首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
RNA derived from bovine steer pituitary was translated in wheat germ cell-free extracts containing [35S]methionine. Antisera generated against purified denatured alpha and beta subunits of lutropin were used to demonstrate the synthesis of both proteins in vitro. The immunoprecipitated products of the cell-free system were resolved on sodium dodecyl sulfate/polyacrylamide gels and it was observed that the molecular weight of the immunoprecipitated alpha subunit protein was approximately 14,000, while that of the beta protein was estimated to be 16,000. Since the molecular weights of authentic alpha and beta subunits are 10,600 and 14,000 respectively, the cell-free products presumably represented their pre-protein forms. The ratio of the immunoprecipitated subunit pre-proteins was dependent on the magnesium concentration in the translation mixtures; at 2.1 mM, translation of lutropin alpha and beta mRNAs was comparable. RNA isolated from cow pituitary tissue directed the synthesis of fivefold less of the alpha and beta immunoprecipitated proteins than did steer RNA. Since the blood levels of gonadal steroids are higher in the cow, the results supported the hypothesis that lutropin alpha and beta mRNA biosynthesis is repressed by these steroids. The data also suggest that synthesis of lutropin alpha and beta subunits is coordinately expressed in certain physiological situations.  相似文献   

2.
RNA prepared from rat anterior pituitaries or from prolactin-secreting pituitary tumors has been shown to direct the synthesis of a large form of prolactin in a cell-free system derived from wheat germ. Immunoprecipitation of cell-free reactions demonstrated the synthesis of a product which was recognized by a specific antiprolactin antisera. Analysis of the immunoprecipitate on sodium dodecyl sulfate containing polyacrylamide gels suggested that the cell-free product has a molecular weight of approximately 28,000 compared to 22,500 for prolactin. RNA prepared by completely different techniques from rat pituitary and a pituitary tumor resulted in identical large translation products. Translation of tumor RNA in a cell-free system from Krebs ascites cells also resulted in a similar large product. The identity of the cell-free product as prolactin was confirmed by comparing peptides derived from the cell-free product and prolactin. The results of these studies suggest that prolactin messenger RNA directs the cell-free synthesis of a product which contains the amino acid sequence of prolactin but which has an addition at one or both ends of the molecule.  相似文献   

3.
Guinea pig kidney poly(A+) RNA was translated in reticulocyte lysates and wheat germ extracts. Antibodies to the holoenzyme (Na/K-ATPase) immunoprecipitated only a 96,000-dalton product which was identified as the alpha subunit with a molecular weight that was indistinguishable from that of mature alpha subunit. To explore the possibility that the primary translational product is integrated as such into membranes, guinea pig kidney poly(A+) RNA was translated in reticulocyte lysates in the presence of dog pancreas microsomes; two immunoprecipitated products were detected, the 96,000-dalton alpha subunit and a 135,000-dalton new component that was integrated into the microsomal membrane since it was completely resistant to extraction with alkali. Addition of purified alpha subunit inhibited the binding of antibody to the 135,000-dalton product and extraction with urea-sodium dodecyl sulfate recovered the 96,000-dalton product, implying that the 135,000-dalton product was an alpha-chi dimer. Translation of size-fractionated poly(A+) RNA yielded evidence that the 135,000-dalton product is encoded in two separate mRNAs. The integration in vitro of the alpha subunit is, therefore, dependent on the co-translational integration into the membranes of a smaller peptide (35,000 to 40,000 daltons) which is presumably the beta subunit. Evidence was also obtained that this mechanism is present in vivo by isolation of mRNA alpha from free polysomes, as well as detection of the cytosolic form of the alpha subunit in pulse-chase experiments in MDCK cells.  相似文献   

