首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Method of mapping DNA replication origins.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have developed a method which allows determination of the direction in which replication forks move through segments of chromosomal DNA for which cloned probes are available. The method is based on the facts that DNA restriction fragments containing replication forks migrate more slowly through agarose gels than do non-fork-containing fragments and that the extent of retardation of the fork-containing fragments is a function of the extent of replication. The procedure allows the identification of DNA replication origins as sites from which replication forks diverge. In this paper we demonstrate the feasibility of this procedure, with simian virus 40 DNA as a model, and we discuss its applicability to other systems.  相似文献   

2.
The localization of replication origins on ARS plasmids in S. cerevisiae   总被引:157,自引:0,他引:157  
B J Brewer  W L Fangman 《Cell》1987,51(3):463-471
Replication intermediates from the yeast 2 microns plasmid and a recombinant plasmid containing the yeast autonomous replication sequence ARS1 have been analyzed by two-dimensional agarose gel electrophoresis. Plasmid replication proceeds through theta-shaped (Cairns) intermediates, terminating in multiply interlocked catenanes that are resolved during S phase to monomer plasmids. Restriction fragments derived from the Cairns forms contain replication forks and bubbles that behave differently from one another when subjected to high voltage and agarose concentrations. The two-dimensional gel patterns observed for different restriction fragments from these two plasmids indicate that in each plasmid there is a single, specific origin of replication that maps, within the limits of our resolution, to the ARS element. Our results strongly support the long-standing assumption that in Saccharomyces cerevisiae an ARS is an origin of replication.  相似文献   

3.
In the presence of emetine, an inhibitor of protein synthesis, nascent DNA on forward arms of replication forks in hamster cell lines containing either single or amplified copies of the DHFR gene region was enriched 5- to 7-fold over nascent DNA on retrograde arms. This forward arm bias was observed on both sides of the specific origin of bidirectional DNA replication located 17 kb downstream of the hamster DHFR gene (OBR-1), consistent with at least 85% of replication forks within this region emanating from OBR-1. However, the replication fork asymmetry induced by emetine does not result from conservative nucleosome segregation, as previously believed, but from preferentially inhibiting Okazaki fragment synthesis on retrograde arms of forks to produce 'imbalanced DNA synthesis'. Three lines of evidence support this conclusion. First, the bias existed in long nascent DNA strands prior to nuclease digestion of non-nucleosomal DNA. Second, the fraction of RNA-primed Okazaki fragments was rapidly diminished. Third, electron microscopic analysis of SV40 DNA replicating in the presence of emetine revealed forks with single-stranded DNA on one arm, and nucleosomes randomly distributed to both arms. Thus, as with cycloheximide, nucleosome segregation in the presence of emetine was distributive.  相似文献   

4.
Blockage of replication forks can have deleterious consequences for the cell as it may prompt premature termination of DNA replication. Moreover, the blocked replication intermediate (RI) could be particularly sensitive to recombination processes. We analysed the different populations of RIs generated in vivo in the bacterial plasmid pPI21 after pausing of replication forks at the inversely oriented ColE1 origin. To achieve this goal, a new method was developed based on two-dimensional agarose gel electrophoresis. This method allows the isolation of specific RIs, even when they were rather scarce, from the total DNA. Here we describe the occurrence of RI restriction fragments containing reversed forks. These Holliday-like structures have been postulated but never observed before.  相似文献   

5.
In synchronized root cells of Pisum sativum (cv. Alaska) the joining of nascent replicons is delayed until cells reach the S-G(2) boundary or early G(2) phase. To determine if the delayed ligation of nascent chains occurs at specific termination sites, we mapped the location of arrested forks in the ribosomal DNA (rDNA) repeats from cells in late S and G(2) phases. Two-dimensional (neutral-alkaline) agarose electrophoresis and Southern blot hybridization with specific rDNA sequences show that only cells located at the S-G(2) boundary and early G(2) phase produce alkali-released rDNA fragments of discrete size. The released fragments are from a particular restriction fragment, demonstrating that the replication forks stop non-randomly within the rDNA repeats. Indirect end-labeling with probes homologous to one or the other end of the fork-containing restriction fragment shows that there are two termination regions, T(1) and T(2), where forks stop. T(1) is located in the non-transcribed spacer and T(2) is at the junction between the non-transcribed spacer and the 18S gene. The two termini are separated by 1.3 kb. Replication forks stop at identical sites in both the 8.6- and 9.0-kb rDNA repeat size classes indicating that these sites are sequence determined.  相似文献   

