首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin’s coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations.  相似文献   

2.
《Biophysical journal》2019,116(12):2275-2284
The initial binding of tropomyosin onto actin filaments and then its polymerization into continuous cables on the filament surface must be precisely tuned to overall thin-filament structure, function, and performance. Low-affinity interaction of tropomyosin with actin has to be sufficiently strong to localize the tropomyosin on actin, yet not so tight that regulatory movement on filaments is curtailed. Likewise, head-to-tail association of tropomyosin molecules must be favorable enough to promote tropomyosin cable formation but not so tenacious that polymerization precedes filament binding. Arguably, little molecular detail on early tropomyosin binding steps has been revealed since Wegner’s seminal studies on filament assembly almost 40 years ago. Thus, interpretation of mutation-based actin-tropomyosin binding anomalies leading to cardiomyopathies cannot be described fully. In vitro, tropomyosin binding is masked by explosive tropomyosin polymerization once cable formation is initiated on actin filaments. In contrast, in silico analysis, characterizing molecular dynamics simulations of single wild-type and mutant tropomyosin molecules on F-actin, is not complicated by tropomyosin polymerization at all. In fact, molecular dynamics performed here demonstrates that a midpiece tropomyosin domain is essential for normal actin-tropomyosin interaction and that this interaction is strictly conserved in a number of tropomyosin mutant species. Elsewhere along these mutant molecules, twisting and bending corrupts the tropomyosin superhelices as they “lose their grip” on F-actin. We propose that residual interactions displayed by these mutant tropomyosin structures with actin mimic ones that occur in early stages of thin-filament generation, as if the mutants are recapitulating the assembly process but in reverse. We conclude therefore that an initial binding step in tropomyosin assembly onto actin involves interaction of the essential centrally located domain.  相似文献   

3.
To be effective as a gatekeeper regulating the access of binding proteins to the actin filament, adjacent tropomyosin molecules associate head-to-tail to form a continuous super-helical cable running along the filament surface. Chimeric head-to-tail structures have been solved by NMR and X-ray crystallography for N- and C-terminal segments of smooth and striated muscle tropomyosin spliced onto non-native coiled-coil forming peptides. The resulting 4-helix complexes have a tight coiled-coil N-terminus inserted into a separated pair of C-terminal helices, with some helical unfolding of the terminal chains in the striated muscle peptides. These overlap complexes are distinctly curved, much more so than elsewhere along the superhelical tropomyosin cable. To verify whether the non-native protein adducts (needed to stabilize the coiled-coil chimeras) perturb the overlap, we carried out Molecular Dynamics simulations of head-to-tail structures having only native tropomyosin sequences. We observe that the splayed chains all refold and become helical. Significantly, the curvature of both the smooth and the striated muscle overlap domain is reduced and becomes comparable to that of the rest of the tropomyosin cable. Moreover, the measured flexibility across the junction is small. This and the reduced curvature ensure that the super-helical cable matches the contours of F-actin without manifesting localized kinking and excessive flexibility, thus enabling the high degree of cooperativity in the regulation of myosin accessibility to actin filaments.  相似文献   

4.
Whitby FG  Phillips GN 《Proteins》2000,38(1):49-59
Tropomyosin is a 400A-long coiled coil that polymerizes to form a continuous filament that associates with actin in muscle and numerous non-muscle cells. Tropomyosin and troponin together form a calcium-sensitive switch that is responsible for thin-filament regulation of striated muscle. Subtle structural features of the molecule, including non-canonical aspects of its coiled-coil motif, undoubtedly influence its association with f-actin and its role in thin filament regulation. Previously, careful inspection of native diffraction intensities was sufficient to construct a model of tropomyosin at 9A resolution in a spermine-induced crystal form that diffracts anisotropically to 4A resolution. Single isomorphous replacement (SIR) phasing has now provided an empirical determination of the structure at 7A resolution. A novel method of heavy-atom analysis was used to overcome difficulties in interpretation of extremely anisotropic diffraction. The packing arrangement of the molecules in the crystal, and important aspects of the tropomyosin geometry such as non-uniformities of the pitch and variable bending and radius of the coiled coil are evident.  相似文献   