4.
The glycoprotein hormones lutropin (LH) and chorionic gonadotropin (CG) share a common structure consisting of an identical alpha subunit noncovalently linked to a hormone-specific beta subunit. While LH is produced in the anterior pituitary, CG is synthesized in placenta. To compare the assembly, processing, and secretion of human LH and CG in the same cell type, we have expressed their subunits, individually and together, in mouse C-127 mammary tumor cells. Analysis of transfected clones revealed an unexpected difference in the secretion of individually expressed subunits. Whereas alpha and CG beta subunits were rapidly and quantitatively secreted, only 10% of newly synthesized LH beta subunit reached the medium. The remaining subunit was found in an intracellular, endoglycosidase H (endo H)-sensitive pool that had a turnover rate of approximately 8 h. Coexpression with alpha subunit resulted in "rescue" of LH beta subunit by formation of LH dimer, which was efficiently secreted. However, combination of LH beta with alpha was slow, with an overall efficiency of only 50% despite the presence of excess alpha. In contrast, CG beta was rapidly assembled with the alpha subunit after synthesis. The two beta subunits also differed in their influence on the N-linked oligosaccharide processing of combined alpha. The oligosaccharides of LH dimer were endo H resistant, while those of CG dimer remained partially endo H sensitive. Thus, despite a high degree of homology between LH beta and CG beta, the two subunits differ in their secretion as free subunits, their rate of assembly with alpha subunit, and in their effect on the N-linked oligosaccharide processing of combined alpha.  相似文献   

5.
Most antisera generated to isolated highly purified beta subunits of human glycoprotein hormones are not sufficiently sensitive to detect physiologic blood levels of the native hormone. In the dissociated state, beta subunits assume a conformation different from that in the native hormone. Since antisera to alpha subunits have essentially no cross-reactivity between species, highly purified hCG-beta was combined with bTSH-alpha. That hybrid served as immunogen to assess whether sensitive, specific hCG antisera would more likely result than using hCG-beta alone. Of five animals immunized, three developed sufficiently sensitive and specific antisera. The results of these studies strongly suggests that human glycoprotein beta subunits combined with non-human alpha subunit are more likely to yield specific, sensitive antisera than when either isolated beta subunit or the native human glycoprotein hormone, containing common alpha determinants, serves as immunogen.  相似文献   

6.
Previous studies have demonstrated an imbalance in placental levels of the human choriogonadotropin (hCG) alpha and beta subunits. Free alpha subunit was present in first trimester placentae, and the imbalance was accentuated as gestation approached parturition. Two sets of experiments were performed to assess the control on production levels of each subunit. Synthesis of the alpha and beta subunits was assessed by labeling the nascent chains of polysomes derived from first trimester placenta. The products of these reactions were immunoprecipitated with subunit-specific antisera and the labeled subunits were quantitated; the ratio of alpha to beta subunit synthesized was 1.7. To examine whether this imbalanced synthesis reflected differences in the amount of subunit mRNAs, or differing mRNA translational efficiencies, the ratio of the steady state levels of these mRNAs was also determined. Total first trimester placental RNA was hydrolyzed with alkali, 5'-end-labeled with 32P, and hybridized in DNA excess to cloned alpha and beta cDNAs. These experiments demonstrated the presence of twice as much hCG-alpha mRNA as hCG-beta mRNA. In term placenta, the amounts of excess alpha subunit are greater than at first trimester; the ratio of alpha to beta mRNAs in term RNA was about 12:1. Thus, the subunit mRNA levels are independently regulated and their imbalance accounts for differences in the quantities of alpha and beta subunits seen in placental tissue.  相似文献   