6.
7.
The movement of replication forks during polyoma DNA synthesis in isolated nuclei was analyzed by digesting newly synthesized DNA with the restriction endonuclease HpaII which cleaves polyoma DNA into eight unique fragments. The terminus of in vitro DNA synthesis was identified by cleaving newly completed molecules with HpaII. The distribution of label in the restriction fragments showed that the in vitro DNA synthesis was bidirectional and had the normal terminus of replication. Analysis of replicative intermediates pulse-labeled in vitro further suggested that DNA synthesis in isolated nuclei is an ordered process similar to replication in intact cells. Replication forks moved with a constant rate from the origin towards the terminus of replication. The nonlinear course of the DNA synthesis reaction in the isolated nuclei seems to result from the random inactivation of replication forks rather than a decrease in the rate of fork movement. During the in vitro synthesis a replication fork could maximally synthesize a DNA chain about 1,000 nucleotides long. The results suggest that some replication forks might be initiated in vitro at the origin of replication.  相似文献   

8.
In a subclone of ID13 mouse fibroblasts latently infected with bovine papillomavirus type 1 (BPV-1) DNA, the viral genome occurred as a mixture of extrachromosomal circular monomers and oligomers. Multiple copies were also associated with the host cell genome, predominantly at a single site in a head-to-tail tandem array. We examined the replicative intermediates of extrachromosomal forms of BPV-1 DNA by using two-dimensional gel electrophoresis. The results obtained indicate that initiation of DNA replication occurred near the center of the EcoRI-BamHI 5.6-kilobase fragment. In some molecules, however, this fragment was replicated from one end to the other by means of a single fork initiated elsewhere. Termination also occurred within this fragment. The EcoRI-BamHI 2.3-kilobase fragment replicated as a DNA molecule containing a termination site for DNA replication and also by means of a single fork traversing the fragment from one end to the other. Thus, replication forks proceeded through these fragments in different manners, apparently depending on whether they were part of a monomer, a dimer, a trimer, or higher oligomers. These observations lead to the conclusion that initiation of DNA replication in BPV-1 DNA takes place at or close to plasmid maintenance sequence 1. From this point, replication proceeds bidirectionally and termination occurs approximately 180 degrees opposite the origin. The results obtained are consistent with one or more replication origins being quiescent in BPV-1 DNA oligomers.  相似文献   

9.
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation.  相似文献   

10.
Exonucleases specific for either 3' ends (Escherichia coli exonuclease III) or 5' ends (bacteriophage T7 gene 6 exonuclease) of nascent DNA chains have been used to determine the number of nucleotides from the actual sites of DNA synthesis to the first nucleosome on each arm of replication forks in simian virus 40 (SV40) chromosomes labeled with [3H]thymidine in whole cells. Whereas each enzyme excised all of the nascent [3H]DNA from purified replicating SV40 DNA, only a fraction of the [3H]DNA was excised from purified replicating SV40 chromosomes. The latter result was attributable to the inability of either exonuclease to digest nucleosomal DNA in native replicating SV40 chromosomes, as demonstrated by the following observations: (i) digestion with either exonuclease did not reduce the amount of newly synthesized nucleosomal DNA released by micrococcal nuclease during a subsequent digestion period; (ii) in briefly labeled molecules, as much as 40% of the [3H]DNA was excised from long nascent DNA chains; (iii) the fraction of [3H]DNA excised by exonuclease III was reduced in proportion to the actual length of the radiolabeled DNA; (iv) the effects of the two exonucleases were additive, consistent with each enzyme trimming only the 3' or 5' ends of nascent DNA chains without continued excision through to the opposite end. When the fraction of nascent [3H]DNA excised from replicating SV40 DNA by exonuclease III was compared with the fraction of [32P]DNA simultaneously excised from an SV40 DNA restriction fragment, the actual length of nascent [3H]DNA was calculated. From this number, the fraction of [3H]DNA excised from replicating SV40 chromosomes was converted into the number of nucleotides. Accordingly, the average distance from either 3' or 5' ends of long nascent DNA chains to the first nucleosome on either arm of replication forks was found to be 125 nucleotides. Furthermore, each exonuclease excised about 80% of the radiolabel in Okazaki fragments, suggesting that less than one-fifth of the Okazaki fragments were contained in nucleosomes. On the basis of these and other results, a model for eukaryotic replication forks is presented in which nucleosomes appear rapidly on both the forward and retrograde arms, about 125 and 300 nucleotides, respectively, from the actual site of DNA synthesis. In addition, it is proposed that Okazaki fragments are initiated on nonnucleosomal DNA and then assembled into nucleosomes, generally after ligation to the 5' ends of long nascent DNA chains is completed.  相似文献   

