首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the “random forest” ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.  相似文献   

2.
《Organogenesis》2013,9(4):231-237
Cultured DRGs in different gel scaffolds were analyzed using CARS microscopy to determine its possible use as a label-free imaging option for tracking cellular growth in a gel scaffold. This study demonstrates for the first time the applicability of CARS microscopy to the imaging of live neuronal cells in GAG hydrogels. By tuning the laser beating frequency, ωp ? ωs, to match the vibration of C-H bonds in the cell membrane, the CARS signal yields detailed, high-quality images of neurites with single membrane detection sensitivity. The results demonstrate that CARS imaging allows monitoring of cellular growth in a tissue scaffold over time, with a contrast that shows comparable cellular structures to those obtained using standard fluorescent staining techniques. These findings show the potential of CARS microscopy to assist in the understanding of organogenesis processes in a tissue scaffold.  相似文献   

3.
Cellular biomolecules contain unique molecular vibrations that can be visualized by coherent anti-Stokes Raman scattering (CARS) microscopy without the need for labels. Here we review the application of CARS microscopy for label-free imaging of cells and tissues using the natural vibrational contrast that arises from biomolecules like lipids as well as for imaging of exogenously added probes or drugs. High-resolution CARS microscopy combined with multimodal imaging has allowed for dynamic monitoring of cellular processes such as lipid metabolism and storage, the movement of organelles, adipogenesis and host-pathogen interactions and can also be used to track molecules within cells and tissues. The CARS imaging modality provides a unique tool for biological chemists to elucidate the state of a cellular environment without perturbing it and to perceive the functional effects of added molecules.  相似文献   

4.
MOTIVATION: Many practical tasks in biomedicine require accessing specific types of information in scientific literature; e.g. information about the methods, results or conclusions of the study in question. Several approaches have been developed to identify such information in scientific journal articles. The best of these have yielded promising results and proved useful for biomedical text mining tasks. However, relying on fully supervised machine learning (ml) and a large body of annotated data, existing approaches are expensive to develop and port to different tasks. A potential solution to this problem is to employ weakly supervised learning instead. In this article, we investigate a weakly supervised approach to identifying information structure according to a scheme called Argumentative Zoning (az). We apply four weakly supervised classifiers to biomedical abstracts and evaluate their performance both directly and in a real-life scenario in the context of cancer risk assessment. RESULTS: Our best weakly supervised classifier (based on the combination of active learning and self-training) performs well on the task, outperforming our best supervised classifier: it yields a high accuracy of 81% when just 10% of the labeled data is used for training. When cancer risk assessors are presented with the resulting annotated abstracts, they find relevant information in them significantly faster than when presented with unannotated abstracts. These results suggest that weakly supervised learning could be used to improve the practical usefulness of information structure for real-life tasks in biomedicine.  相似文献   

5.
Hepatic microvesicular steatosis is a hallmark of drug-induced hepatotoxicity and early-stage fatty liver disease. Current histopathology techniques are inadequate for the clinical evaluation of hepatic microvesicular steatosis. In this paper, we explore the use of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the detection and characterization of hepatic microvesicular steatosis. We show that CARS microscopy is more sensitive than Oil Red O histology for the detection of microvesicular steatosis. Computer-assisted analysis of liver lipid level based on CARS signal intensity is consistent with triglyceride measurement using a standard biochemical assay. Most importantly, in a single measurement procedure on unprocessed and unstained liver tissues, multimodal CARS imaging provides a wealth of critical information including the detection of microvesicular steatosis and quantitation of liver lipid content, number and size of lipid droplets, and lipid unsaturation and packing order of lipid droplets. Such information can only be assessed by multiple different methods on processed and stained liver tissues or tissue extracts using current standard analytical techniques. Multimodal CARS microscopy also permits label-free identification of lipid-rich non-parenchymal cells. In addition, label-free and non-perturbative CARS imaging allow rapid screening of mitochondrial toxins-induced microvesicular steatosis in primary hepatocyte cultures. With its sensitivity and versatility, multimodal CARS microscopy should be a powerful tool for the clinical evaluation of hepatic microvesicular steatosis.  相似文献   