5.
The regulation of vertebrate striated muscle contraction involves a number of different molecules, including the thin-filament accessory proteins tropomyosin and troponin that provide Ca2+-dependent regulation by controlling access to myosin binding sites on actin. Cardiac myosin binding protein C (cMyBP-C) appears to modulate this Ca2+-dependent regulation and has attracted increasing interest due to links with inherited cardiac diseases. A number of single amino acid mutations linked to clinical diseases occur in the N-terminal region of cMyBP-C, including domains C0 and C1, which previously have been shown to bind to F-actin. This N-terminal region also has been shown to both inhibit and activate actomyosin interactions in vitro. Using electron microscopy and three-dimensional reconstruction, we show that C0 and C1 can each bind to the same two distinctly different positions on F-actin. One position aligns well with the previously reported binding site that clashes with the binding of myosin to actin, but would force tropomyosin into an “on” position that exposes myosin binding sites along the filament. The second position identified here would not interfere with either myosin binding or tropomyosin positioning. It thus appears that the ability to bind to at least two distinctly different positions on F-actin, as observed for tropomyosin, may be more common than previously considered for other actin binding proteins. These observations help to explain many of the seemingly contradictory results obtained with cMyBP-C and show how cMyBP-C can provide an additional layer of regulation to actin-myosin interactions. They also suggest a redundancy of C0 and C1 that may explain the absence of C0 in skeletal muscle.  相似文献   

6.
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin–tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin''s reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T''s N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin–tropomyosin binding and weaker tropomyosin–actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin–thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.  相似文献   

7.
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca2+ sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.  相似文献   

8.
Recently, our understanding of the structural basis of troponin-tropomyosin’s Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin’s binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.  相似文献   

9.
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca2+ sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.  相似文献   

10.
Past attempts to detect tropomyosin in electron micrograph images of frozen-hydrated troponin-regulated thin filaments under relaxing conditions have not been successful. This raised the possibility that tropomyosin may be disordered on filaments in the off-state, a possibility at odds with the steric blocking model of muscle regulation. By using cryoelectron microscopy and helical image reconstruction we have now resolved the location of tropomyosin in both relaxing and activating conditions. In the off-state, tropomyosin adopts a position on the outer domain of actin with a binding site virtually identical to that determined previously by negative staining, although at a radius of 3.8 nm, slightly higher than found in stained filaments. Molecular fitting to the atomic model of F-actin shows that tropomyosin is localized over sites on actin subdomain 1 required for myosin binding. Restricting access to these sites would inhibit the myosin-cross-bridge cycle, and hence contraction. Under high Ca(2+) activating conditions, tropomyosin moved azimuthally, away from its blocking position to the same site on the inner domain of actin previously determined by negative staining, also at 3.8 nm radius. These results provide strong support for operation of the steric mechanism of muscle regulation under near-native solution conditions and also validate the use of negative staining in investigations of muscle thin filament structure.  相似文献   

