共查询到20条相似文献,搜索用时 0 毫秒
1.
Marek Orzechowski Xiaochuan? Li Stefan Fischer William Lehman 《Biophysical journal》2014,107(3):694-699
Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin’s coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations. 相似文献
2.
Brain microtubule-associated protein 2 (MAP2) is known to cross-link muscle F-actin in vitro into a gel or discrete bundles of actin filaments. Previous reports indicate that this cross-linking reverses in the presence of millimolar ATP, while MAP2 molecules remain attached along single filaments of F-actin. Therefore, it is likely that the actin filament has two sets of surface areas with ATP-sensitive and insensitive affinities for MAP2. Using purified preparations of brain MAP2 and skeletal muscle F-actin and tropomyosin, we have studied the effects of tropomyosin on the MAP2-actin interaction by dark-field light microscopy, electron microscopy, sedimentation assay, and low shear viscometry. The results show that cross-linking of F-actin with MAP2 reverses upon addition of a stoichiometric amount of tropomyosin, although MAP2 remains bound to F-actin complex with tropomyosin. The ternary complex does not dissociate noticeably when exposed to a millimolar concentration of ATP. On the basis of these findings, it is concluded that ATP-insensitive MAP2-binding of F-actin is not sterically blocked by tropomyosin, while the ATP-sensitive binding is blocked by it. 相似文献
3.
Electron microscopy and fiber diffraction studies of reconstituted F-actin-tropomyosin filaments reveal the azimuthal position of end-to-end linked tropomyosin molecules on the surface of actin. However, the longitudinal z-position of tropomyosin along F-actin is still uncertain. Without this information, atomic models of F-actin-tropomyosin filaments, free of constraints imposed by troponin or other actin-binding proteins, cannot be formulated, and thus optimal interfacial contacts between actin and tropomyosin remain unknown. Here, a computational search assessing electrostatic interactions for multiple azimuthal locations, z-positions, and pseudo-rotations of tropomyosin on F-actin was performed. The information gleaned was used to localize tropomyosin on F-actin, yielding an atomic model characterized by protein-protein contacts that primarily involve clusters of basic amino acids on actin subdomains 1 and 3 juxtaposed against acidic residues on the successive quasi-repeating units of tropomyosin. A virtually identical model generated by docking F-actin and tropomyosin atomic structures into electron microscopy reconstructions of F-actin-tropomyosin validated the above solution. Here, the z-position of tropomyosin alongside F-actin was defined by matching the seven broad and narrow motifs that typify tropomyosin's twisting superhelical coiled-coil to the wide and tapering tropomyosin densities seen in surface views of F-actin-tropomyosin reconstructions. The functional implications of the F-actin-tropomyosin models determined in this work are discussed. 相似文献
4.
Iu S Borovikov Z Dobrovol'ski? N B Aksenova R Dabrovska 《Biokhimii?a (Moscow, Russia)》1988,53(11):1817-1820
Changes in F-actin conformation in myosin-free single ghost fibers of rabbit skeletal muscle induced by the binding of skeletal and gizzard tropomyosin to F-actin were studied by measuring intrinsic tryptophan-polarized fluorescence of F-actin. It was found that skeletal and gizzard tropomyosin binding to F-actin initiate different conformational changes in actin filaments. Skeletal tropomyosin inhibits, while gizzard tropomyosin activates the Mg2+-ATPase activity of skeletal actomyosin. It is supposed that in muscle fibers tropomyosin modulates the ATPase activity of actomyosin via conformational changes in F-actin. 相似文献
5.
