首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The livers of iron-loaded rats were fractionated and a cytosolic fraction, a lysosomal fraction, a siderosomal fraction and haemosiderin were obtained. All iron-containing compounds from these fractions were isolated and their morphology, Fe/P ratios, iron core diameter and peptide content were compared. The cytosolic fraction contained ferritin (CF) and a slower sedimenting, light ferritin (CLF). The lysosomal fraction also contained ferritin (LF) and a slower sedimenting light ferritin (LLF). The siderosomal fraction contained ferritin (SF), a faster sedimenting non-ferritin iron compound (SIC) and haemosiderin (HS). SIC and HS did not resemble ferritin as much as the other products did, but were found to be water-insoluble aggregates. The Fe/P ratios of CF and CLF were lower than the Fe/P ratios of LF and LLF and these in turn had lower Fe/P ratios than SF, SIC and HS. The iron core diameter of the cytosolic ferritin was increased after lysosomal uptake. The iron core diameters of the siderosomal products were smaller. CLF, CF, LF, LLF and SF contained one kind of subunit of approximately 20.5 kDa. SIC and HS contained other peptides in addition to the 20.5-kDa subunit. The results indicate that storage of ferritin molecules is not limited to the cytosolic compartment, but is also the case in the lysosomes. Extensive degradation of the ferritin molecule seems to be confined to the siderosomes.  相似文献   

2.
In 3,5,5-trimethylhexanoylferrocene-induced iron overload of rats, three different types of iron-loaded macrophages and derivatives thereof were found in the lungs. On the basis of their localization and of their pattern of iron load it was possible to distinguish: (1) Resident macrophages, showing an alveolar localization and a moderate iron content represented by lysosomal ferritin and haemosiderin. (2) Liver-derived macrophages and giant cells, as well as fragments of them. They showed an exclusive localization in capillaries and alveolar septa, and high concentrations of free ferritin molecules in addition to polymorphous ferritin- and haemosiderin-containing siderosomes. (3) Monocyte-derived intravascular pulmonary macrophages. Initially, they contained iron only as lysosomal aggregates of ferritin and haemosiderin, as a result of phagocytosis of liver-derived macrophageal cell fragments. Later in iron overload, they also showed free ferritin molecules in the cytosol and fused intrapulmonarily to giant cells. The resident as well as the liver-derived siderotic pulmonary macrophages provide a way for iron excretion through the airways.  相似文献   

3.
Summary Cytosolic and lysosomal ferritin and haemosiderin were isolated from rat livers which had been iron-loaded by four intraperitoneal injections of iron-dextran. The cytosolic and lysosomal ferritins, prepared in a phosphate-free medium, were subjected to gel-filtration chromatography on Sepharose 613, yielding four fractions: a cytosolic monomeric (CMF) and void-volume ferritin fraction (CVVF), and a lysosomal monomeric (LMF) and void-volume ferritin fraction (LVVF). Of each fraction the following aspects were examined: (a) immunoreactivity against specific antiserum; (b) the Fe/P mass ratio and the effect of dialysis on this ratio using electron probe micro-analysis (EPMA); (c) morphology and Fespecific imaging using electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS). For haemosiderin one aspect, the Fe/P ratio, was determined before and after extensive purification. The following results were obtained (a) All ferritin fractions reacted with anti- (rat liver ferritin). (b) The Fe/P ratios as determined in CMF in an haemosiderin were not affected by dialysis or extensive purification, respectively. The Fe/P ratio in CWF was affected by dialysis. In the lysosomal fractions, only a trace of phosphorus (LVVF) or no phosphorus (LMF) was detected. (c) Morphologically, CMF and CVVF were found to be rather homogeneous; the iron core diameters of both fractions were in the known size range. LMF and LVVF were of rather heterogeneous composition; the core diameters of these fractions were different. In conclusion: the phosphorus in ferritin and haemosiderin is firmly bound; Haemosiderin, when derived from ferritin, has to take up phosphorus in the lysosomes.  相似文献   

