首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal exocytosis is mediated by a Ca2+-triggered membrane fusion event that joins synaptic vesicles and presynaptic membrane. In this event, synaptotagmin I plays a key role as a Ca2+ sensor protein that binds to and bends the presynaptic membrane with its C2B domain, and thereby initiates membrane fusion. We report free energy calculations according to which C2B-induced membrane bending is preceded by a Ca2+- and membrane-dependent conformational transition. In this transition C2B attaches to the membrane, moves its C-terminal helix from the orientation seen in the available (but membrane-free) crystal/NMR structures as pointing away from the membrane (helix-up), to an orientation pointing toward the membrane (helix-down). In the C2B helix-down state, lipid tails in the proximal membrane bilayer leaflet interact with the moved helix and become disordered, whereas tails in the distal leaflet, to keep in contact with the proximal leaflet, become stretched and ordered. The difference in lipid tail packing between the two leaflets results in an imbalance of pressure across the membrane, and thereby causes membrane bending. The lipid-disordering monitored in the simulations is well suited to facilitate Ca2+-triggered membrane fusion.  相似文献   

2.
Zhen Zhang 《Biophysical journal》2010,98(11):2524-2534
A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca2+-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca2+-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca2+-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape.  相似文献   

3.
The Ca2+-independent membrane interactions of the soluble C2 domains from synaptotagmin 1 (syt1) were characterized using a combination of site-directed spin labeling and vesicle sedimentation. The second C2 domain of syt1, C2B, binds to membranes containing phosphatidylserine and phosphatidylcholine in a Ca2+-independent manner with a lipid partition coefficient of approximately 3.0 × 102 M− 1. A soluble fragment containing the first and second C2 domains of syt1, C2A and C2B, has a similar affinity, but C2A alone has no detectable affinity to phosphatidylcholine/phosphatidylserine bilayers in the absence of Ca2+. Although the Ca2+-independent membrane affinity of C2B is modest, it indicates that this domain will never be free in solution within the cell. Site-directed spin labeling was used to obtain bilayer depth restraints, and a simulated annealing routine was used to generate a model for the membrane docking of C2B in the absence of Ca2+. In this model, the polybasic strand of C2B forms the membrane binding surface for the domain; however, this face of C2B does not penetrate the bilayer but is localized within the aqueous double layer when C2B is bound. This double-layer location indicates that C2B interacts in a purely electrostatic manner with the bilayer interface. In the presence of Ca2+, the membrane affinity of C2B is increased approximately 20-fold, and the domain rotates so that the Ca2+-binding loops of C2B insert into the bilayer. This Ca2+-triggered conformational change may act as a switch to modulate the accessibility of the polybasic face of C2B and control interactions of syt1 with other components of the fusion machinery.  相似文献   

4.
The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+‐triggered synaptic vesicle exocytosis. BK‐channels are Ca2+‐activated large‐conductance K+‐channels that require close proximity to Ca2+‐channels for activation and control Ca2+‐triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK‐channels are recruited to presynaptic Ca2+‐channels, however, is unknown. Here, we show that RBPs (for RIM‐binding proteins), which are evolutionarily conserved active zone proteins containing SH3‐ and FN3‐domains, directly bind to BK‐channels. We find that RBPs interact with RIMs and Ca2+‐channels via their SH3‐domains, but to BK‐channels via their FN3‐domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK‐currents and depleted BK‐channels from active zones. Our data suggest that RBPs recruit BK‐channels into a RIM‐based macromolecular active zone complex that includes Ca2+‐channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio‐temporal coupling of Ca2+‐influx to Ca2+‐triggered neurotransmitter release in a presynaptic terminal.  相似文献   

5.
Phosphoinositides provide compartment-specific signals for membrane trafficking. Plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) is required for Ca2+-triggered vesicle exocytosis, but whether vesicles fuse into PIP2-rich membrane domains in live cells and whether PIP2 is metabolized during Ca2+-triggered fusion were unknown. Ca2+-dependent activator protein in secretion 1 (CAPS-1; CADPS/UNC31) and ubMunc13-2 (UNC13B) are PIP2-binding proteins required for Ca2+-triggered vesicle exocytosis in neuroendocrine PC12 cells. These proteins are likely effectors for PIP2, but their localization during exocytosis had not been determined. Using total internal reflection fluorescence microscopy in live cells, we identify PIP2-rich membrane domains at sites of vesicle fusion. CAPS is found to reside on vesicles but depends on plasma membrane PIP2 for its activity. Munc13 is cytoplasmic, but Ca2+-dependent translocation to PIP2-rich plasma membrane domains is required for its activity. The results reveal that vesicle fusion into PIP2-rich membrane domains is facilitated by sequential PIP2-dependent activation of CAPS and PIP2-dependent recruitment of Munc13. PIP2 hydrolysis only occurs under strong Ca2+ influx conditions sufficient to activate phospholipase Cη2 (PLCη2). Such conditions reduce CAPS activity and enhance Munc13 activity, establishing PLCη2 as a Ca2+-dependent modulator of exocytosis. These studies provide a direct view of the spatial distribution of PIP2 linked to vesicle exocytosis via regulation of lipid-dependent protein effectors CAPS and Munc13.  相似文献   