Tropomyosin from human erythrocyte membrane polymerizes poorly but binds F-actin effectively in the presence and absence of spectrin 总被引:2,自引:0,他引:2
Actin in the human erythrocyte forms short protofilaments which are only long enough to accommodate tropomyosin monomers (Shen, B.W., Josephs, R. and Steck, T.L. (1986) J. Cell Biol. 102, 997-1006). This interaction between actin and tropomyosin monomers is predicted to be weak, since tropomyosin polymerization parallels its affinity for F-actin. We examine the binding of human erythrocyte tropomyosin to actin in the presence and absence of spectrin and its ability to polymerize. The binding of human erythrocyte tropomyosin to F-actin is not affected appreciably by the present of spectrin. Saturating F-actin with erythrocyte tropomyosin, however, weakens the binding of spectrin dimers to actin. Although tropomyosin from human erythrocyte and rabbit cardiac muscle have similar affinity for F-actin, the polymerizability of erythrocyte tropomyosin as determined by viscosity measurements is much reduced relative to muscle tropomyosin. This unusual property of erythrocyte tropomyosin is likely due to differences in its primary structure from other known tropomyosin at the amino and carboxyl terminal regions which are responsible for its head-to-tail polymerization and cooperative binding to F-actin. Analysis of the distribution of tyrosine by 2-dimensional tryptic mapping of 125I-labelled erythrocyte tropomyosin shows that tyrosine at positions 162, 214, 221, 261 and 267 in rabbit cardiac tropomyosin are conserved in human erythrocyte tropomyosin but Tyr-60 is absent. This observation suggests that erythrocyte tropomyosin has a carboxyl terminal region similar to its muscle counterparts but its amino terminal region resembles that of platelet tropomyosin which also lacks Tyr-60. 相似文献
6.
7.
8.
Anthony J. Kee Lingyan Yang Christine A. Lucas Michael J. Greenberg Nick Martel Gary M. Leong William E. Hughes Gregory J. Cooney David E. James E. Michael Ostap Weiping Han Peter W. Gunning Edna C. Hardeman 《Traffic (Copenhagen, Denmark)》2015,16(7):691-711
Actin has an ill‐defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1‐overexpressing mice, insulin‐stimulated glucose uptake was increased; while Tpm3.1‐null mice they were more sensitive to the impact of high‐fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3‐L1 adipocytes abrogates insulin‐stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM. 相似文献
9.
Tropomyosin from smooth muscle of the uterus 总被引:3,自引:0,他引:3
M E Carsten 《Biochemistry》1968,7(3):960-967
10.
11.
12.
Christine Y. Y. Wai Nicki Y. H. Leung Marco H. K. Ho Laurel J. Gershwin Shang An Shu Patrick S. C. Leung Ka Hou Chu 《PloS one》2014,9(11)
Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy. 相似文献
13.
We measured the fluorescence static anisotropy and the time-resolved fluorescence anisotropy decay of F-actin labelled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine at 20°C in solutions containing 100 mM KCl and free Ca2+ at various concentrations. The average fluorescence anisotropy and the fluorescence rotational correlation time of actin decreased in the presence of micromolar concentrations of free Ca2+. The change of the rotational correlation time of labelled actin could not be explained by a variation of the actin critical concentration. We concluded therefore that F-actin undergoes a conformational change induced by Ca2+ binding. The binding constant was 6 × 106 M?1. 相似文献
14.
Viscoelasticity of F-actin and F-actin/gelsolin complexes 总被引:7,自引:0,他引:7
Actin is the major protein of eukaryote peripheral cytoplasm where its mechanical effects could determine cell shape and motility. The mechanical properties of purified F-actin, whether it is a viscoelastic fluid or an elastic solid, have been a subject of controversy. Mainstream polymer theory predicts that filaments as long as those found in purified F-actin are so interpenetrated as to appear immobile in measurements over a reasonable time with available instrumentation and that the fluidity of F-actin could only be manifest if the filaments were shortened. We show that the static and dynamic elastic moduli below a critical degree of shear strain are much higher than previously reported, consistent with extreme interpenetration, but that higher strain or treatment with very low concentrations of the F-actin severing protein gelsolin greatly diminish the moduli and cause F-actin to exhibit rheologic behavior expected for independent semidilute rods, and defined by the dimensions of the filaments, including shear rate independent viscosity below a critical shear rate. The findings show that shortening of actin filaments sufficiently to permit reasonable measurements brings out their viscoelastic fluid properties. Since gelsolin shortens F-actin, it is likely that the effect of high strain is also to fragment a population of long actin filaments. We confirmed recent findings that the viscosity of F-actin is inversely proportional to the shear rate, consistent with an indeterminate fluid, but found that gelsolin abolishes this unusual shear rate dependence, indicating that it results from filament disruption during the viscosity measurements.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
M Taniguchi 《Biochimica et biophysica acta》1976,427(1):126-140