4.
The extended X-ray absorption fine structure (EXAFS) associated with the iron K-edge has been measured and interpreted for ferritin and haemosiderin extracted from horse spleen, and haemosiderin extracted from the livers of humans with treated primary haemochromatosis, and from the spleens of humans with treated secondary haemochromatosis. For ferritin, the data are consistent with, on average, each iron atom being in an environment comprised of approx. six oxygen atoms at 1.93 +/- 0.02 A, approx. 1.5 iron atoms at 2.95 +/- 0.02 A and approx. 1.1 iron atoms at 3.39 +/- 0.02 A, with a further shell of oxygens at approx. 3.6 A. Iron in horse spleen haemosiderin is in an essentially identical local environment to that in horse spleen ferritin. In contrast, the EXAFS data for primary haemochromatosis haemosiderin indicate that the iron-oxide core is amorphous; only a single shell of approx. six oxygen atoms at approx. 1.94 +/- 0.02 A being apparent. Secondary haemochromatosis haemosiderin shows an ordered structure with approx. 1.4 iron atoms at both 2.97 +/- 0.02 and 3.34 +/- 0.02 A. This arrangement of iron atoms is similar to that in horse spleen haemosiderin, but the first oxygen shell is split with approx. 2.9 atoms at 1.90 +/- 0.02 A and approx. 2.7 at 2.03 +/- 0.02 A, indicative of substantial structural differences between secondary haemochromatosis haemosiderin and horse spleen haemosiderin.  相似文献   

5.
Hepatic iron uptake and metabolism were studied by subcellular fractionation of rat liver homogenates after injection of rats with a purified preparation of either native or denatured rat transferrin labelled with 125I and 59Fe. (1) With native transferrin, hepatic 125I content was maximal 5 min after injection and then fell. Hepatic 59Fe content reached maximum by 16 h after injection and remained constant for 14 days. Neither label appeared in the mitochondrial or lysosomal fractions. 59Fe appeared first in the supernatant and, with time, was detectable as ferritin in fractions sedimented with increasingly lower g forces. (2) With denatured transferrin, hepatic content of both 125I and 59Fe reached maximum by 30 min. Both appeared initially in the lysosomal fraction. With time, they passed into the supernatant and 59Fe became incorporated into ferritin. The study suggests that hepatic iron uptake from native transferrin does not involve endocytosis. However, endocytosis of denatured transferrin does occur. After the uptake process, iron is gradually incorporated into ferritin molecules, which subsequently polymerize; there is no incorporation into other structures over 14 days.  相似文献   

6.
This study aimed to elucidate the way in which larvae of the lamprey Geotria australis counteract the potential problems of the very high concentrations of non-haem iron they contain and thereby avoid the deleterious effects associated with iron overload in other vertebrates. Particular attention has been paid to ascertaining whether increasing concentrations of iron are accompanied by (i) change to a less readily available form of iron and (ii) an increase in the activity of those detoxifying enzymes responsible for minimizing the production of harmful hydroxyl radicals via the Haber-Weiss reaction. The mean concentrations of haemosiderin and ferritin in larval G. australis were each far higher in the nephric fold than in either the liver or intestine, but all these concentrations were much greater than those in rat liver. Since haemosiderin releases iron far more slowly than ferritin, the iron it contains is much less readily available to catalyse the Haber-Weiss reaction. It is thus relevant that (i) non-haem iron in the nephric fold occurred to a greater extent as large dense haemosiderin granules than as ferritin molecules and (ii) the proportion of iron in the form of haemosiderin rose with increasing concentration of total non-haem iron. A strong correlation was also recorded between the activity of superoxide dismutase in the nephric fold and the concentrations of total non-haem iron and its haemosiderin and ferritin components. This demonstrates that enzyme detoxification of O2.- rises with increasing amounts of iron. The exceptional iron concentrations in the nephric fold were not reflected by a greater measured activity of superoxide dismutase than that found in other tissues. However, the nephric fold was shown to contain an augmentation factor which is presumed to enhance the activity of this enzyme in vivo. The activity of catalase and glutathione peroxidase, which catalyse the breakdown of H2O2 to O2 and water, were each significantly correlated with the concentration of ferritin.  相似文献   