6.
Ca2+-triggered membrane fusion is the defining step of exocytosis. Isolated urchin cortical vesicles (CV) provide a stage-specific preparation to study the mechanisms by which Ca2+ triggers the merger of two apposed native membranes. Thiol-reactive reagents that alkylate free sulfhydryl groups on proteins have been consistently shown to inhibit triggered fusion. Here, we characterize a novel effect of the alkylating reagent iodoacetamide (IA). IA was found to enhance the kinetics and Ca2+ sensitivity of both CV-plasma membrane and CV–CV fusion. If Sr2+, a weak Ca2+ mimetic, was used to trigger fusion, the potentiation was even greater than that observed for Ca2+, suggesting that IA acts at the Ca2+-sensing step of triggered fusion. Comparison of IA to other reagents indicates that there are at least two distinct thiol sites involved in the underlying fusion mechanism: one that regulates the efficiency of fusion and one that interferes with fusion competency.  相似文献   

7.
ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus.  相似文献   

8.
Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.  相似文献   

9.
The docking of synaptic vesicles on the presynaptic membrane and their priming for fusion with it to mediate synaptic transmission of nerve impulses typically occur at structurally specialized regions on the membrane called active zones. Stable components of active zones include aggregates of macromolecules, ‘active zone material’ (AZM), attached to the presynaptic membrane, and aggregates of Ca2+-channels in the membrane, through which Ca2+ enters the cytosol to trigger impulse-evoked vesicle fusion with the presynaptic membrane by interacting with Ca2+-sensors on the vesicles. This laboratory has used electron tomography to study, at macromolecular spatial resolution, the structure and function of AZM at the simply arranged active zones of axon terminals at frog neuromuscular junctions. The results support the conclusion that AZM directs the docking and priming of synaptic vesicles and essential positioning of Ca2+-channels relative to the vesicles'' Ca2+-sensors. Here we review the findings and comment on their applicability to understanding mechanisms of docking, priming and Ca2+-triggering at other synapses, where the arrangement of active zone components differs.  相似文献   

10.
近年来,对突触小泡释放神经递质分子机制的研究迅速发展,发现了大量位于神经末梢的蛋白质.它们之间的相互作用与突触小泡释放神经递质相关,特别是位于突触小泡膜上的突触小泡蛋白/突触小泡相关膜蛋白(synaptobrevin/VAMP),位于突触前膜上的syntaxin和突触小体相关蛋白(synaptosome-associated protein of 25 ku),三者聚合形成的可溶性NSF附着蛋白受体(SNARE)核心复合体在突触小泡的胞裂外排、释放递质过程中有重要作用.而一些已知及未知的与SNARE蛋白有相互作用的蛋白质,可通过调节SNARE核心复合体的形成与解离来影响突触小泡的胞裂外排,从而可以调节突触信号传递的效率及强度,在突触可塑性的形成中起重要作用.  相似文献   

11.
Cortical vesicles (CV) possess components critical to the mechanism of exocytosis. The homotypic fusion of CV centrifuged or settled into contact has a sigmoidal Ca2+ activity curve comparable to exocytosis (CV–PM fusion). Here we show that Sr2+ and Ba2+ also trigger CV–CV fusion, and agents affecting different steps of exocytotic fusion block Ca2+, Sr2+, and Ba2+-triggered CV–CV fusion. The maximal number of active fusion complexes per vesicle, <n\>Max, was quantified by NEM inhibition of fusion, showing that CV–CV fusion satisfies many criteria of a mathematical analysis developed for exocytosis. Both <n\>Max and the Ca2+ sensitivity of fusion complex activation were comparable to that determined for CV–PM fusion. Using Ca2+-induced SNARE complex disruption, we have analyzed the relationship between membrane fusion (CV–CV and CV–PM) and the SNARE complex. Fusion and complex disruption have different sensitivities to Ca2+, Sr2+, and Ba2+, the complex remains Ca2+- sensitive on fusion-incompetent CV, and disruption does not correlate with the quantified activation of fusion complexes. Under conditions which disrupt the SNARE complex, CV on the PM remain docked and fusion competent, and isolated CV still dock and fuse, but with a markedly reduced Ca2+ sensitivity. Thus, in this system, neither the formation, presence, nor disruption of the SNARE complex is essential to the Ca2+-triggered fusion of exocytotic membranes. Therefore the SNARE complex alone cannot be the universal minimal fusion machine for intracellular fusion. We suggest that this complex modulates the Ca2+ sensitivity of fusion.  相似文献   