Asakura, Taniguchi and Oosawa [1]proposed that muscle actin polymer under sonic vibration is in a different state from that of the ordinary double stranded helical structure (F-actin), characterised by partially interrupted structures of F-actin, a state of "f-actin". In order to confirm different states for actin polymers [1, 2], physicochemical studies were made by measurements of viscosity, flow birefringence, electric birefringence, fluorescence, electron microscopy, quasielastic light scattering and ATP splitting. The following results were obtained. (1) F-actin polymers can undergo two processes of depolymerization upon treatment with urea and various salts as judged by measurements of flow birefringence and viscosity: one is a rapid process in a solution containing K+ or Ca2+ and urea; the other is a slow process following a brief rapid one in a solution containing Mg2+ and urea. (2) In the presence of Mg2+ and a suitable concentration of urea, F-actin (FMU-actin) appeared to exhibit different properties than ordinary F-actin; it had lower viscosity and lower flow birefringence and it had on the whole a more flexible polymer structure, also judging from experiments of quasielastic light scattering, electric birefringence. The different structure was confirmed directly be electron microscopic observation. The aromatic side chains of FMU-actin were also more mobile than those of F-actin judging from fluorescence measurements. The transformation between F-actin and FMU-actin was reversible. (3) The state of FMU-actin polymers was also characterized by ATP splitting; FMU-actin split about one mole of ATP into ADP and inorganic phosphate per mole of actin monomer at room temperature, where F-actin did not. A molar excess of Mg2+ with respect to actin monomer at room temperature, where F-actin did not. A molar excess of Mg2+ with respect to actin monomer is required for ATP splitting. F-actin in solutions containing K+ or Ca2+ and urea did not split ATP. FMU-actin activated on Mg-ATP-ase of myosin at nearly the same rate as that of F-actin. (4) We have postulated a flexible filament model (f-actin). The relationships between the structure of f-actin and its functional role for force generation during contraction are discussed. 相似文献
16.
17.
The neuron models with passive dendritic cables are often used for detailed cortical network simulations (Protopapas et al.,
1998; Suarez et al., 1995). For this, the compartment model based on finite volume or finite difference discretization was
used. In this paper, we propose an eigenfunction expansion approach combined with singular perturbation and demonstrate that
the proposed scheme can achieve an order of magnitude accuracy improvement with the same number of equations. Moreover, it
is also shown that the proposed scheme converges much faster to attain a given accuracy. Hence, for a network simulation of
the neurons with passive dendritic cables, the proposed scheme can be an attractive alternative to the compartment model,
that leads to a low order model with much higher accuracy or that converges faster for a given accuracy. 相似文献
18.
Studies on the interaction of F-actin with tropomyosin 总被引:1,自引:0,他引:1
19.
Dynamic regulation of the filamentous actin (F-actin) cytoskeleton is critical to numerous physical cellular processes, including cell adhesion, migration and division. Each of these processes require precise regulation of cell shape and mechanical force generation which, to a large degree, is regulated by the dynamic mechanical behaviors of a diverse assortment of F-actin networks and bundles. In this review, we review the current understanding of the mechanics of F-actin networks and identify areas of further research needed to establish physical models. We first review our understanding of the mechanical behaviors of F-actin networks reconstituted in vitro, with a focus on the nonlinear mechanical response and behavior of “active” F-actin networks. We then explore the types of mechanical response measured of cytoskeletal F-actin networks and bundles formed in living cells and identify how these measurements correspond to those performed on reconstituted F-actin networks formed in vitro. Together, these approaches identify the challenges and opportunities in the study of living cytoskeletal matter. 相似文献
20.
Kim E Wriggers W Phillips M Kokabi K Rubenstein PA Reisler E 《Journal of molecular biology》2000,299(2):421-429
The DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274), and the C terminus region are among the structural elements of monomeric (G-) actin proposed to form the intermonomer interface in F-actin. To test the proximity and interactions of these elements and to provide constraints on models of F-actin structure, cysteine residues were introduced into yeast actin either at residue 41 or 265. These mutations allowed for specific cross-linking of F-actin between C41 and C265, C265 and C374, and C41 and C265 using dibromobimane and disulfide bond formation. The cross-linked products were visualized on SDS-PAGE and by electron microscopy. Model calculations carried out for the cross-linked F-actins revealed that considerable flexibility or displacement of actin residues is required in the disulfide cross-linked segments to fit these filaments into model F-actin structures. The calculated, cross-linked structures showed a better fit to the Holmes rather than the refined Lorenz model of F-actin. It is predicted on the basis of such calculations that image reconstruction of electron micrographs of disulfide cross-linked C41-C374 F-actin should provide a conclusive test of these two similar models of F-actin structure. 相似文献