7.
Summary Haemosiderin has been isolated from siderosomes and ferritin from the cytosol of livers of rats iron-loaded by intraperitoneal injections of iron-dextran. Siderosomal haermosiderin, like ferritin, was shown by electron diffraction to contain iron mainly in the form of small particles of ferrihydrite (5Fe2O3 · 9H2O), with average particle diameter of 5.36±1.31 nm (SD), less than that of ferritin iron-cores (6.14±1.18 nm). Mössbauer spectra of both iron-storage complexes are also similar, except that the blocking temperature,T B, for haemosiderin (23 K) is lower than that of ferritin (35 K). These values are consistent with their differences in particle volumes assuming identical magnetic anisotropy constants. Measurements of P/Fe ratios by electron probe microanalysis showed the presence of phosphorus in rat liver haemosiderin, but much of it was lost on extensive dialysis. The presence of peptides reacting with anti-ferritin antisera and the similarities in the structures of their iron components are consistent with the view that rat liver haemosiderin arises by degradation of ferritin polypeptides, but its peptide pattern is different from that found in human-thalassaemia haemosiderin. The blocking temperature, 35 K, for rat liver ferritin is near to that reported, 40 K, for human-thalassaemia spleen ferritin. However, the haemosiderin isolated from this tissue, in contrast to that from rat liver, had aT B higher than that of ferritin. The iron availability of haemosiderins from rat liver and human-thalassaemic spleen to a hydroxypyridinone chelator also differed. That from rat liver was equal to or greater, and that from human spleen was markedly less, than the iron availability from either of the associated ferritins, which were equivalent. The differences in properties of the two types of haemosiderin may reflect their origins from primary or secondary iron overload and differences in the duration of the overload.  相似文献   

8.
High levels of haemosiderin occur in iron overload syndromes such as idiopathic haemochromatosis or secondary iron overload in thalassaemic patients; haemosiderin is the predominant iron-storage compound in such cases. It consists of a large aggregate of FeOOH cores, many of which have an incomplete shell of protein, and is probably derived from ferritin by lysosomal proteolysis. In addition, some chemical degradation of the ferritin cores appears to occur on conversion to haemosiderin. Other biochemical components are phosphate and magnesium, which may be adsorbed to the core surface, and perhaps certain lipids. Haemosiderin may have a central role, either directly or indirectly, in iron cytotoxicity and therefore the chemistry and biochemistry of this material warrants further study.  相似文献   

9.
A minor electrophoretically fast component was found in ferritin from iron-loaded rat liver in addition to a major electrophoretically slow ferritin similar to that observed in control rats. The electrophoretically fast ferritin showed immunological identity with the slow component, but on electrophoresis in SDS it gave a peptide of 17.3 kDa, in contrast with the electrophoretically slow ferritin, which gave a major band corresponding to the L-subunit (20.7 kDa). Thus the electrophoretically fast ferritin resembles that reported by Massover [(1985) Biochim. Biophys. Acta 829, 377-386] in livers of mice with short-term parenteral iron overload. The electrophoretically fast ferritin had a lower iron content (2000 Fe atoms/molecule) than the electrophoretically slow ferritin (3000 Fe atoms/molecule). Removal and re-incorporation of iron was possible without effect on the electrophoretic mobility of either ferritin species. On subcellular fractionation the electrophoretically fast ferritin was enriched in pellet fractions and was the sole soluble ferritin isolated from iron-laden secondary lysosomes (siderosomes). The amount and relative proportion of the electrophoretically fast species increased with iron loading. Haemosiderin isolated from siderosomes was found to contain a peptide reactive to anti-ferritin serum and corresponding to the 17.3 kDa peptide of the electrophoretically fast ferritin species. Unlike the electrophoretically slow ferritin, the electrophoretically fast ferritin did not become significantly radioactive in a 1 h biosynthetic labelling experiment. We conclude that the minor ferritin is not, as has been suggested for mouse liver ferritin, 'a completely new species of smaller holoferritin that represents a shift in the ferritin phenotype' in response to siderosis, but a precursor of haemosiderin, in agreement with the proposal by Richter [(1984) Lab. Invest. 50, 26-35] concerning siderosomal ferritin.  相似文献   

