首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The 26S proteasome is a large multisubunit complex involved in degrading both cytoplasmic and nuclear proteins. We have investigated the localization of this complex in the fission yeast, Schizosaccharomyces pombe. Immunofluorescence microscopy shows a striking localization pattern whereby the proteasome is found predominantly at the nuclear periphery, both in interphase and throughout mitosis. Electron microscopic analysis revealed a concentration of label near the inner side of the nuclear envelope. The localization of green fluorescent protein (GFP)-tagged 26S proteasomes was analyzed in live cells during mitosis and meiosis. Throughout mitosis the proteasome remained predominantly at the nuclear periphery. During meiosis the proteasome was found to undergo dramatic changes in its localization. Throughout the first meiotic division, the signal is more dispersed over the nucleus. During meiosis II, there was a dramatic re-localization, and the signal became restricted to the area between the separating DNA until the end of meiosis when the signal dispersed before returning to the nuclear periphery during spore formation. These findings strongly imply that the nuclear periphery is a major site of protein degradation in fission yeast both in interphase and throughout mitosis. Furthermore they raise interesting questions as to the spatial organization of protein degradation during meiosis.  相似文献   

2.
BACKGROUND: Anaphase-promoting complex (APC)/cyclosome and 26S proteasome are respectively required for polyubiquitination and degradation of mitotic cyclin and anaphase inhibitor Cut2 (Pds1/securin). In fission yeast, mutant cells defective in cyclosome and proteasome fail to complete mitosis and have hypercondensed chromosomes and a short spindle. A similar phenotype is seen in a temperature-sensitive strain cut8-563 at 36 degrees C, but the molecular basis for Cut8 function is little understood. RESULTS: At high temperature, the level of Cut8 greatly increases and it becomes essential to the progression of anaphase. In cut8 mutants, chromosome mis-segregation and aberrant spindle dynamics occur, but cytokinesis takes place with normal timing, leading to the cut phenotype. This is due to the fact that destruction of mitotic cyclin and Cut2 in the nucleus is dramatically delayed, though polyubiquitination of Cdc13 occurs in cut8 mutant. Cut8 is localized chiefly to the nucleus and nuclear periphery, a distribution highly similar to that of 26S proteasome. In cut8 mutant, however, 26S proteasome becomes mostly cytoplasmic, showing that Cut8 is needed for its proper localization. CONCLUSION: Cut8 is a novel evolutionarily conserved heat-inducible regulator. It facilitates anaphase-promoting proteolysis by recruiting 26S proteasome to a functionally efficient nuclear location.  相似文献   

3.
26 S proteasomes fulfill final steps in the ubiquitin-dependent degradation pathway by recognizing and hydrolyzing ubiquitylated proteins. As the 26 S proteasome mainly localizes to the nucleus in yeast, we addressed the question how this 2-MDa multisubunit complex is imported into the nucleus. 26 S proteasomes consist of a 20 S proteolytically active core and 19 S regulatory particles, the latter composed of two subcomplexes, namely the base and lid complexes. We have shown that 20 S core particles are translocated into the nucleus as inactive precursor complexes via the classic karyopherin alphabeta import pathway. Here, we provide evidence that nuclear import of base and lid complexes also depends on karyopherin alphabeta. Potential classic nuclear localization sequences (NLSs) of base subunits were analyzed. Rpn2 and Rpt2, a non-ATPase subunit and an ATPase subunit of the base complex, harbor functional NLSs. The Rpt2 NLS deletion yielded wild type localization. However, the deletion of the Rpn2 NLS resulted in improper nuclear proteasome localization and impaired proteasome function. Our data support the model by which nuclear 26 S proteasomes are assembled from subcomplexes imported by karyopherin alphabeta.  相似文献   