7.
E Y Lai  C Walsh  D Wardell  C Fulton 《Cell》1979,17(4):867-878
The programmed de novo synthesis of flagellar tubulin during the hour-long differentiation of Naegleria gruberi from amoebae to flagellates is our paradigm for the study of gene expression during cell differentiation. This paper reports the efficient translation of flagellar tubulin mRNA in the wheat germ cell-free system directed by total or polyadenylated RNA extracted from differentiating cells. The tubulin in the in vitro product has a subunit molecular weight of 55,000, separates into alpha and beta subunits under suitable conditions of polyacrylamide gel electrophoreis and co-polymerizes with calf brain tubulin. At least half of the tubulin synthesized in vitro is precipitated by antibodies specific to flagellar tubulin, and the immunoprecipitated tubulin subunits yield peptide maps similar to those of outer doublet tublin. Flagellar tubulin is the predominant protein synthesized in the cell-free system, and amounts to about 5% of the polypeptides whose synthesis is directed by total RNA from differentiating cells. In contrast, little or no flagellar tubulin is synthesized when the cell-free system is directed by RNA extracted from amoebae prior to differentiation. Translation assays show that at least 92% of the flagellar tubulin mRNA appears during differentiation. The time course of appearance of this mRNA was measured by quantitative immunoprecipitation of the cell-free products. Under conditions where cells from flagella 60 min after initiation of differentiation, translatable flagellar tubulin mRNA was first detected at 20 min, reached a maximum at about 60 min and then declined. An excellent correlation was observed between the amount of translatable flagellar tubulin mRNA and the previously measured rates of flagellar tubulin synthesis in vivo. These results indicate that synthesis of flagellar tubulin is a direct reflection of the abundance of its mRNA, and provide the molecular techniques for dissection of the factors that regulate the rapid appearance of this structural protein during differentiation.  相似文献   

8.
Tetranitromethane reaction with intact ovine lutropin and its isolated subunits was studied using spectrophotometric measurements, amino acid analysis, and isolation of tyrosyl peptides. Tyrosyl residues in the beta subunit (beta37, beta59) did not react with tetranitromethane in the intact hormone, but were nitrated in the isolated subunit. The sequence and extent of reaction of tetranitromethane with the tyrosyl residues in the alpha subunit was alpha21 = alpha92 = alpha93 (in intact hormone or isolated subunit) greater than alpha 41 (reacted in isolated subunit only) greater than alpha 30 (reacted in isolated subunit in 8 M urea only). Polymerization was observed as a side reaction in agreement with previous studies. The degree of polymerization appeared to be related to both primary sequence and tertiary structure, and for lutropin had the relation: alpha subunit (93% polymerized) greater than intact hormone greater than beta subunit (less than 40%). Polymerization observed with vasopressin was significantly greater than with oxytocin; for these peptides the tyrosine residues in the monomeric product were converted to 3-nitrotyrosine. Neither 3-nitrotyrosine nor tyrosine was detected in the polymerized by-products. In the tetranitromethane reaction with intact ovine lutropin, other reaction products charcterized by absorption spectra were found. Peptides isolated from these products lacked the characteristic 428 nm abosrption maxima of 3-nitrotyrosyl peptides and showed instead absorption in the 310 to 350 nm region. Similar products from tetranitromethane reactions with di- and tripeptides containing tyrosine have been observed previously (Boyd, N.D., and Smith, D.B. (1971) Can. J. Biochem, 49, 154-161), but they have not been studied in proteins. A possible relationship to the polymerization side reaction is suggested.  相似文献   