10.
Macrophages have a great capacity to take up (eg. by endocytosis and phagocytosis) exogenous sources of iron which could potentially become cytotoxic, particularly following the intralysosomal formation of low-molecular weight, redox active iron, and under conditions of oxidative stress. Following autophago-cytosis of endogenous ferritin/apoferritin, these compounds may serve as chelators of such lysosomal iron and counteract the occurrence of iron-mediated intralysosomal oxidative reactions. Such redox-reactions have been shown to lead to destabilisation of lysosomal membranes and result in leakage of damaging lysosomal contents to the cytosol. In this study we have shown: (i) human monocyte-derived macrophages to accumulate ferritin in response to iron exposure; (ii) iron to destabilise macrophage secondary lysosomes when the cells are exposed to H2O2; and (iii) endocytosed apoferritin to act as a stabiliser of the acidic vacuolar compartment of iron-loaded macrophages. While the endogenous ferritin accumulation which was induced by iron exposure was not sufficient to protect cells from the damaging effects of H2O2, exogenously added apoferritin, as well as the potent iron chelator desferrioxamine, afforded significant protection. It is suggested that intralysosomal formation of haemosiderin, from partially degraded ferritin, is a protective strategy to suppress intralysosomal iron-catalysed redox reactions. However, under conditions of severe macrophage lysosomal iron-overload, induction of ferritin synthesis is not enough to completely prevent the enhanced cytotoxic effects of H2O2.  相似文献   

11.
Ferritin in liver, plasma and bile of the iron-loaded rat   总被引:2,自引:0,他引:2  
Rats were loaded with iron. With overload, up to a 10-fold increase of the iron and ferritin protein content of the livers was measured. The plasma ferritin concentration increased gradually with the ferritin concentration in the liver. The ferritin concentration in the bile increased also and was in the same range as in the plasma. The ratio plasma ferritin concentration to bile ferritin concentration in individual rats decreased in the case of considerable iron overload. After intravenous injection of liver ferritin, less than 2% of the ferritin concentration that disappeared from the blood was found to be in the bile. Isoelectric focussing revealed that the microheterogeneity of liver and bile ferritin were identical, but slightly different from plasma ferritin. These results indicate that ferritin was not solely leaking from the plasma to the bile. Together with ferritin, iron accumulated in the bile. The iron content of the bile ferritin was in the same range as in fully iron-loaded liver ferritin. It is likely that ferritin in the bile is excreted by the liver and consists of normal iron-loaded liver ferritin molecules. In all circumstances, the amount of iron in the bile was much higher than could be accounted for by transport by the bile ferritin. The ferritin protein to iron ratio in the bile was 0.1-1.2, which was in the same range as was measured in isolated lysosomal fractions of the liver. Those results agree with the supposition that ferritin and iron in the bile are excreted by the liver though lysosomal exocytosis.  相似文献   

12.
In the rat liver the deposition of iron was measured after hypertransfusion with rat erythrocytes. The liver iron fractions were studied during four weeks after the hypertransfusions. In the first week the haemosiderin iron fraction increased together with the ferritin iron fraction. Most iron was deposited as ferritin iron. In the last week of the experiments, while the ferritin iron fraction still increased, the haemosiderin iron fraction decreased. At the same time plasma iron was utilized when erythropoiesis, which had been suppressed by the hypertransfusion, recommenced. It is suggest that, under these experimental conditions, liver haemosiderin iron is used in haemoglobin synthesis.  相似文献   

13.
Electron spin resonance studies of splenic ferritin and haemosiderin   总被引:1,自引:0,他引:1  
Preparations of haemosiderin and ferritin isolated from iron-loaded human spleens were studied by electron spin resonance (ESR) spectroscopy at X-band (approx. 9.2 GHz). The spectra were mainly composed of two overlapping, broad features, one extremely anisotropic with its major component occurring at 0.1-0.2 T (feature A), the other nearly isotropic and occurring at around g = 2 (feature B). There is relatively more feature A and less feature B in ferritin than in haemosiderin. Both features originate from the iron oxyhydroxide crystallites of these iron proteins which, due to their small size, are superparamagnetic. Feature B is maximal in small cores or at high temperatures, where superparamagnetic fluctuations average out anisotropic magnetic interactions; feature A is greatest at low temperatures or in large cores, for which such fluctuations are blocked and an ESR spectrum characteristic of a magnetically ordered system is observed. It is concluded that there is no evidence in the ESR spectra for 'loose' protein-bound Fe3+ in ferritin or haemosiderin, and that haemosiderin cores are on average smaller than those of ferritin. The relationship of the ESR spectra between these two proteins supports the view that haemosiderin is derived from ferritin.  相似文献   

