首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F-actin networks are involved in cell mechanical processes ranging from motility to endocytosis. The mesoscale architecture of assemblies of individual F-actin polymers that gives rise to micrometer-scale rheological properties is poorly understood, despite numerous in vivo and vitro studies. In vitro networks have been shown to organize into spatial patterns when spatially confined, including dense spherical shells inside spherical emulsion droplets. Here we develop a simplified model of an isotropic, compressible, viscoelastic material continually assembling and disassembling. We demonstrate that spherical shells emerge naturally when the strain relaxation rate (corresponding to internal network reorganization) is slower than the disassembly rate (corresponding to F-actin depolymerization). These patterns are consistent with recent experiments, including a collapse of shells to a central high-density focus of F-actin when either assembly or disassembly is reduced with drugs. Our results demonstrate how complex spatio-temporal patterns can emerge without spatially distributed force generation, polar alignment of F-actin polymers, or spatially nonuniform regulation of F-actin by upstream biochemical networks.  相似文献   

2.
Actin filaments (F-actin) are protein polymers that undergo rapid assembly and disassembly and control an enormous variety of cellular processes ranging from force production to regulation of signal transduction. Consequently, imaging of F-actin has become an increasingly important goal for biologists seeking to understand how cells and tissues function. However, most of the available means for imaging F-actin in living cells suffer from one or more biological or experimental shortcomings. Here we describe fluorescent F-actin probes based on the calponin homology domain of utrophin (Utr-CH), which binds F-actin without stabilizing it in vitro. We show that these probes faithfully report the distribution of F-actin in living and fixed cells, distinguish between stable and dynamic F-actin, and have no obvious effects on processes that depend critically on the balance of actin assembly and disassembly.  相似文献   

3.
Immunofluorescence and cytochemical studies have demonstrated that filamentous actin is mainly localized in the cortical surface of the chromaffin cell. It has been suggested that these actin filament networks act as a barrier to the secretory granules, impeding their contact with the plasma membrane. Stimulation of chromaffin cells produces a disassembly of actin filament networks, implying the removal of the barrier. The presence of gelsolin and scinderin, two Ca(2+)-dependent actin filament severing proteins, in the cortical surface of the chromaffin cells, suggests the possibility that cell stimulation brings about activation of one or more actin filament severing proteins with the consequent disruption of actin networks. Therefore, biochemical studies and fluorescence microscopy experiments with scinderin and gelsolin antibodies and rhodamine-phalloidin, a probe for filamentous actin, were performed in cultured chromaffin cells to study the distribution of scinderin, gelsolin, and filamentous actin during cell stimulation and to correlate the possible changes with catecholamine secretion. Here we report that during nicotinic stimulation or K(+)-evoked depolarization, subcortical scinderin but not gelsolin is redistributed and that this redistribution precedes catecholamine secretion. The rearrangement of scinderin in patches is mediated by nicotinic receptors. Cell stimulation produces similar patterns of distribution of scinderin and filamentous actin. However, after the removal of the stimulus, the recovery of scinderin cortical pattern of distribution is faster than F-actin reassembly, suggesting that scinderin is bound in the cortical region of the cell to a component other than F-actin. We also demonstrate that peripheral actin filament disassembly and subplasmalemmal scinderin redistribution are calcium-dependent events. Moreover, experiments with an antibody against dopamine-beta-hydroxylase suggest that exocytosis sites are preferentially localized to areas of F-actin disassembly.  相似文献   

4.
The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin-binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle alphaTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.  相似文献   