11.
《Biophysical journal》2020,118(2):303-312
Muscle contraction is governed by tropomyosin (Tpm) shifting azimuthally between three states on F-actin (B-, C-, and M-states) in response to calcium binding to troponin and actomyosin cross-bridge formation. The Tpm coiled coil polymerizes head to tail along the long-pitch helix of F-actin to form continuous superhelical cables that wrap around the actin filaments. The end-to-end bonds formed between the N- and C-terminus of adjacent Tpm molecules define Tpm continuity and play a critical role in the ability of Tpm to cooperatively bind to actin, thus facilitating Tpm conformational switching to cooperatively propagate along F-actin. We expect that a missense mutation in this critical overlap region associated with dilated cardiomyopathy, A277V, will alter Tpm binding and thin filament activation by altering the overlap structure. Here, we used cosedimentation assays and in vitro motility assays to determine how the mutation alters Tpm binding to actin and its ability to regulate actomyosin interactions. Analytical viscometry coupled with molecular dynamics simulations showed that the A277V mutation results in enhanced Tpm end-to-end bond strength and a reduced curvature of the Tpm overlap domain. The mutant Tpm exhibited enhanced actin-Tpm binding affinity, consistent with overlap stabilization. The observed A277V-induced decrease in cooperative activation observed with regulated thin filament motility indicates that increased overlap stabilization is not correlated with Tpm-Tpm overlap binding strength or mechanical rigidity as is often assumed. Instead, A277V-induced structural changes result in local and delocalized increases in Tpm flexibility and prominent coiled-coil twisting in pseudorepeat 4. An A277V-induced decrease in Ca2+ sensitivity, consistent with a mutation-induced bolstering of the B-state Tpm-actin electrostatic contacts and an increased Tpm troponin T1 binding affinity, was also observed.  相似文献   

12.
Brain microtubule-associated protein 2 (MAP2) is known to cross-link muscle F-actin in vitro into a gel or discrete bundles of actin filaments. Previous reports indicate that this cross-linking reverses in the presence of millimolar ATP, while MAP2 molecules remain attached along single filaments of F-actin. Therefore, it is likely that the actin filament has two sets of surface areas with ATP-sensitive and insensitive affinities for MAP2. Using purified preparations of brain MAP2 and skeletal muscle F-actin and tropomyosin, we have studied the effects of tropomyosin on the MAP2-actin interaction by dark-field light microscopy, electron microscopy, sedimentation assay, and low shear viscometry. The results show that cross-linking of F-actin with MAP2 reverses upon addition of a stoichiometric amount of tropomyosin, although MAP2 remains bound to F-actin complex with tropomyosin. The ternary complex does not dissociate noticeably when exposed to a millimolar concentration of ATP. On the basis of these findings, it is concluded that ATP-insensitive MAP2-binding of F-actin is not sterically blocked by tropomyosin, while the ATP-sensitive binding is blocked by it.  相似文献   

13.
Regulation of muscle contraction is a very cooperative process. The presence of tropomyosin on the thin filament is both necessary and sufficient for cooperativity to occur. Data recently obtained with various tropomyosin isoforms and mutants help us to understand better the structural requirements in the thin filament for cooperative protein interactions. Forming an end-to-end overlap between neighboring tropomyosin molecules is not necessary for the cooperativity of the thin filament activation. When direct contacts between tropomyosin molecules are disrupted, the conformational changes in the filament are most probably transmitted cooperatively through actin subunits, although the exact nature of these changes is not known. The function of tropomyosin ends, alternatively expressed in various isoforms, is to confer specific actin affinity. Tropomyosin's affinity or actin is directly related to the size of the apparent cooperative unit defined as the number of actin subunits turned into the active state by binding of one myosin head. Inner sequences of tropomyosin, particularly actin-binding periods 3 to 5, play crucial role in myosin-induced activation of the thin filament. A plausible mechanism of tropomyosin function in this process is that inner tropomyosin regions are either specifically recognized by myosin or they define the right actin conformation required for tropomyosin movement from its blocking position.  相似文献   