4.
The intracellular localization of the 26S proteasome in the different ovarian cell types of Drosophila melanogaster was studied by means of immunofluorescence staining and laser scanning microscopy, with the use of antibodies specific for regulatory complex subunits or the catalytic core of the 26S proteasome. During the previtellogenic phase of oogenesis (stages 1-6), strong cytoplasmic staining was observed in the nurse cells and follicular epithelial cells, but the proteasome was not detected in the nuclei of these cell types. The subcellular distribution of the 26S proteasome was completely different in the oocyte. Besides a constant, very faint cytoplasmic staining, there was a gradual nuclear accumulation of proteasomes during the previtellogenic phase of oogenesis. A characteristic subcellular redistribution of the 26S proteasome occurred in the ovarian cells during the vitellogenic phase of oogenesis. There was a gradual decline in the concentration of the 26S proteasome in the nucleus of the oocyte, and in the stage 10 oocyte the proteasome could barely be detected in the nucleus. This was accompanied by a massive nuclear accumulation of proteasomes in the follicular epithelial cells. These results demonstrate that the subcellular distribution of the 26S proteasome in higher eukaryotes is strictly tissue- and developmental stage-specific.  相似文献   

5.
Eukaryotic translation initiation factor 3 (eIF3) is a multisubunit complex that plays a central role in translation initiation. We show that fission yeast Sum1, which is structurally related to known eIF3 subunits in other species, is essential for translation initiation, whereas its overexpression results in reduced global translation. Sum1 is associated with the 40S ribosome and interacts stably with Int6, an eIF3 component, in vivo, suggesting that Sum1 is a component of the eIF3 complex. Sum1 is cytoplasmic under normal growth conditions. Surprisingly, Sum1 is rapidly relocalized to cytoplasmic foci after osmotic and thermal stress. Int6 and p116, another putative eIF3 subunit, behave similarly, suggesting that eIF3 is a dynamic complex. These cytoplasmic foci, which additionally comprise eIF4E and RNA components, may function as translation centers during environmental stress. After heat shock, Sum1 additionally colocalizes stably with the 26S proteasome at the nuclear periphery. The relationship between Sum1 and the 26S proteasome was further investigated, and we find cytoplasmic Sum1 localization to be dependent on the 26S proteasome. Furthermore, Sum1 interacts with the Mts2 and Mts4 components of the 26S proteasome. These data indicate a functional link between components of the structurally related eIF3 translation initiation and 26S proteasome complexes.  相似文献   

6.
We have identified a 26S proteasome-associated ubiquitin carboxyl-terminal hydrolase (UCH) in Schizosaccharomyces pombe. The gene (designated uch2+) encodes a protein containing a UCH catalytic domain at its N-terminus and a short extension at its C-terminus. uch2+ is nonessential as the uch2 null mutant strain showed no significant difference from the wild-type strain. The GFP-tagged Uch2p is localized predominantly to the nuclear periphery, which is similar to the 26S proteasome localization. Deletion of the C-terminal extension of Uch2p resulted in a drastic change of its subcellular localization: it showed a generally diffused distribution instead of a perinuclear pattern. Glycerol gradient centrifugation analysis and coimmunoprecipitation studies of fission yeast extracts using anti-Mts4p antiserum suggest that Uch2p is associated with the 26S proteasome and the association of Uch2p with the 26S proteasome is mediated by its C-terminal extension.  相似文献   

7.
The 26S proteasome is known to play pivotal roles in cell-cycle progression in various eukaryotic cells; however, little is known about its role in higher plants. Here we report that the subcellular distribution of the 26S proteasome is dynamically changed in a cell-cycle dependent manner in tobacco BY-2 cells as determined by immunostaining with anti-Rpn10 (a regulatory PA700 subunit) and anti-20S catalytic proteasome antibodies. The 26S proteasome was found to localize not only in nuclear envelopes and mitotic spindles but also in preprophase bands (PPBs) and phragmoplasts appearing in G(2) and M phases, respectively. MG132, a proteasome inhibitor, exclusively caused cell-cycle arrest not only at the metaphase but also the early stage of PPB formation at the G(2) phase and the collapse of the phragmoplast, which seems to be closely related to proteasome distribution in the cells.  相似文献   