11.
12.
The terminus region of the Escherichia coli chromosome contains two sites that inhibit the progression of DNA replication forks. These termination sites, designated T1 and T2, are separated by 7.5 min (350 kilobases [kb]) on the genetic map and are located at the extremities of the terminus region. They demonstrate polarity (they stop replication forks traveling in one direction but not the other) and inhibit replication forks that have passed through and are about to leave the terminus. We have used deletion mutations in the terminus region to map the locations of T1 and T2 more accurately and to initiate studies on the mechanism of replication fork inhibition. We have narrowed the boundaries of T1 and T2 to 20 and 4 kb, respectively. T1 maps between kb 80 and 100 on the physical map of the terminus region (J. P. Bouché, J. Mol. Biol. 154:1-20, 1982), and T2 maps between kb 438 and 442. In addition, we report here that deletion of the region containing the T2 termination site inactivated T1. Supplying the T2 region on a plasmid restored T1 function, demonstrating that inhibition of replication at T1 requires a trans-acting factor which maps in the vicinity of termination site T2. We have called this newly identified terminus function the termination utilization substance (tus).  相似文献   

13.
Replication of the genome is crucial for the accurate transmission of genetic information. It has become clear over the last decade that the orderly progression of replication forks in both prokaryotes and eukaryotes is disrupted with high frequency by encounters with various obstacles either on or in the template strands. Survival of the organism then becomes dependent on both removal of the obstruction and resumption of replication. This latter point is particularly important in bacteria, where the number of replication forks per genome is nominally only two. Replication restart in Escherichia coli is accomplished by the action of the restart primosomal proteins, which use both recombination intermediates and stalled replication forks as substrates for loading new replication forks. These reactions have been reconstituted with purified recombination and replication proteins.  相似文献   

14.
15.
Herpes simplex virus type 1 (HSV-1) replication produces large intracellular DNA molecules that appear to be in a head-to-tail concatemeric arrangement. We have previously suggested (A. Severini, A.R. Morgan, D.R. Tovell, and D.L.J. Tyrrell, Virology 200:428-435, 1994) that these DNA species may have a complex branched structure. We now provide direct evidence for the presence of branches in the high-molecular-weight DNA produced during HSV-1 replication. On neutral agarose two-dimensional gel electrophoresis, a technique that allows separation of branched restriction fragments from linear fragments, intracellular HSV-1 DNA produces arches characteristic of Y junctions (such as replication forks) and X junctions (such as merging replication forks or recombination intermediates). Branched structures were resolved by T7 phage endonuclease I (gene 3 endonuclease), an enzyme that specifically linearizes Y and X structures. Resolution was detected by the disappearance of the arches on two-dimensional gel electrophoresis. Branched structures were also visualized by electron microscopy. Molecules with a single Y junction were observed, as well as large tangles containing two or more consecutive Y junctions. We had previously shown that a restriction enzyme which cuts the HSV-1 genome once does not resolve the large structure of HSV-1 intracellular DNA on pulsed-field gel electrophoresis. We have confirmed that result by using sucrose gradient sedimentation, in which both undigested and digested replicative intermediates sediment to the bottom of the gradient. Taken together, our experiments show that the intracellular HSV-1 DNA is held together in a large complex by frequent branches that create a network of replicating molecules. The fact that most of these branches are Y structures suggests that the network is held together by frequent replication forks and that it resembles the replicative intermediates of bacteriophage T4. Our findings add complexity to the simple model of rolling-circle DNA replication, and they pose interesting questions as to how the network is formed and how it is resolved for packaging into progeny virions.  相似文献   

16.
SeqA is an Escherichia coli DNA-binding protein that acts at replication origins and controls DNA replication. However, binding is not exclusive to origins. Many fragments containing two or more hemi-methylated GATC sequences bind efficiently. Binding was optimal when two such sequences were closely apposed or up to 31 bases apart on the same face of the DNA helix. Binding studies suggest that neighboring bound proteins contact each other to form a complex with the intervening DNA looped out. There are many potential binding sites distributed around the E.coli chromosome. As replication produces a transient wave of hemi-methylation, tracts of SeqA binding are likely to associate with each fork as replication progresses. The number and positions of green fluorescent protein-SeqA foci seen in living cells suggest that they correspond to these tracts, and that the forks are tethered to planes of cell division. SeqA may help to tether the forks or to organize newly replicated DNA into a structure that aids DNA to segregate away from the replication machinery.  相似文献   