14.
Iron-deficient female Wistar rats were fed a diet which contained 0.5% 3,5,5-trimethylhexanoyl (TMH)-ferrocene over a 57-week period. The state of iron deficiency was characterized by means of the absence of stainable iron in the bone marrow. After the first days on the iron-enriched diet, ferritin-containing siderosomes were found, in numerous erythroblasts up to orthochromatic normoblasts and in reticulocytes, i.e. the dispensed iron was used for haemoglobin synthesis. After 1 week the first macrophages showed a positive Perls' Prussian blue reaction. In the cytoplasm they stored the iron in the form of free ferritin molecules and lysosomally as aggregated ferritin and/or haemosiderin. The iron loading of the macrophages increased in both of the storage qualities proportionally with duration of the feeding period and reached a maximum after 38 weeks. Final stages showed extremely iron-loaded macrophages with high concentrations of free ferritin molecules and large siderosomes, partially flowing together to still greater units. Iron deposits within endothelial cells of bone marrow sinusoids can be observed for the first time after 4 weeks. In these cells the iron is stored as ferritin in siderosomes of relatively small and uniform size; free ferritin molecules in the cytosol were of only slight concentration. The TMH-ferrocene model of iron overload shows in the bone marrow: (1) an unimpeded utilization of the iron component for erythropoiesis, (2) development of excessive iron overload of the bone marrow in macrophages and endothelial cells of sinusoids and (3) a pattern of distribution of iron as seen in secondary haemochromatosis.  相似文献   

15.
Iron release from both human and horse spleen haemosiderin to desferrioxamine was substantially less than that released from ferritin samples. This finding contradicts a previous report [Kontoghiorges, Chambers & Hoffbrand (1987) Biochem. J. 241, 87-92]. Differences in phosphate content of cores and in core size between haemosiderin and ferritin did not account for the different iron-release rates. Iron released to acetate was found to stimulate lipid peroxidation in liposomes, whereas that released to stronger chelators such as citrate and desferal did not. Absorption spectra and gel-filtration studies suggest that the acetate-solubilized iron was in the form of low-molecular-mass (less than 5 kDa) ferrihydrite fragments.  相似文献   

16.
Haemosiderin was isolated from thalassaemic human spleens by centrifugation through concentrated KI solutions. A method for solubilizing haemosiderin was developed which leaves the iron oxyhydroxide cores and constituent polypeptides intact, facilitating further purification and analysis. Purified haemosiderin contained no detectable haem, trace amounts of carbohydrate, and iron and phosphorus in a molar ration of 6:1; much of the phosphate may be present as core-adsorbed. Several lipids were present, but it is not certain whether these are contaminants or components of the haemosiderin granules. In all preparations examined, a characteristic group of six to seven peptides of apparent Mr 12 900-17 800 were found, with a major band at Mr 14 500 and, in addition, a minor component of Mr 42 000; these peptides co-chromatographed with the cores. Negatively stained electron micrographs suggest that these peptides form an incomplete shell about the cores, consistent with the view that haemosiderin is a proteolytic product of ferritin.  相似文献   