9.
Little is known about the specific domains of G protein beta and gamma subunits which interact with each other and with the alpha subunit. We used site-specific anti-peptide antibodies directed against beta and gamma subunits to investigate domains on beta and gamma subunits involved in alpha subunit interaction. Antibodies included four against the transducin (Gt) beta subunit (residues 1-10 = MS, 127-136 = KT, 256-265 = RA, and 330-340 = SW) and two against the gamma subunit (residues 2-12 = PV and 58-68 = PE). All antisera, when affinity-purified on peptide columns, yielded antibodies capable of recognizing the denatured cognate subunit on immunoblots, but only RA, SW, PV, and PE recognized native beta gamma t subunits. Affinity purification of MS and KT antisera on columns of immobilized native Gt yielded antibodies capable of recognizing native beta gamma t subunits. The functional effects of each antibody preparation on alpha t-beta gamma t interaction were assessed by assaying the ability of the preparations to immunoprecipitate beta gamma t subunits in the presence of excess alpha subunits and by testing the inhibition of beta gamma t-dependent ADP-ribosylation of alpha t-subunits catalyzed by pertussis toxin. On the basis of the results, we conclude that the domains on beta gamma t which may be directly involved in alpha t-beta gamma t interaction include the extreme amino terminus, residues 127-136 and 256-265 of beta t, and the carboxyl terminus of gamma t.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Monomeric cAMP-binding fragments of molecular mass 16,000 and 14,000 daltons were obtained by Sephadex G-75 chromatography of partially trypsin-hydrolyzed regulatory subunits of cAMP-dependent protein kinase isozymes I and II, respectively. The Stokes radii were 19.1 and 16.4 A, the frictional ratios were 1.15 and 1.03, and the sedimentation coefficients were 1.94 and 1.91 S for the 16,000- and 14,000-dalton fragments, respectively. The 16,000-dalton fragment retained specific cyclic nucleotide binding characteristics of the native protein. The specificity of cyclic nucleotide binding to the 14,000-dalton fragment (cAMP greater than cIMP = 8-bromo-cAMP = 8-oxo-cAMP greater than cUMP = cGMP) differed from that of the native subunit (cAMP = 8-oxo-cAMP greater than 8-bromo-cAMP greater than cIMP greater than cUMP = cGMP). The 14,000-dalton fragment bound nearly 1 mol of cAMP/mol of fragment. The binding exchange rate of cAMP was much faster for the 14,000-dalton fragment than for either of the native regulatory subunits or for the 16,000 dalton fragment. Although hemin inhibited cAMP binding to the native regulatory subunits and to the 16,000 dalton fragment, the molecule did not affect cAMP binding to the 14,000-dalton fragment. Both of the native regulatory subunits and the isolated 16,000- and 14,000-dalton fragments could be covalently labeled with the photoaffinity analog, 8-N3-[32P]cAMP. The 14,000-dalton fragment could not be phosphorylated and neither fragment could recombine with the catalytic subunit to inhibit its activity. The results indicate that the functional entities of the regulatory subunit other than cAMP binding are destroyed by trypsin. The properties of the 16,000-dalton fragment suggest that the intact cAMP-binding site is contained in a small trypsin-resistant "core" of the native regulatory subunit. The properties of the 14,000-dalton fragment imply that part of the binding site of the native regulatory subunit was slighlty modified or lost during preparation of this fragment.  相似文献   

11.
The separation of alpha and beta subunits from human pituitary lutropin is described, and the complete amino acid sequence of the beta subunit is proposed. It consists of 115 amino acids with serine and glycine at the amino and carboxyl termini, respectively. The single carbohydrate moiety is linked to asparagine in position 30 and the single tryptophan of the lutropin molecule is located at position 8. The two methionine residues in lutropin-beta are in positions 41 and 42. In addition to COOH-terminal heterogeneity, evidence for internal peptide cleavages was observed.  相似文献   

12.
Somatostatin (SRIF) induces its biological effects by interacting with membrane-bound receptors that are linked to cellular effector systems via G proteins. We have studied SRIF receptor-G protein associations by solubilizing the SRIF receptor from rat brain and AtT-20 cells and immunoprecipitating the receptor-G protein complex with peptide-directed antisera against the different subunits of the G protein heterotrimer. Antiserum 8730, which selectively interacts with all Gi alpha subtypes, maximally and specifically immunoprecipitated SRIF receptor-Gi alpha complexes. To identify the subtypes of Gi alpha that are coupled to SRIF receptors, the subtype-selective antisera 3646, 1521, and 1518, which specifically interact with Gi alpha 1, Gi alpha 2, and Gi alpha 3, respectively, were used to immunoprecipitate SRIF receptor-Gi alpha complexes. Antiserum 3646 immunoprecipitated SRIF receptor-Gi alpha 1 complexes from both brain and AtT-20 cells. Antiserum 1521 immunoprecipitated Gi alpha 2 from both brain and AtT-20 cells but did not immunoprecipitate SRIF receptors from these tissues. Antiserum 1518 immunoprecipitated AtT-20 cell SRIF receptors but uncoupled brain SRIF receptor-G protein complexes. This result was confirmed with another peptide-selective antiserum, SQ, directed against Gi alpha 3. The findings from these studies indicate that Gi alpha 1 and Gi alpha 3 are coupled to SRIF receptors, whereas Gi alpha 2 is not. Even though brain and AtT-20 cell SRIF receptors were both coupled to Gi alpha, the receptors from these tissues differed in their coupling to Go alpha. Antiserum 2353, which is directed against Go alpha, immunoprecipitated SRIF receptors from AtT-20 cells, but did not immunoprecipitate or uncouple SRIF receptor-G protein complexes from rat brain. To determine the beta subunits associated with the SRIF receptor, antisera directed against G beta 36 and G beta 35 were used to immunoprecipitate SRIF receptor-G protein complexes from brain. Peptide-directed antiserum against G beta 36 selectively immunoprecipitated solubilized brain SRIF receptors. However, antiserum directed against the G beta 35 subunit did not immunoprecipitate brain SRIF receptors, suggesting that brain SRIF receptors may preferentially associate with G beta 36. In addition to coimmunoprecipitating with Gi alpha and G beta, brain SRIF receptors coimmunoprecipitated the G protein gamma subunits, G gamma 2 and G gamma 3. These results provide the first evidence that SRIF receptors are coupled to different subunits of G proteins and suggest that selectivity exists in the association of different G protein subunits with the SRIF receptor.  相似文献   