14.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

15.
Tropomyosin is present in virtually all eucaryotic cells, where it functions to modulate actin-myosin interaction and to stabilize actin filament structure. In striated muscle, tropomyosin regulates contractility by sterically blocking myosin-binding sites on actin in the relaxed state. On activation, tropomyosin moves away from these sites in two steps, one induced by Ca(2+) binding to troponin and a second by the binding of myosin to actin. In smooth muscle and non-muscle cells, where troponin is absent, the precise role and structural dynamics of tropomyosin on actin are poorly understood. Here, the location of tropomyosin on F-actin filaments free of troponin and other actin-binding proteins was determined to better understand the structural basis of its functioning in muscle and non-muscle cells. Using electron microscopy and three-dimensional image reconstruction, the association of a diverse set of wild-type and mutant actin and tropomyosin isoforms, from both muscle and non-muscle sources, was investigated. Tropomyosin position on actin appeared to be defined by two sets of binding interactions and tropomyosin localized on either the inner or the outer domain of actin, depending on the specific actin or tropomyosin isoform examined. Since these equilibrium positions depended on minor amino acid sequence differences among isoforms, we conclude that the energy barrier between thin filament states is small. Our results imply that, in striated muscles, troponin and myosin serve to stabilize tropomyosin in inhibitory and activating states, respectively. In addition, they are consistent with tropomyosin-dependent cooperative switching on and off of actomyosin-based motility. Finally, the locations of tropomyosin that we have determined suggest the possibility of significant competition between tropomyosin and other cellular actin-binding proteins. Based on these results, we present a general framework for tropomyosin modulation of motility and cytoskeletal modelling.  相似文献   

16.
Bacterially expressed alpha-tropomyosin lacks the amino-terminal acetylation present in muscle tropomyosin and binds poorly to actin (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Using a linear lattice model, we determined the affinity (Ko) of unacetylated tropomyosin or troponin-unacetylated tropomyosin for an isolated site on the actin filament and the fold increase in affinity (y) when binding is to an adjacent site. The absence of tropomyosin acetylation decreased Ko 2 orders of magnitude in the absence of troponin. Tropomyosin acetylation also enhanced troponin-tropomyosin binding to actin, not by increasing cooperativity (y), but rather by increasing Ko. These results suggest that the amino-terminal region of tropomyosin is a crucial actin binding site. Troponin promoted unacetylated tropomyosin binding to actin, increasing Ko more than 1,000-fold. Troponin70-259, which lacks the troponin T peptide (1-69) spanning the overlap between adjacent tropomyosins, behaved similarly to intact troponin. Cooperative interactions between adjacent troponin-tropomyosin complexes remained strong despite the use of a nonpolymerizable tropomyosin and a troponin unable to bridge neighboring tropomyosins physically. The Ko for troponin70-259-unacetylated tropomyosin was 500-fold greater than for troponin159-259-unacetylated tropomyosin, indicating that troponin T residues 70-158 are critical for anchoring troponin-tropomyosin to F-actin. The mechanism of cooperative thin filament assembly is discussed.  相似文献   

17.
Human erythrocytes contain a Mr 43,000 tropomyosin-binding protein that is unrelated to actin and that has been proposed to play a role in modulating the association of tropomyosin with spectrin-actin complexes based on its stoichiometry in the membrane skeleton of one Mr 43,000 monomer per short actin filament (Fowler, V. M. 1987. J. Biol. Chem. 262:12792-12800). Here, we describe an improved procedure to purify milligram quantities to 98% homogeneity and we show that this protein inhibits tropomyosin binding to actin by a novel mechanism. We have named this protein tropomodulin. Unlike other proteins that inhibit tropomyosin-actin interactions, tropomodulin itself does not bind to F-actin. EM of rotary-shadowed tropomodulin-tropomyosin complexes reveal that tropomodulin (14.5 +/- 2.4 nm [SD] in diameter) binds to one of the ends of the rod-like tropomyosin molecules (33 nm long). In agreement with this observation, Dixon plots of inhibition curves demonstrate that tropomodulin is a non-competitive inhibitor of tropomyosin binding to F-actin (Ki = 0.7 microM). Hill plots of the binding of the tropomodulin-tropomyosin complex to actin indicate that binding does not exhibit any positive cooperativity (n = 0.9), in contrast to tropomyosin (n = 1.9), and that the apparent affinity of the complex for actin is reduced 20-fold with respect to that of tropomyosin. These results suggest that binding of tropomodulin to tropomyosin may block the ability of tropomyosin to self-associate in a head-to-tail fashion along the actin filament, thereby weakening its binding to actin. Antibodies to tropomodulin cross-react strongly with striated muscle troponin I (but not with troponin T) as well as with a nontroponin Mr 43,000 polypeptide in muscle and in other nonerythroid cells and tissues, including brain, lens, neutrophils, and endothelial cells. Thus, erythrocyte tropomodulin may be one member of a family of tropomyosin-binding proteins that function to regulate tropomyosin-actin interactions in non-muscle cells and tissues.  相似文献   