17.
Atrial natriuretic peptide (ANP)-preconditioned livers are protected from ischemia-reperfusion injury. ANP-treated organs show increased expression of heme oxygenase (HO)-1. Because HO-1 liberates bound iron, the aim of our study was to determine whether ANP affects iron regulatory protein (IRP) activity and, thus, the levels of ferritin. Rat livers were perfused with Krebs-Henseleit buffer [+/-ANP, 8-bromo-cGMP (8-Br-cGMP), and tin protoporphyrin, 20 min], stored in University of Wisconsin solution (4 degrees C, 24 h), and reperfused (120 min). IRP activity was assessed by gel-shift assays, and ferritin, IRP phosphorylation, and PKC localization were assessed by Western blot. Control livers displayed decreased IRP activity at the end of ischemia but no change in ferritin content during ischemia and reperfusion. ANP-pretreated livers showed reduced IRP activity, an effect mimicked by 8-Br-cGMP. Ferritin levels were increased in ANP-pretreated organs. Simultaneous perfusion of livers with ANP and tin protoporphyrin did not reduce ANP-induced action, arguing against a role for HO-1 in changes in IRP activity. ANP and 8-Br-cGMP decreased membrane localization of PKC-alpha and PKC-epsilon, but this modulation of PKC seems unrelated to inhibition of IRP binding. This work shows the cGMP-mediated attenuation of IRP binding activity by ANP, which results in increased hepatic ferritin levels. This change in IRPs is independent of ANP-induced HO-1 and reduced PKC activation.  相似文献   

18.
We demonstrated previously that loading iron into ferritin via its own ferroxidase activity resulted in damage to the ferritin while ferritin loaded by ceruloplasmin, a copper-containing ferroxidase, was not damaged and had similar characteristics to native ferritin (Welch et al. (2001) Free Radic Biol Med 31:999–1006). Interestingly, it has been suggested that the formation of hemosiderin, a proposed degradation product of ferritin, is increased in animals deficient in copper. In this study, groups of rats were fed normal diets, copper deficient diets, iron supplemented diets, or copper deficient-iron supplemented diets for 60 days. Rats fed copper-deficient diets had no detectable active serum ceruloplasmin, which indicates that they were functionally copper deficient. There was a significant increase in the amount of iron in isolated hemosiderin fractions from the livers of copper-deficient rats, even more than that found in rats fed only an iron-supplemented diet. Histological analysis showed that copper-deficient rats had iron deposits (which are indicative of hemosiderin) in their hepatocytes and Kupffer cells, whereas rats fed diets sufficient in copper only had iron deposits in their Kupffer cells. Histologic evidence of iron deposition was more pronounced in rats fed diets that were deficient in copper. Additionally, sucrose density-gradient sedimentation profiles of ferritin loaded with iron in vitro via its own ferroxidase activity was found to have similarities to that of the sedimentation profile of the hemosiderin fraction from rat livers. The implications of these data for the possible mechanism of hemosiderin formation are discussed.  相似文献   

19.
Horse spleen and human spleen ferritins increase the formation of hydroxyl radicals (OH) at both pH 4.5 and pH 7.4 in reaction mixtures containing ascorbic acid and H2O2. The generation of OH is inhibited by the chelator desferrioxamine. Human spleen haemosiderin also accelerates OH generation in identical reaction mixtures, but is far less effective (on a unit iron basis) than ferritin under all reaction conditions. It is proposed that conversion of ferritin into haemosiderin in iron overload is biologically advantageous in that it decreases the ability of iron to promote oxygen-radical reactions.  相似文献   

20.
Environmental heat stress is associated with an age-related increase in hepatic oxidative damage and an exaggerated state of oxidative stress. The purpose of this investigation was to evaluate the regulation of hepatic iron after heat stress. A secondary aim was to determine a potential role for iron in heat stress-induced liver injury. Hyperthermia-induced alterations in hepatic iron were evaluated in young (6 mo) and old (24 mo) Fischer 344 rats by exposing them to a two-heat stress protocol. Livers were harvested at several time points after the second heating and assayed for labile and nonheme iron. In the control condition, there was no difference in labile iron between age groups. Both labile iron and storage iron were not altered by hyperthermia in young rats, but both were increased immediately after heating in old rats. To evaluate a role for iron in liver injury, hepatic iron content was manipulated in young and old rats, and then both groups were exposed to heat stress. Iron administration to young rats significantly increased hepatic iron content and ferritin but did not affect markers of lipid peroxidation under control conditions or after heat stress. In old rats, iron chelation with deferoxamine prevented the increase in nonheme iron, labile iron, ferritin, and lipid peroxidation after heat stress. These results suggest that iron may play a role in hepatic injury after hyperthermia. Thus, dysregulation of iron may contribute to the gradual decline in cellular and physiological function that occurs with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号