8.
Proper function of the 26 S proteasome requires assembly of the regulatory complex, which is composed of the lid and base subcomplexes. We characterized Rpn5, a lid subunit, in fission yeast. We show that Rpn5 associates with the proteasome rpn5. Deletion (rpn5Delta) exacerbates the growth defects in proteasome mutants, leading to mitotic abnormalities, which correlate with accumulation of polyubiquitinated proteins, such as Cut2/securin. Rpn5 expression is tightly controlled; both overexpression and deletion of rpn5 impair proteasome functions. The proteasome is assembled around the inner nuclear membrane in wild-type cells; however, in rpn5Delta cells, proteasome subunits are improperly assembled and/or localized. In the lid mutants, Rpn5 is mislocalized in the cytosol, while in the base mutants, Rpn5 can enter the nucleus, but is left in the nucleoplasm, and not assembled into the nuclear membrane. These results suggest that Rpn5 is a dosage-dependent proteasome regulator and plays a role in mediating proper proteasome assembly. Moreover, the Rpn5 assembly may be a cooperative process that involves at least two steps: 1) nuclear import and 2) subsequent assembly into the nuclear membrane. The former step requires other components of the lid, while the latter requires the base. Human Rpn5 rescues the phenotypes associated with rpn5Delta and is incorporated into the yeast proteasome, suggesting that Rpn5 functions are highly conserved.  相似文献   

9.
The 26 S proteasome of eukaryotes is responsible for the degradation of proteins targeted for proteolysis by the ubiquitin system. Yeast has been an important model organism for understanding eukaryotic proteasome structure and function. Toward a quantitative characterization of the proteasome, we have determined the localization, cellular levels, and stoichiometry of proteasome subunits. The subcellular localization of two ATPase components of the regulatory complex of the proteasome, Sug2/Rpt4 and Sug1/Rpt6, and a subunit of the 20 S proteasome, Pre1, were determined by immunofluorescence. In contrast to findings in multicellular organisms, these proteins are localized almost exclusively to the nucleus throughout the cell cycle. We have also determined the cellular abundance and stoichiometry of these proteasome subunits. Sug1/Rpt6, Sug2/Rpt4, and Pre1 are present in roughly equal stoichiometry with an abundance of 15,000-30,000 molecules/cell, corresponding to a concentration of 13-26 microM in the nucleus. Also, in contrast to mammalian cells, we find no evidence of a p27-containing "modulator" of the proteasome in yeast. This information will be useful in comparing and contrasting the yeast and mammalian proteasomes and should contribute to a mechanistic understanding of how this complex functions.  相似文献   

10.
11.
Meiosis-specific mRNAs are transcribed in vegetative fission yeast, and these meiotic mRNAs are selectively removed from mitotic cells to suppress meiosis. This RNA elimination system requires degradation signal sequences called determinant of selective removal (DSR), an RNA-binding protein Mmi1, polyadenylation factors, and the nuclear exosome. However, the detailed mechanism by which meiotic mRNAs are selectively degraded in mitosis but not meiosis is not understood fully. Here we report that Red1, a novel protein, is essential for elimination of meiotic mRNAs from mitotic cells. A red1 deletion results in the accumulation of a large number of meiotic mRNAs in mitotic cells. Red1 interacts with Mmi1, Pla1, the canonical poly(A) polymerase, and Rrp6, a subunit of the nuclear exosome, and promotes the destabilization of DSR-containing mRNAs. Moreover, Red1 forms nuclear bodies in mitotic cells, and these foci are disassembled during meiosis. These results demonstrate that Red1 is involved in DSR-directed RNA decay to prevent ectopic expression of meiotic mRNAs in vegetative cells.  相似文献   