5.
Clathrin-mediated endocytosis in mammalian cells is critical for a variety of cellular processes including nutrient uptake and cell surface receptor down-regulation. Despite the findings that numerous endocytic accessory proteins directly or indirectly regulate actin dynamics and that actin assembly is spatially and temporally coordinated with endocytosis, direct functional evidence for a role of actin during clathrin-coated vesicle formation is lacking. Here, we take parallel biochemical and microscopic approaches to address the contribution of actin polymerization/depolymerization dynamics to clathrin-mediated endocytosis. When measured using live-cell fluorescence microscopy, disruption of the F-actin assembly and disassembly cycle with latrunculin A or jasplakinolide results in near complete cessation of all aspects of clathrin-coated structure (CCS) dynamics. Stage-specific biochemical assays and quantitative fluorescence and electron microscopic analyses establish that F-actin dynamics are required for multiple distinct stages of clathrin-coated vesicle formation, including coated pit formation, constriction, and internalization. In addition, F-actin dynamics are required for observed diverse CCS behaviors, including splitting of CCSs from larger CCSs, merging of CCSs, and lateral mobility on the cell surface. Our results demonstrate a key role for actin during clathrin-mediated endocytosis in mammalian cells.  相似文献   

6.
7.
The processes whereby ecological networks emerge, persist and decay throughout ecosystem development are largely unknown. Here we study networks of plant and arbuscular mycorrhizal fungal (AMF) communities along a 120 000 year soil chronosequence, as they undergo assembly (progression) and then disassembly (retrogression). We found that network assembly and disassembly were symmetrical, self‐reinforcing processes that together were capable of generating key attributes of network architecture. Plant and AMF species that had short indirect paths to others in the community (i.e. high centrality), rather than many direct interaction partners (i.e. high degree), were best able to attract new interaction partners and, in the case of AMF species, also to retain existing interactions with plants during retrogression. We then show using simulations that these non‐random patterns of attachment and detachment promote nestedness of the network. These results have implications for predicting extinction sequences, identifying focal points for invasions and suggesting trajectories for restoration.  相似文献   

8.
Dynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis   总被引:2,自引:0,他引:2  
Earlier work by us as well as others has demonstrated that filamentous actin is mainly localized in the cortical surface of chromaffin cell. This F-actin network acts as a barrier to the chromaffin granules, impeding their contact with the plasma membrane. Chromaffin granules contain α-actinin, an anchorage protein that mediates F-actin association with these vesicles. Consequently, chromaffin granules crosslink and stabilize F-actin networks. Stimulation of chromaffin cell produces disassembly of F-actin and removal of the barrier. This interpretation is based on: (1) Cytochemical experiments with rhodamine-labeled phalloidin indicated that in resting chromaffin cells, the F-actin network is visualized as a strong cortical fluorescent ring; (2) Nicotinic receptor stimulation produced fragmentation of this fluorescent ring, leaving chromaffin cell cortical areas devoid of fluorescence; and (3) These changes are accompanied by a decrease in F-actin, a concomitant increase in G-actin, and a decrease in the F-actin associated with the chromaffin cell cytoskeleton (DNAse I assay). We also have demonstrated the presence in chromaffin cells of gelsolin and scinderin, two Ca2+-dependent actin filament-severing proteins, and suggested that chromaffin cell stimulation activates scinderin with the consequent disruption of F-actin networks. Scinderin, a protein recently isolated in our laboratory, is restricted to secretory cells and is present mainly in the cortical chromaffin cell cytoplasm. Scinderin, which is structurally different from gelsolin (different pIs, amino acid composition, peptide maps, and so on), decreases the viscosity of actin gels as a result of its F-actin-severing properties, as demonstrated by electron microscopy. Stimulation of chromaffin cells either by nicotine (10 μM) or high K+ (56 mM) produces a redistribution of subplasmalemmal scinderin and actin disassembly, which preceded exocytosis. The redistribution of scinderin and exocytosis is Ca2+-dependent and is not mediated by muscarinic receptors. Furthermore, our cytochemical experiments demonstrate that chromaffin cell stimulation produces a concomitant and similar redistribution of scinderin (fluorescein-labeled antibody) and F-actin (rhodamine phalloidin fluorescence), suggesting a functional interaction between these two proteins. Stimulation-induced redistribution of scinderin and F-actin disassembly would produce subplasmalemmal areas of decreased cytoplasmic viscosity and increased mobility for chromaffin granules. Exocytosis sites, evaluated by antidopamine-β-hydroxylase (anti-DβH) surface staining, are preferentially localized in plasma membrane areas devoid of F-actin.  相似文献   