17.
Chromosome organizations of related bacterial genera are well conserved despite a very long divergence period. We have assessed the forces limiting bacterial genome plasticity in Escherichia coli by measuring the respective effect of altering different parameters, including DNA replication, compositional skew of replichores, coordination of gene expression with DNA replication, replication-associated gene dosage, and chromosome organization into macrodomains. Chromosomes were rearranged by large inversions. Changes in the compositional skew of replichores, in the coordination of gene expression with DNA replication or in the replication-associated gene dosage have only a moderate effect on cell physiology because large rearrangements inverting the orientation of several hundred genes inside a replichore are only slightly detrimental. By contrast, changing the balance between the two replication arms has a more drastic effect, and the recombinational rescue of replication forks is required for cell viability when one of the chromosome arms is less than half than the other one. Macrodomain organization also appears to be a major factor restricting chromosome plasticity, and two types of inverted configurations severely affect the cell cycle. First, the disruption of the Ter macrodomain with replication forks merging far from the normal replichore junction provoked chromosome segregation defects. The second major problematic configurations resulted from inversions between Ori and Right macrodomains, which perturb nucleoid distribution and early steps of cytokinesis. Consequences for the control of the bacterial cell cycle and for the evolution of bacterial chromosome configuration are discussed.  相似文献   

18.
The distribution of preformed ("old") histone octamers between the two arms of DNA replication forks was analyzed in simian virus 40(SV40)-infected cells following treatment with cycloheximide to prevent nucleosome assembly from nascent histones. Viral chromatin synthesized in the presence of cycloheximide was shown to be deficient in nucleosomes. Replicating SV40 DNA (wild-type 800 and capsid assembly mutant, tsB11) was radiolabeled in either intact cells or nuclear extracts supplemented with cytosol. Nascent nucleosomal monomers were then released by extensive digestion of isolated nuclei, nuclear extracts or isolated viral chromosomes with micrococcal nuclease. The labeled nucleosomal DNA was purified and found to hybridize to both strands of SV40 DNA restriction fragments taken from each side of the origin of DNA replication, whereas Okazaki fragments hybridized only to the strand representing the retrograde DNA template. In addition, isolated, replicating SV40 chromosomes were digested with two strand-specific exonucleases that excised nascent DNA from either the forward or the retrograde side of replication forks. Pretreatment of cells with cycloheximide did not result in an excess of prenucleosomal DNA on either side of replication forks, but did increase the amount of internucleosomal DNA. These data are consistent with a dispersive model for nucleosome segregation in which "old" histone octamers are distributed to both arms of DNA replication forks.  相似文献   

19.
J Gutiérrez  J A García  L Blanco  M Salas 《Gene》1986,43(1-2):1-11
A 73-bp fragment from the left end of phi 29 DNA and a 269-bp fragment from the right end have been cloned in plasmids pPLc28 and pKK223-3, respectively, after removal of the terminal protein p3 by treatment with piperidine. In addition, the 73- and 269-bp fragments were cloned together in plasmid pKK223-3 in such a way that the two termini of phi 29 DNA were joined. Treatment of the latter recombinant plasmid with AhaIII releases several fragments, two of which contain the phi 29 DNA terminal sequences at the DNA end. These two fragments initiated replication specifically at the ends of the DNA giving rise to the formation of the p3-dAMP complex. The activity was about 15% of that obtained with phi 29 DNA-protein p3. All remaining recombinant plasmids were essentially inactive when tested as templates either in circular form or after cutting in such a way that placed the origin of phi 29 DNA replication close but not at the DNA end.  相似文献   

20.
SeqA protein negatively regulates replication initiation in Escherichia coli and is also proposed to organize maturation and segregation of the newly replicated DNA. The seqA mutants suffer from chromosomal fragmentation; since this fragmentation is attributed to defective segregation or nucleoid compaction, two‐ended breaks are expected. Instead, we show that, in SeqA's absence, chromosomes mostly suffer one‐ended DNA breaks, indicating disintegration of replication forks. We further show that replication forks are unexpectedly slow in seqA mutants. Quantitative kinetics of origin and terminus replication from aligned chromosomes not only confirm origin overinitiation in seqA mutants, but also reveal terminus under‐replication, indicating inhibition of replication forks. Pre‐/post‐labelling studies of the chromosomal fragmentation in seqA mutants suggest events involving single forks, rather than pairs of forks from consecutive rounds rear‐ending into each other. We suggest that, in the absence of SeqA, the sister‐chromatid cohesion ‘safety spacer’ is destabilized and completely disappears if the replication fork is inhibited, leading to the segregation fork running into the inhibited replication fork and snapping the latter at single‐stranded DNA regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号