13.
The purification of rabbit lutropin is described. A product with a potency of 1.53 X NIH-LH-Sl was obtained as assayed by the ovarian ascorbic acid depletion assay. In a homologous radioimmunoassay, which is described, rabbit lutropin has a potency 4.83 X NIH-LH-Sl. In a radioligand assay, utilizing labeled ovine lutropin as the trace, the relative potency was 0.47 X NIH-LH-Sl measured by 50% inhibition comparison since rabbit lutropin response in this system did not parallel ovine lutropin. A counter-current distribution procedure for separation of rabbit lutropin subunits is described. Amino acid composition of the isolated subunits and intact rabbit lutropin was determined. The carbohydrate composition of the latter is presented; only amino sugar determinations are available for the subunits. The NH2-terminal amino acids are phenylalanine (alpha subunit) and alanine (beta subunit). Preliminary data on COOH-terminal amino acids are provided.  相似文献   

14.
Further characterization of the free alpha subunit immunoreactive material, not combined with beta subunit in extracts of bovine pituitaries, shows that the only significant modifications, relative to alpha subunits themselves, are the oligosaccharide O-linked to threonine-43, and heterogeneity of the carboxyl terminus. Removal of the O-linked carbohydrate with a mixture of glycosidases from Streptococcus pneumoniae results in an alpha-like material capable of combining with lutropin beta subunit and, thus, the presence of the oligosaccharide is responsible for the inability of the free alpha-like material to combine with beta subunits. Amino acid compositions of tryptic peptides spanning the entire sequence indicate no change in amino acid sequence of the free alpha-like material as compared to lutropin alpha. Further, based on the similar behavior reverse phase high performance liquid chromatography of the tryptic peptides as compared to their lutropin alpha counterparts, it is concluded that no additional post-translational modifications are present. The N-linked oligosaccharides of the free alpha-like material most likely contain terminal O-sulfated N-acetylhexosamines (as do the asparagine-linked carbohydrates from the pituitary hormones) as indicated by the presence of 3 mol of sulfate/mol of free alpha-like material and the resistance of these oligosaccharides to enzymatic deglycosylation. The O-linked oligosaccharide does not contain sulfated residues.  相似文献   

15.
The effects of various modifications on the beta subunit of lutropin have been studied using the binding characteristics of the reconstituted hormone in the rat testicular radioligand assay. Conditions for iodinating lutropin and lutropin derivatives were determined which resulted in 15 per cent specific binding when tested immediately and retention of 6 to 7 per cent specific binding even after storage for 6 months. Acetimidinyl, acetyl, and carbamyl derivatives of the beta subunit were prepared and combined with unmodified alpha subunit to form reconstituted lutropin. Modification of the beta subunit was shown to have no effect on the time course of binding to testicular receptors or, with one exception, on the extent of receptor saturation. Very high concentrations of lutropin reconstituted with acetylated beta subunit showed an anomalous binding behavior. Scatchard plots of the binding data support the view that the native hormone has a unique receptor affinity which is irreversibly disrupted by separation of subunits and that derivatization of the beta subunit does not alter this parameter further. These data also suggest that there are no significant differences in the amino groups modified on the beta subunit. Competition and preincubation tests for receptor sites that reacted only with modified lutropin and not with the native hormone were negative.  相似文献   

