases: a first rise occurred within 15 min and reached a mean value of 389 +/- 35 nM (p less than 0.001). A second peak reached a maximum value of 1.45 +/- 0.12 microM (p less than 0.001) after 1 h. During the first hour of anoxia, Na+i increased from 15.9 +/- 2.4 mM to 32.2 +/- 1.2 mM (p less than 0.001), Mg2+i doubled from 0.51 +/- 0.05 to 1.12 +/- 0.01 mM (p less than 0.001), and pHi decreased from 7.41 +/- 0.03 to 7.06 +/- 0.1 (p less than 0.001). LDH release doubled during the first hour and increased 6-fold during the second hour of anoxia. Upon reoxygenation, ATP, Ca2+i, Mg2+i, Na+i, and LDH returned near the control levels within 45 min. To determine whether the increased LDH release was related to the rise in Ca2+i, and whether the increased Ca2+i was caused by Ca2+ influx, the cells were perfused with Ca(2+)-free KHB (+ 0.1 mM EGTA) during the anoxic period. After 2 h of anoxia in Ca(2+)-free medium, beta-ATP again fell 90%, but Ca2+i, after the first initial peak, fell below control levels, and LDH release increased only 2.7-fold. During reoxygenation, Ca2+i, ATP, Na+i, and LDH returned near the control levels within 45 min. These results suggest that the rise in Ca2+i induced by anoxia is caused by an influx of Ca2+ from the extracellular fluid, and that LDH release and cell injury may be related to the resulting rise in Ca2+i.  相似文献   

18.
Cutaneous burn trauma causes cardiac contraction and relaxation defects, but the mechanism is unclear. Previous studies suggest that burn-related changes in myocyte handling of calcium may play an important role in postburn cardiac dysfunction. With the use of a high dissociation constant (K(d)) calcium indicator 1,2-bis(2-amino-5,6-difluorophenoxy)-ethane-N,N,N',N'-tetraacetic acid (TF-BAPTA) and (19)F NMR spectroscopy, this study examined the correlation between the changes in cytosolic free calcium concentration ([Ca(2+)](i)) and cardiac function after burn trauma. Sprague-Dawley rats were given scald burn (over 40% of the total body surface area) or sham burn. Twenty-four hours later, the hearts were excised and perfused by the Langendorff method with a modified phosphate-free Krebs-Henseleit bicarbonate buffer. Left ventricular (LV) developed pressure (LVDP), calculated from peak systolic LV pressure and LV end-diastolic pressure, was assessed through a catheter attached to an intraventricular balloon. At the same time, (31)P and (19)F NMR spectroscopy was performed before and after TF-BAPTA loading. LVDP measured in hearts from burned rats was <40% than that measured in hearts from sham burn rats (65 +/- 6 vs. 110 +/- 12 mmHg, P < 0.01); [Ca(2+)](i) was increased fourfold in hearts from the burned group compared with that measured in the sham burn group (0.807 +/- 0.192 vs. 3.891 +/- 0.929 microM). Loading TF-BAPTA in hearts transiently decreased LVDP by 15%. Phosphocreatine-to-P(i) ratio decreased, but ATP and intracellular pH remained unchanged by either TF-BAPTA loading or burn trauma. In conclusion, burn trauma impaired cardiac contractility, and this functional defect was paralleled by a significant rise in [Ca(2+)](i) in the heart.  相似文献   