12.
The various experimental approaches and octadecyl rhodamine B chloride (R18) assay's capability to meet the criteria for examining the Ca2+dependent synaptic vesicles (SVs) fusion with target membranes have been investigated. The existence of at least two simultaneous processes one of which attributed to real Ca2+-dependent membrane fusion, while another is considered to be non-specific probe transfer has been shown. The differences in response to temperature changes were found for R18 fluorescence dequenching upon stimulation of membrane fusion or nonspecific probe transfer. The temperature dependences of the probe dequenching rate were the same for heterotypic and homotypic membrane systems and increased with the temperature growth. The combination of R18 fluorescence studies with the data obtained by dynamic light scattering (DLS) offers a unique opportunity for the determination of SVs aggregation and the membrane fusion. The cholesterol content of the synaptosomal plasma membrane was modulated by methyl-β-cyclodextrin (MCD). The MCD molecule has proven to bind directly the membrane cholesterol and interact with lipophilic probe R18 that affects its fluorescence. The obvious distinctions in probe dequenching due to the membrane mixing or the MCD effect were observed. The cholesterol depletion from the synaptosomal plasma membranes was found to inhibit the process of Ca2+-induced membrane fusion with SVs. Thus, the manipulations with conditions of R18 probe dequenching at the model conditions, specific for the Ca2+-triggered fusion steps of regulated exocytosis, allowed us to determine the relative contribution of probe transfer and genuine membrane fusion to the overall fluorescence signal.  相似文献   

13.
SNARE proteins catalyze many forms of biological membrane fusion, including Ca2+-triggered exocytosis. Although fusion mediated by SNAREs generally involves proteins anchored to each fusing membrane by a transmembrane domain (TMD), the role of TMDs remains unclear, and previous studies diverge on whether SNAREs can drive fusion without a TMD. This issue is important because it relates to the question of the structure and composition of the initial fusion pore, as well as the question of whether SNAREs mediate fusion solely by creating close proximity between two membranes versus a more active role in transmitting force to the membrane to deform and reorganize lipid bilayer structure. To test the role of membrane attachment, we generated four variants of the synaptic v-SNARE synaptobrevin-2 (syb2) anchored to the membrane by lipid instead of protein. These constructs were tested for functional efficacy in three different systems as follows: Ca2+-triggered dense core vesicle exocytosis, spontaneous synaptic vesicle exocytosis, and Ca2+-synaptotagmin-enhanced SNARE-mediated liposome fusion. Lipid-anchoring motifs harboring one or two lipid acylation sites completely failed to support fusion in any of these assays. Only the lipid-anchoring motif from cysteine string protein-α, which harbors many lipid acylation sites, provided support for fusion but at levels well below that achieved with wild type syb2. Thus, lipid-anchored syb2 provides little or no support for exocytosis, and anchoring syb2 to a membrane by a TMD greatly improves its function. The low activity seen with syb2-cysteine string protein-α may reflect a slower alternative mode of SNARE-mediated membrane fusion.  相似文献   

14.
Synaptotagmins (Syt) are a large family of proteins that regulate membrane traffic in neurons and other cell types. One isoform that has received considerable attention is SYT4, with apparently contradictory reports concerning the function of this isoform in fruit flies and mice. SYT4 was reported to function as a negative regulator of neurotrophin secretion in mouse neurons and as a positive regulator of secretion of a yet to be identified growth factor from muscle cells in flies. Here, we have directly compared the biochemical and functional properties of rat and fly SYT4. We report that rat SYT4 inhibited SNARE-catalyzed membrane fusion in both the absence and presence of Ca2+. In marked contrast, fly SYT4 stimulated SNARE-mediated membrane fusion in response to Ca2+. Analysis of chimeric molecules, isolated C2 domains, and point mutants revealed that the C2B domain of the fly protein senses Ca2+ and is sufficient to stimulate fusion. Rat SYT4 was able to stimulate fusion in response to Ca2+ when the conserved Asp-to-Ser Ca2+ ligand substitution in its C2A domain was reversed. In summary, rat SYT4 serves as an inhibitory isoform, whereas fly SYT4 is a bona fide Ca2+ sensor capable of coupling Ca2+ to membrane fusion.  相似文献   

15.
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca2+-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca2+-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.  相似文献   