16.
The subunits of ovine lutropin prepared by acid dissociation and salt precipitation were characterized by end group analysis, tryptic peptide mapping, SDS gel electrophoresis and biological activity. No evidence of internal peptide cleavage was found in the alpha subunit. The subunits possessed low activity. The alpha and beta subunits recombined effectively to generate a complex that had full receptor binding activity and in vitro biological activity. The recombinants of subunits prepared by countercurrent distribution showed only 50% activity in both assays. The salt precipitation method alpha subunit could be completely reduced and reoxidized in the absence of denaturants. The reoxidized alpha subunit combines with the native beta subunit generating full activity. However, this recombined hormone tends to lose activity with time, suggesting that the reoxidation may not fully restore the native structur of the reduced alpha subunit. The native lutropin alpha subunit effectively combined with follitropin beta subunit generating complete follitropin activity.  相似文献   

17.
The sodium channel purified from rat brain is composed of three subunits: alpha (Mr 260,000), beta 1 (Mr 36,000), and beta 2 (Mr 33,000). alpha and beta 2 subunits are linked through disulfide bonds. Procedures are described for preparative isolation of the beta 1 and beta 2 subunits under native conditions. Pure beta 2 subunits obtained by this procedure were used to prepare a specific anti-beta 2 subunit antiserum. Antibodies purified from this serum by antigen affinity chromatography recognize only disulfide-linked alpha beta 2 complexes and beta 2 subunits in immunoblots, and immunoprecipitate 32P-labeled alpha subunits of purified sodium channels having intact disulfide bonds, but not those of sodium channels from which beta 2 subunits have been detached by reduction of disulfide bonds. These antibodies also immunoprecipitate 89% of the high affinity saxitoxin-binding sites from rat brain membranes, indicating that nearly all sodium channels in rat brain have disulfide-linked alpha beta 2 subunits. Approximately 22% of beta 2 subunits in adult rat brain are not disulfide-linked to alpha subunits. Anti-beta 2 subunit antibodies are specific for sodium channels in the central nervous system and will not cross-react with sodium channels in skeletal muscle or sciatic nerve. The brains of a broad range of vertebrate species, including electric eel, are shown to express sodium channels with disulfide-linked alpha beta 2 subunits.  相似文献   

18.
J N Engel  J Pollack  F Malik    D Ganem 《Journal of bacteriology》1990,172(10):5732-5741
Taking advantage of sequence conservation of portions of the alpha, beta, and beta' subunits of RNA polymerase of bacteria and plant chloroplasts, we have designed degenerate oligonucleotides corresponding to these domains and used these synthetic DNA sequences as primers in a polymerase chain reaction to amplify DNA sequences from the chlamydial genome. The polymerase chain reaction products were used as a probe to recover the genomic fragments encoding the beta subunit and the 5' portion of the beta' subunit from a library of cloned murine Chlamydia trachomatis DNA. Similar attempts to recover the alpha subunit were unsuccessful. Sequence analysis demonstrated that the beta subunit of RNA polymerase was located between genes encoding the L7/L12 ribosomal protein and the beta' subunit of RNA polymerase; this organization is reminiscent of the rpoBC operon of Escherichia coli. The C. trachomatis beta subunit overproduced in E. coli was used as an antigen in rabbits to make a polyclonal antibody to this subunit. Although this polyclonal antibody specifically immunoprecipitated the beta subunit from Chlamydia-infected cells, it did not immunoprecipitate core or holoenzyme. Immunoblots with this antibody demonstrated that the beta subunit appeared early in infection.  相似文献   