19.
The role of cardiac ATP-sensitive K(+) (K(ATP)) channels in ischemia-induced electrophysiological alterations has not been thoroughly established. Using mice with homozygous knockout (KO) of Kir6.2 (a pore-forming subunit of cardiac K(ATP) channel) gene, we investigated the potential contribution of K(ATP) channels to electrophysiological alterations and extracellular K(+) accumulation during myocardial ischemia. Coronary-perfused mouse left ventricular muscles were stimulated at 5 Hz and subjected to no-flow ischemia. Transmembrane potential and extracellular K(+) concentration ([K(+)](o)) were measured by using conventional and K(+)-selective microelectrodes, respectively. In wild-type (WT) hearts, action potential duration (APD) at 90% repolarization (APD(90)) was significantly decreased by 70.1 +/- 5.2% after 10 min of ischemia (n = 6, P < 0.05). Such ischemia-induced shortening of APD(90) did not occur in Kir6.2-deficient (Kir6.2 KO) hearts. Resting membrane potential in WT and Kir6.2 KO hearts similarly decreased by 16.8 +/- 5.6 (n = 7, P < 0.05) and 15.0 +/- 1.7 (n = 6, P < 0.05) mV, respectively. The [K(+)](o) in WT hearts increased within the first 5 min of ischemia by 6.9 +/- 2.5 mM (n = 6, P < 0.05) and then reached a plateau. However, the extracellular K(+) accumulation similarly occurred in Kir6.2 KO hearts and the degree of [K(+)](o) increase was comparable to that in WT hearts (by 7.0 +/- 1.7 mM, n = 6, P < 0.05). In Kir6.2 KO hearts, time-dependent slowing of conduction was more pronounced compared with WT hearts. In conclusion, the present study using Kir6.2 KO hearts provides evidence that the activation of K(ATP) channels contributes to the shortening of APD, whereas it is not the primary cause of extracellular K(+) accumulation during early myocardial ischemia.  相似文献   

20.
Zhu SS  Zhang ZM  Zhang YC  Xu PC  Dong HY  Fan JW  Zeng YM 《生理学报》2004,56(3):389-396
本文拟探讨缺血预处理(ischemic preconditioning,IP)合并低温及晶体停搏液对幼兔的离体心脏是否具有心肌保护作用.采用Langendorff离体心脏灌注模型,灌注液为Krebs-Henseleit液(K-H液).取3~4周龄幼兔心脏,在第一部分实验中分为Con、IP1、IP2、IP3组(n=6),分别给予0、1、2、3次IP,其后各组心脏均在20℃低温下停灌2 h,37℃常温下再灌注30 min.在第二部分实验中分为SConI、SCon2、SCon3、SIPl、SIP2、SIP3组(n=8),其中SIPl、SIP2、SIP3组给予2次IP后灌注St.Tho-mas Ⅱ晶体停搏液(CCS)使心脏停搏,然后分别使心脏在32℃、25℃、20℃下停灌30、90和120min,其后各组均在37℃再灌注30 min.SConl,SCon2,SCon3三组则不给予IP,继续灌注20min后灌注CCS使心脏停搏,然后分别在32℃、25℃、20℃下停灌30、90和120 min,其后各组均在37℃再灌注30 min.以Maclab/4 s生理实验系统记录平衡末、缺血前、再灌注后1、3、5、10、20、30 min时心率(HR)、左心室发展压(LVDP)以及左心室内压上升及下降最大速率(±dp/dtmax),测定再灌注末心肌组织中ATP和丙二醛(MDA)的含量,以及超氧化物歧化酶(SOD)的活性.在20℃低温停灌且停灌期间不给予CCS时,再灌注末IP2组LVDP×HR、+dp/dtmax和-dp/dtmax的恢复率分别为96%±21%、101%±19%和84%±15%,显著高于Con组和IP3组(P<0.01,P<0.05);心肌组织的ATP含量亦高于Con组(P<0.01).在不同低温停灌且停灌期间给予CCS时,再灌注末SIP1、SIP2组的LVDP×HR、+dp/dtmax分别恢复到87%±14%、99%±26%(P<0.05,vs SConl group)和87%±16%、102%±20%(P<0.05,vs SCon2 group);心肌组织的ATP含量均分别显著高于SCon1组和SCon2组(P<0.05),心肌组织MDA含量亦分别低于SCon1组和SCon2组(P<0.05).上述结果提示,IP对在20℃低温停灌的兔未成熟心脏具有一定的心肌保护作用,2次IP的保护效应优于1次或3次IP.在停灌期间应用CCS,IP的心肌保护作用随停灌期间低温程度的升高而减弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号