9.
Dynamic regulation of the filamentous actin (F-actin) cytoskeleton is critical to numerous physical cellular processes, including cell adhesion, migration and division. Each of these processes require precise regulation of cell shape and mechanical force generation which, to a large degree, is regulated by the dynamic mechanical behaviors of a diverse assortment of F-actin networks and bundles. In this review, we review the current understanding of the mechanics of F-actin networks and identify areas of further research needed to establish physical models. We first review our understanding of the mechanical behaviors of F-actin networks reconstituted in vitro, with a focus on the nonlinear mechanical response and behavior of “active” F-actin networks. We then explore the types of mechanical response measured of cytoskeletal F-actin networks and bundles formed in living cells and identify how these measurements correspond to those performed on reconstituted F-actin networks formed in vitro. Together, these approaches identify the challenges and opportunities in the study of living cytoskeletal matter.  相似文献   

10.
Coordinated assembly and disassembly of actin into filaments and higher order structures such as stress fibers and lamellipodia are fundamental for cell migration and adhesion. However, the precise spatiotemporal regulation of F-actin structures is not completely understood. SWAP-70, a phosphatidylinositol 3,4,5-trisphosphate-interacting, F-actin-binding protein, participates in actin rearrangements through yet unknown mechanisms. Here, we show that SWAP-70 is an F-actin-bundling protein that oligomerizes through a Gln/Glu-rich stretch within a coiled-coil region. SWAP-70 bundles filaments in parallel and anti-parallel fashion through its C-terminal F-actin binding domain and delays dilution-induced F-actin depolymerization. We further demonstrate that SWAP-70 co-localizes and directly interacts with cofilin, an F-actin severing and depolymerization factor, and contributes to the regulation of cofilin activity in vivo. In line with these activities, upon stem cell factor stimulation, murine bone marrow-derived mast cells lacking SWAP-70 display aberrant regulation of F-actin and actin free barbed ends dynamics. Moreover, proper stem cell factor-dependent cofilin activation via dephosphorylation and subcellular redistribution into a detergent-resistant cytoskeletal compartment also require SWAP-70. Together, these findings reveal an important role of SWAP-70 in the dynamic spatiotemporal regulation of F-actin networks.  相似文献   

11.
We have studied the effect of the Dictyostelium discoideum 30,000-D actin-bundling protein on the assembly and disassembly of pyrenyl-labeled actin in vitro. The results indicate that the protein is a potent inhibitor of the rate of actin depolymerization. The inhibition is rapid, dose dependent, and is observed at both ends of the filament. There is little effect of 30-kD protein on the initial rate of elongation from F-actin seeds or on the spontaneous nucleation of actin polymerization. We could detect little or no effect on the critical concentration. The novel feature of these results is that the filament ends are free for assembly but are significantly impaired in disassembly with little change in the critical concentration at steady state. The effects appear to be largely independent of the cross-linking of actin filaments by the 30-kD protein. Actin cross-linking proteins may not only cross-link actin filaments, but may also differentially protect filaments in cells from disassembly and promote the formation of localized filament arrays with enhanced stability.  相似文献   

12.
Cell migration is based on an actin treadmill, which in turn depends on recycling of G-actin across the cell, from the rear where F-actin disassembles, to the front, where F-actin polymerizes. To analyze the rates of the actin transport, we used the Virtual Cell software to solve the diffusion-drift-reaction equations for the G-actin concentration in a realistic three-dimensional geometry of the motile cell. Numerical solutions demonstrate that F-actin disassembly at the cell rear and assembly at the front, along with diffusion, establish a G-actin gradient that transports G-actin forward “globally” across the lamellipod. Alternatively, if the F-actin assembly and disassembly are distributed throughout the lamellipod, F-/G-actin turnover is local, and diffusion plays little role. Chemical reactions and/or convective flow of cytoplasm of plausible magnitude affect the transport very little. Spatial distribution of G-actin is smooth and not sensitive to F-actin density fluctuations. Finally, we conclude that the cell body volume slows characteristic diffusion-related relaxation time in motile cell from ∼10 to ∼100 s. We discuss biological implications of the local and global regimes of the G-actin transport.  相似文献   