16.
Exocytosis plays an essential role in fundamental cellular events by secreting neurotransmitters, hormones, and cytokines. Although the minimal molecular components termed SNARE that govern membrane fusion have been identified, the precise mechanisms behind the finely-tuned regulation of exocytosis executed by many molecules in addition to the actions of SNARE remain to be fully identified. Here, we evaluated a model system for assaying catecholamine secretion from permeabilized rat pheochromocytoma PC12 cells, in which the structural integrity required was preserved adequately. Among several chemical reagents used for the cell permeabilization and freezing-thawing procedures, the treatment of cells with digitonin at concentrations of 7.5–15 μM was most suitable for the secretion assay, as it was considered to cause mild disruption of the plasma membrane, enabling free access to small molecules such as Ca2+ and ATP to the minimal membrane fusion machinery. No additional cytosolic proteins were required to reconstitute the secretion. In this assay model, ATP was necessary to maintain the priming state before Ca2+-triggered exocytosis but was not required for the Ca2+-triggered membrane fusion process itself. The present study provides a useful cell model for exploring novel molecules that may be implicated in exocytosis such as those playing regulatory roles in addition to the “minimal membrane fusion machinery for exocytosis”, which does not require any additional special apparatus.  相似文献   

17.
From a presynaptic perspective, neuronal communication mainly relies on two interdependent events: The fast Ca2+-triggered fusion of neurotransmitter-containing synaptic vesicles (SVs) and their subsequent high-fidelity reformation. To allow rapid neurotransmission, SVs have evolved into fascinating molecular nanomachines equipped with a well-defined set of proteins. However, upon exocytosis, SVs fully collapse into the presynaptic plasma membrane leading to the dispersal of their molecular components. While the canonical function of endocytic proteins at the presynapse was believed to be the retrieval of SV proteins via clathrin-mediated endocytosis, it is now evident that clathrin-independent endocytic mechanisms predominate. We will highlight in how far these mechanisms still rely on the classical endocytic machinery and discuss the emerging functions of endocytic proteins in release site clearance and SV reformation from endosomal-like vacuoles.  相似文献   

18.
The Ca2+-triggered merger of two apposed membranes is the defining step of regulated exocytosis. CHOL is required at critical levels in secretory vesicle membranes to enable efficient, native membrane fusion: CHOL-sphingomyelin enriched microdomains organize the site and regulate fusion efficiency, and CHOL directly supports the capacity for membrane merger by virtue of its negative spontaneous curvature. Specific, structurally dissimilar lipids substitute for CHOL in supporting the ability of vesicles to fuse: diacylglycerol, αT, and phosphatidylethanolamine support triggered fusion in CHOL-depleted vesicles, and this correlates quantitatively with the amount of curvature each imparts to the membrane. Lipids of lesser negative curvature than cholesterol do not support fusion. The fundamental mechanism of regulated bilayer merger requires not only a defined amount of membrane-negative curvature, but this curvature must be provided by molecules having a specific, critical spontaneous curvature. Such a local lipid composition is energetically favorable, ensuring the necessary “spontaneous” lipid rearrangements that must occur during native membrane fusion—Ca2+-triggered fusion pore formation and expansion. Thus, different fusion sites or vesicle types can use specific alternate lipidic components, or combinations thereof, to facilitate and modulate the fusion pore.  相似文献   

19.
Regulation of organellar fusion and fission by Ca2+ has emerged as a central paradigm in intracellular membrane traffic. Originally formulated for Ca2+-driven SNARE-mediated exocytosis in the presynaptic terminals, it was later expanded to explain membrane traffic in other exocytic events within the endo-lysosomal system. The list of processes and conditions that depend on the intracellular membrane traffic includes aging, antigen and lipid processing, growth factor signaling and enzyme secretion. Characterization of the ion channels that regulate intracellular membrane fusion and fission promises novel pharmacological approaches in these processes when their function becomes aberrant. The recent identification of Ca2+ permeability through the intracellular ion channels comprising the mucolipin (TRPMLs) and the two-pore channels (TPCs) families pinpoints the candidates for the Ca2+ channel that drive intracellular membrane traffic. The present review summarizes the recent developments and the current questions relevant to this topic.  相似文献   

20.
Regulation of organellar fusion and fission by Ca2+ has emerged as a central paradigm in intracellular membrane traffic. Originally formulated for Ca2+-driven SNARE-mediated exocytosis in the presynaptic terminals, it was later expanded to explain membrane traffic in other exocytic events within the endo-lysosomal system. The list of processes and conditions that depend on the intracellular membrane traffic includes aging, antigen and lipid processing, growth factor signaling and enzyme secretion. Characterization of the ion channels that regulate intracellular membrane fusion and fission promises novel pharmacological approaches in these processes when their function becomes aberrant. The recent identification of Ca2+ permeability through the intracellular ion channels comprising the mucolipin (TRPMLs) and the two-pore channels (TPCs) families pinpoints the candidates for the Ca2+ channel that drive intracellular membrane traffic. The present review summarizes the recent developments and the current questions relevant to this topic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号