12.
Others and we previously showed that the vitamin D receptor (VDR) is subject to degradation by the 26S proteasome and that treatment with 1,25‐dihydroxyvitamin D3 (1,25D3) inhibited this degradation. In the present study, we found that in osteoblasts, but not in intestinal epithelial cells, the VDR was susceptible to degradation by the 26S proteasome. The subcellular site for degradation of the VDR in osteoblasts is the cytoplasm and the site for ligand‐dependent protection of the VDR from the 26S proteasome is the chromatin. These direct relationships between nuclear localization and protection of the VDR from 26S proteasome degradation led us to hypothesize that the unoccupied cytoplasmic VDR is a substrate for polyubiquitination, which targets VDR for degradation by the 26S proteasome, and that nuclear localization has the ability to protect the VDR from polyubiquitination and degradation. To test these hypotheses, we used Cos‐1 cells transfected with human VDR and histidine‐tagged ubiquitin expression vectors. We found that unoccupied VDR was polyubiquitinated and that 1,25D3 inhibited this modification. Mutations in the nuclear localization signal of VDR (R49W/R50G and K53Q/R54G/K55E) or in the dimerization interface of VDR with retinoid X receptor (M383G/Q385A) abolished the ability of 1,25D3 to protect the VDR from polyubiquitination, although these mutations had no effect on the ligand‐binding activity of VDR. Therefore, we concluded that in some cellular environments unoccupied cytoplasmic VDR is susceptible to polyubiquitination and proteasome degradation and that ligand‐dependent heterodimerization and nuclear localization protect the VDR from these modifications. J. Cell. Biochem. 110: 926–934, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
The 26S proteasome consists of the 20S proteasome (core particle) and the 19S regulatory particle made of the base and lid substructures, and it is mainly localized in the nucleus in yeast. To examine how and where this huge enzyme complex is assembled, we performed biochemical and microscopic characterization of proteasomes produced in two lid mutants, rpn5-1 and rpn7-3, and a base mutant DeltaN rpn2, of the yeast Saccharomyces cerevisiae. We found that, although lid formation was abolished in rpn5-1 mutant cells at the restrictive temperature, an apparently intact base was produced and localized in the nucleus. In contrast, in DeltaN rpn2 cells, a free lid was formed and localized in the nucleus even at the restrictive temperature. These results indicate that the modules of the 26S proteasome, namely, the core particle, base, and lid, can be formed and imported into the nucleus independently of each other. Based on these observations, we propose a model for the assembly process of the yeast 26S proteasome.  相似文献   

14.
REGγ is a member of the 11S regulatory particle that activates the 20S proteasome. Studies in REGγ deficient mice indicated an additional role for this protein in cell cycle regulation and proliferation control. In this paper we demonstrate that REGγ protein is equally expressed throughout the cell cycle, but undergoes a distinctive subcellular localization at mitosis. Thus, while in interphase cells REGγ is nuclear, in telophase cells it localizes on chromosomes, suggesting a role in mitotic progression. Furthermore, we found that REGγ overexpression weakens the mitotic arrest induced by spindle damage, allowing premature exit from mitosis, whereas REGγ depletion has the opposite effect, thus reflecting a new REGγ function, unrelated to its role as proteasome activator. Additionally, we found that primary cells from REGγ-/- mice and human fibroblasts with depleted expression of REGγ or overexpressing a dominant negative mutant unable to activate the 20S proteasome, demonstrated a marked aneuploidy (chromosomal gains and losses), supernumerary centrosomes and multipolar spindles. These findings thus underscore a previously uncharacterized function of REGγ in centrosome and chromosomal stability maintenance.  相似文献   

15.
C Enenkel  A Lehmann    P M Kloetzel 《The EMBO journal》1998,17(21):6144-6154
26S proteasomes are the key enzyme complexes responsible for selective turnover of short-lived and misfolded proteins. Based on the assumption that they are dispersed over the nucleoplasm and cytoplasm in all eukaryotic cells, we wanted to determine the subcellular distribution of 26S proteasomes in living yeast cells. For this purpose, we generated yeast strains that express functional green fluorescent protein (GFP) fusions of proteasomal subunits. An alpha subunit of the proteolytically active 20S core complex of the 26S proteasome, Pre6/YOL038w, as well as an ATPase-type subunit of the regulatory 19S cap complex, Cim5/YOL145w, were tagged with GFP. Both chimeras were shown to be incorporated completely into active 26S proteasomes. Microscopic analysis revealed that GFP-labelled 20S as well as 19S subunits are accumulated mainly in the nuclear envelope (NE)-endoplasmic reticulum (ER) network in yeast. These findings were supported by the co-localization and co-enrichment of 26S proteasomes with NE-ER marker proteins. A major location of proteasomal peptide cleavage activity was visualized in the NE-ER network, indicating that proteasomal degradation takes place mainly in this subcellular compartment in yeast.  相似文献   