13.
Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.  相似文献   

14.
Salmonella force their way into nonphagocytic host intestinal cells to initiate infection. Uptake is triggered by delivery into the target cell of bacterial effector proteins that stimulate cytoskeletal rearrangements and membrane ruffling. The Salmonella invasion protein A (SipA) effector is an actin binding protein that enhances uptake efficiency by promoting actin polymerization. SipA-bound actin filaments (F-actin) are also resistant to artificial disassembly in vitro. Using biochemical assays of actin dynamics and actin-based motility models, we demonstrate that SipA directly arrests cellular mechanisms of actin turnover. SipA inhibits ADF/cofilin-directed depolymerization both by preventing binding of ADF and cofilin and by displacing them from F-actin. SipA also protects F-actin from gelsolin-directed severing and reanneals gelsolin-severed F-actin fragments. These data suggest that SipA focuses host cytoskeletal reorganization by locally inhibiting both ADF/cofilin- and gelsolin-directed actin disassembly, while simultaneously stimulating pathogen-induced actin polymerization.  相似文献   

15.
Intrinsic microtubule stability in interphase cells   总被引:13,自引:4,他引:9       下载免费PDF全文
Interphase microtubule arrays are dynamic in intact cells under normal conditions and for this reason they are currently assumed to be composed of polymers that are intrinsically labile, with dynamics that correspond to the behavior of microtubules assembled in vitro from purified tubulin preparations. Here, we propose that this apparent lability is due to the activity of regulatory effectors that modify otherwise stable polymers in the living cell. We demonstrate that there is an intrinsic stability in the microtubule network in a variety of fibroblast and epithelial cells. In the absence of regulatory factors, fibroblast cell interphase microtubules are for the most part resistant to cold temperature exposure, to dilution-induced disassembly and to nocodazole-induced disassembly. In epithelial cells, microtubules are cold-labile, but otherwise similar in behavior to polymers observed in fibroblast cells. Factors that regulate stability of microtubules appear to include Ca2+ and the p34cdc2 protein kinase. Indeed, this kinase induced complete destabilization of microtubules when applied to lysed cells, while a variety of other protein kinases were ineffective. This suggests that p34cdc2, or a kinase of similar specificity, may phosphorylate and inactivate microtubule-associated proteins, thereby conferring lability to otherwise length-wise stabilized microtubules.  相似文献   

16.
In order to study intact red cell membrane skeletons, we developed two methods for the electron microscopic study of stress-ruptured and partially opened glutaraldehyde pre-fixed Triton shells of red cell ghosts. Both methods showed continuous networks of fine filaments decorated and apparently crosslinked by elongated particles. Our electron micrographs show a filamentous component that is morphologically consistent with F-actin. Quantitative considerations, including the dimensions of the elongated particles and published estimates of the number of particles in situ, suggest that compact spectrin decamers or dodecamers may exist in intact red cells. Long filaments consistent with F-actin appear to be decorated with the putative spectrin particles.  相似文献   