18.
Comparison of two types of Ca2+-regulated thin filament, reconstructed in ghost fibers by incorporating either caldesmon-gizzard tropomyosin-calmodulin or skeletal muscle troponin-tropomyosin complex, was performed by polarized microphotometry. The changes in actin structure under the influence of these regulatory complexes, as well as those upon the binding of the myosin heads, were followed by measurements of F-actin intrinsic tryptophan fluorescence and the fluorescence of phalloidin-rhodamine complex attached to F-actin. The results show that in the presence of smooth muscle tropomyosin and calmodulin, caldesmon causes Ca2+-dependent alterations of actin conformation and flexibility similar to those induced by skeletal muscle troponin-tropomyosin complex. In both cases, transferring of the fiber from '-Ca2+' to '+Ca2+' solution increases the number of turned-on actin monomers. However, whereas troponin in the absence of Ca2+ potentiates the effect of skeletal muscle tropomyosin, caldesmon-calmodulin complex inhibits the effect of smooth muscle tropomyosin. This difference seems to be due to the qualitatively different alterations in the structure and flexibility of F-actin in ghost fibers evoked by smooth and skeletal muscle tropomyosins. Troponin can bind to F-actin-smooth muscle tropomyosin-caldesmon complex and, in the presence of Ca2+, release the restraint by caldesmon for S-1-induced alterations of conformation, and reduce that for flexibility of actin in ghost fibers. This effect seems to be related to the abolishment by troponin of the potentiating effect of tropomyosin on caldesmon-induced inhibition of actomyosin ATPase activity.  相似文献   

19.
Kostyukova AS  Choy A  Rapp BA 《Biochemistry》2006,45(39):12068-12075
Tropomodulin, a tropomyosin-binding protein, caps the slow-growing (pointed) end of the actin filament regulating its dynamics. Tropomodulin, therefore, is important for determining cell morphology, cell movement, and muscle contraction. For the first time we show that one tropomodulin molecule simultaneously binds two tropomyosin molecules in a cooperative manner. On the basis of the tropomodulin solution structure and predicted secondary structure, we introduced a series of point mutations in regions important for tropomyosin binding and actin capping. Capping activity of these mutants was assayed by measuring actin polymerization using pyrene fluorescence. Using direct methods (circular dichroism and native gel electrophoresis) for detecting tropomodulin/tropomyosin binding, we localized the second tropomyosin-binding site to residues 109-144. Despite previous reports that the second binding site is for erythrocyte tropomyosin only, we found that both short nonmuscle and long muscle alpha-tropomyosins bind there as well, though with different affinities. We propose a model for actin capping where one tropomodulin molecule can bind to two tropomyosin molecules at the pointed end.  相似文献   

20.
Nebulin is a giant protein that spans most of the muscle thin filament. Mutations in nebulin result in myopathies and dystrophies. Nebulin contains approximately 200 copies of approximately 35 residue modules, each believed to contain an actin binding site, organized into seven-module superrepeats. The strong correlation between the number of nebulin modules and the length of skeletal muscle thin filaments in different species suggests that nebulin determines thin filament length. Little information exists about the interactions between intact nebulin and F-actin. More insight has come from working with fragments of nebulin, containing from one to hundreds of actin binding modules. However, the observed stoichiometry of binding between these fragments and actin has ranged from 0.4 to 13 modules per actin subunit. We have used electron microscopy and a novel method of helical image analysis to characterize complexes of F-actin with a nebulin fragment. The fragment binds as an extended structure spanning three actin subunits and binding to different sites on each actin. Muscle regulation involves tropomyosin movement on the surface of actin, with binding in three states. Our results suggest the intriguing possibility that intact nebulin may also be able to occupy three different sites on F-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号