16.
Genetic evidence suggests that the product of the mei-1 gene of Caenorhabditis elegans is specifically required for meiosis in the female germline. Loss-of-function mei-1 mutations block meiotic spindle formation while a gain-of-function allele instead results in spindle defects during the early mitotic cleavages. In this report, we use immunocytochemistry to examine the localization of the mei-1 product in wild-type and mutant embryos. During metaphase of meiosis I in wild- type embryos, mei-1 protein was found throughout the spindle but was more concentrated toward the poles. At telophase I, mei-1 product colocalized with the chromatin at the spindle poles. The pattern was repeated during meiosis II but no mei-1 product was visible during the subsequent mitotic cleavages. The mei-1 gain-of-function allele resulted in ectopic mei-1 staining in the centers of the microtubule- organizing centers during interphase and in the spindles during the early cleavages. This aberrant localization is probably responsible for the poorly formed and misoriented cleavage spindles characteristic of the mutation. We also examined the localization of mei-1(+) product in the presence of mutations of genes that genetically interact with mei-1 alleles. mei-2 is apparently required to localize mei-1 product to the spindle during meiosis while mel-26 acts as a postmeiotic inhibitor. We conclude that mei-1 encodes a novel spindle component, one that is specialized for the acentriolar meiotic spindles unique to female meiosis. The genes mei-2 and mel-26 are part of a regulatory network that confines mei-1 activity to meiosis.  相似文献   

17.
Subunits and substrates of the anaphase-promoting complex   总被引:13,自引:0,他引:13  
The initiation of anaphase and exit from mitosis depend on a ubiquitination complex called the anaphase-promoting complex (APC) or cyclosome. The APC is composed of more than 10 constitutive subunits and associates with additional regulatory factors in mitosis and during the G1 phase of the cell cycle. At the metaphase-anaphase transition the APC ubiquitinates proteins such as Pds1 in budding yeast and Cut2 in fission yeast whose subsequent degradation by the 26S proteasome is essential for the initiation of sister chromatid separation. Later in anaphase and telophase the APC promotes the inactivation of the mitotic cyclin-dependent protein kinase 1 by ubiquitinating its activating subunit cyclin B. The APC also mediates the ubiquitin-dependent proteolysis of several other mitotic regulators, including other protein kinases, APC activators, spindle-associated proteins, and inhibitors of DNA replication.  相似文献   

18.
19.
The 26S proteasome involved in degradation of proteins covalently modified with polyubiquitin consists of the 20S proteasome and 19S regulatory complex. The NbPAF gene encoding the alpha6 subunit of the 20S proteasome was identified from Nicotiana benthamiana. NbPAF exhibits high sequence homology with the corresponding genes from Arabidopsis, human and yeast. The deduced amino acid sequence of NbPAF reveals that this protein contains the proteasome alpha-type subunits signature and nuclear localization signal at the N-terminus. The genomic Southern blot analysis suggests that the N. benthamiana genome contains one copy of NbPAF. The NbPAF mRNA was detected abundantly in flowers and weakly in roots and stems, but it was almost undetectable in mature leaves. In response to stresses, accumulation of the NbPAF mRNA was stimulated by methyl jasmonate, NaCl and salicylic acid, but not by abscisic acid and cold treatment in leaves. The NbPAF-GFP fusion protein was localized in the cytoplasm and nucleus.  相似文献   

20.
Regulatory subunit interactions of the 26S proteasome, a complex problem   总被引:16,自引:0,他引:16  
The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitin-mediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号