17.
The organization of filamentous actin (F-actin) in resilient networks is coordinated by various F-actin cross-linking proteins. The relative tolerance of cells to null mutations of genes that code for a single actin cross-linking protein suggests that the functions of those proteins are highly redundant. This apparent functional redundancy may, however, reflect the limited resolution of available assays in assessing the mechanical role of F-actin cross-linking/bundling proteins. Using reconstituted F-actin networks and rheological methods, we demonstrate how alpha-actinin and fascin, two F-actin cross-linking/bundling proteins that co-localize along stress fibers and in lamellipodia, could synergistically enhance the resilience of F-actin networks in vitro. These two proteins can generate microfilament arrays that "yield" at a strain amplitude that is much larger than each one of the proteins separately. F-actin/alpha-actinin/fascin networks display strain-induced hardening, whereby the network "stiffens" under shear deformations, a phenomenon that is non-existent in F-actin/fascin networks and much weaker in F-actin/alpha-actinin networks. Strain-hardening is further enhanced at high rates of deformation and high concentrations of actin cross-linking proteins. A simplified model suggests that the optimum results of the competition between the increased stiffness of bundles and their decreased density of cross-links. Our studies support a re-evaluation of the notion of functional redundancy among cytoskeletal regulatory proteins.  相似文献   

18.
The large majority of chromaffin vesicles are excluded from the plasma membrane by a cortical F-actin network. Treatment of chromaffin cells with phorbol 12-myristate 13-acetate produces disassembly of cortical F-actin, increasing the number of vesicles at release sites (Vitale, M. L., Seward, E. P., and Trifaró, J. M. (1995) Neuron 14, 353-363). Here, we provide evidence for involvement of myristoylated alanine-rich protein kinase C substrate (MARCKS), a protein kinase C substrate, in chromaffin cell secretion. MARCKS binds and cross-links F-actin, the latter is inhibited by protein kinase C-induced MARCKS phosphorylation. MARCKS was found in chromaffin cells by immunoblotting. MARCKS was also detected by immunoprecipitation. In intact or permeabilized cells MARCKS phosphorylation increased upon stimulation with 10(-7) m phorbol 12-myristate 13-acetate. This was accompanied by cortical F-actin disassembly and potentiation of secretion. MARCKS phosphorylation, cortical F-actin disassembly, and potentiation of Ca(2+)-evoked secretion were inhibited by a peptide (MARCKS phosphorylation site domain sequence (MPSD)) with amino acid sequence corresponding to MARCKS phosphorylation site. MPSD was phosphorylated in the process. A similar peptide (alanine-substituted phosphorylated site domain) with four serine residues of MPSD substituted by alanines was ineffective. These results provide the first evidence for MARCKS involvement in chromaffin cell secretion and suggest that regulation of cortical F-actin cross-linking might be involved in this process.  相似文献   

19.
Neurosecretory cells including chromaffin cells possess a mesh of filamentous actin underneath the plasma membrane. We have proposed that the F-actin network acts as a barrier to the secretory vesicles blocking their access to exocytotic sites at the plasma membrane. Disassembly of cortical F-actin in chromaffin cells in response to stimulation is thought to allow the free movement of secretory vesicles to exocytotic sites. Moreover, experiments by us using morphometric analysis of resting and stimulated chromaffin cells together with membrane capacitance measurements have shown that cortical F-actin controls the traffic of vesicles from the vesicle reserve compartment to the release-ready vesicle compartment. The dynamics of the cortical F-actin is controlled by two pathways: A) stimulation-induced Ca(2+) entry and scinderin activation; and B) protein kinase C (PKC) activation and MARCKS (myristoylated alanine-rich C kinase substrate) phosphorylation. When chromaffin cells are stimulated through nicotinic receptors, cortical F-actin disassembly is mainly through the intervention of pathway A, since in the presence of PKC inhibitors, F-actin disassembly in response to cholinergic stimulation is only blocked by 20%. Pathway A involves the activation of scinderin by Ca(2+) with a consequent F-actin severing. Pathway B is fully activated by phorbol esters and in this case PKC blockers inhibit by 100% the disruption of cortical F-actin. This pathway operates through MARCKS. A peptide with amino acid sequence corresponding to the phosphorylation site domain of MARCKS, which also corresponds to its actin binding site, blocks PMA potentiation of Ca(2+)-induced catecholamine release. The results suggest that under physiological conditions (i.e., nicotinic receptor stimulation) pathway A is the principal mechanism for the control of cortical F-actin dynamic changes.  相似文献   

20.
The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号