19.
Mouse mammary tumor virus (MuMTV) was purified from two cell lines (GR and Mm5MT/c1), and the genomic RNA was isolated and translated in vitro in cell-free systems derived from mouse L cells and rabbit reticulocytes. The major translation product in both systems was a protein with the molecular weight 77,000. Several other products were also detected, among them a 110,000-dalton and in minor amounts a 160,000-dalton protein. All three polypeptides were specifically immunoprecipitated by antiserum raised against the major core protein of MuMTV (p27), but they were not precipitated by antiserum against the virion glycoprotein gp52. Analysis of the in vitro products by tryptic peptide mapping established their relationship to the virion non-glycosylated structural proteins. The 77,000-dalton polypeptide was found to be similar, if not identical, to an analogous precursor isolated from MuMTV-producing cells. Peptide mapping of the 110,000-dalton protein shows that it contains all of the methionine-labeled peptides found in the 77,000-dalton protein plus some additional peptides. We conclude that the products synthesized in vitro from the genomic MuMTV RNA are related to the non-glycosylated virion structural proteins. Polyadenylic acid-containing RNA from MuMTV-producing cells also directed the synthesis of the 77,000-dalton polypeptide in the L-cell system. If this RNA preparation was first fractionated by sucrose gradient centrifugation the 77,000-dalton protein appeared to be synthesized from mRNA with a sedimentation coefficient between 25 and 35S.  相似文献   

20.
Ben-Menahem D  Hyde R  Pixley M  Berger P  Boime I 《Biochemistry》1999,38(46):15070-15077
The human glycoprotein hormones chorionic gonadotropin (CG), thyrotropin (TSH), lutropin (LH), and follitropin (FSH) are heterodimers, composed of a common alpha subunit assembled to a hormone-specific beta subunit. The subunits combine noncovalently early in the secretory pathway and exist as heterodimers, but not as multimers. Little information is available regarding the steps associated with the assembly reaction. It is unclear if the initial alpha beta engagement results either in the formation of only mature heterodimer or if the nascent complex is reversible and can undergo an exchange of subunits or combine transiently with an additional subunit. This is relevant for the case of LH and FSH, because both are synthesized in the same cell (i.e., pituitary gonadotrophs) and several of the alpha subunit sequences required for association with either the LH beta or FSH beta subunits are different. Such features could favor the generation of short-lived, multi-subunit forms prior to completion of assembly. Previously, we showed that the CG beta or FSH beta subunit genes can be genetically fused to the alpha gene to produce biologically active single chains, CG beta alpha and F beta alpha, respectively. Studies using monoclonal antibodies sensitive to the conformation of the hCG subunits suggested that in contrast to the highly compact heterodimer, the interactions between the beta and alpha domains in the single chain are in a more relaxed configuration. That the tethered domains do not interact tightly predicts that they could combine with an additional subunit to form triple domain complexes. We tested this point by cotransfecting CHO cells with the genes encoding F beta alpha and the CG beta subunit or the CG beta alpha and FSH beta monomer. The CG beta subunit combined noncovalently with F beta alpha to form a F beta alpha/CG beta complex. Ternary complex formation was not restricted to a specific set of single chain/monomeric subunit, because a CG beta alpha/FSH beta complex was also detected implying that triple domain intermediates could be transiently generated along the secretory pathway. Monoclonal antibodies specific for the CG heterodimer recognized the F beta alpha/CG beta complex, which suggests that the epitopes unique for dimeric CG were established. In addition, media containing F beta alpha/CG beta displayed high-affinity binding to both CG and FSH receptors. The presence of CG activity is presumptive for the existence of a functional F beta alpha/CG beta complex, because neither F beta alpha nor the uncombined CG beta subunit binds to CG receptor. These data show that the alpha subunit of the tether, although covalently linked to the FSH beta domain, can functionally interact with a different beta subunit implying that the contacts in the nascent alpha beta dimer are reversible. The formation of a functional single chain/subunit complex was not restricted to the FSH single chain/CG beta subunit since CG single chain interacts with the monomeric FSH beta subunit and exhibits FSH activity. The presence of the triple domain configuration does not abolish bioactivity, suggesting that although the gonadotropins are heterodimers, the cognate receptor is capable of recognizing a larger ligand composed of three subunit domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号