6.
Mismatch string kernels for discriminative protein classification   总被引:1,自引:0,他引:1  
MOTIVATION: Classification of proteins sequences into functional and structural families based on sequence homology is a central problem in computational biology. Discriminative supervised machine learning approaches provide good performance, but simplicity and computational efficiency of training and prediction are also important concerns. RESULTS: We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the problem of protein classification and remote homology detection. These kernels measure sequence similarity based on shared occurrences of fixed-length patterns in the data, allowing for mutations between patterns. Thus, the kernels provide a biologically well-motivated way to compare protein sequences without relying on family-based generative models such as hidden Markov models. We compute the kernels efficiently using a mismatch tree data structure, allowing us to calculate the contributions of all patterns occurring in the data in one pass while traversing the tree. When used with an SVM, the kernels enable fast prediction on test sequences. We report experiments on two benchmark SCOP datasets, where we show that the mismatch kernel used with an SVM classifier performs competitively with state-of-the-art methods for homology detection, particularly when very few training examples are available. Examination of the highest-weighted patterns learned by the SVM classifier recovers biologically important motifs in protein families and superfamilies.  相似文献   

7.
This work introduces a novel classifier for a P300-based speller, which, contrary to common methods, can be trained entirely unsupervisedly using an Expectation Maximization approach, eliminating the need for costly dataset collection or tedious calibration sessions. We use publicly available datasets for validation of our method and show that our unsupervised classifier performs competitively with supervised state-of-the-art spellers. Finally, we demonstrate the added value of our method in different experimental settings which reflect realistic usage situations of increasing difficulty and which would be difficult or impossible to tackle with existing supervised or adaptive methods.  相似文献   

8.

Background and Aims

Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD). We tested whether second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD.

Methods

We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0–4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals.

Results

We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III.

Conclusions

This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading.  相似文献   

9.
Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. It is crucial to develop powerful tools to predict apoptosis protein locations for rapidly increasing gap between the number of known structural proteins and the number of known sequences in protein databank. In this study, amino acids pair compositions with different spaces are used to construct feature sets for representing sample of protein feature selection approach based on binary particle swarm optimization, which is applied to extract effective feature. Ensemble classifier is used as prediction engine, of which the basic classifier is the fuzzy K-nearest neighbor. Each basic classifier is trained with different feature sets. Two datasets often used in prior works are selected to validate the performance of proposed approach. The results obtained by jackknife test are quite encouraging, indicating that the proposed method might become a potentially useful tool for subcellular location of apoptosis protein, or at least can play a complimentary role to the existing methods in the relevant areas. The supplement information and software written in Matlab are available by contacting the corresponding author.  相似文献   

10.
Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor, support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms, BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and random sampling was used to construct model datasets, suitable for algorithm comparison.

The datasets are available at http://hydra.icgeb.trieste.it/benchmark.  相似文献   


11.
This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.  相似文献   

12.
13.
Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification.  相似文献   

14.
Yu X  Zheng X  Liu T  Dou Y  Wang J 《Amino acids》2012,42(5):1619-1625
Apoptosis proteins are very important for understanding the mechanism of programmed cell death. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on amino acid substitution matrix and auto covariance transformation, we introduce a new sequence-based model, which not only quantitatively describes the differences between amino acids, but also partially incorporates the sequence-order information. This method is applied to predict the apoptosis proteins’ subcellular location of two widely used datasets by the support vector machine classifier. The results obtained by jackknife test are quite promising, indicating that the proposed method might serve as a potential and efficient prediction model for apoptosis protein subcellular location prediction.  相似文献   

15.
Cultured DRGs in different gel scaffolds were analyzed using CA RS microscopy to determine its possible use as a label-free imaging option for tracking cellular growth in a gel scaffold. This study demonstrates for the first time the applicability of CA RS microscopy to the imaging of live neuronal cells in GAG hydrogels. By tuning the laser beating frequency, ωps, to match the vibration of C–H bonds in the cell membrane, the CA RS signal yields detailed, high-quality images of neurites with single membrane detection sensitivity. The results demonstrate that CA RS imaging allows monitoring of cellular growth in a tissue scaffold over time, with a contrast that shows comparable cellular structures to those obtained using standard fluorescent staining techniques. These findings show the potential of CARS microscopy to assist in the understanding of organogenesis processes in a tissue scaffold.Key words: dorsal root ganglia, neuronal growth, coherent anti-stokes raman scattering, nonlinear optical microscopy, label-free imaging, chondroitin sulfate, hyaluronic acid, poly(ethylene glycol) hydrogel  相似文献   

16.
Machine learning algorithms, including recent advances in deep learning, are promising for tools for detection and classification of broadband high frequency signals in passive acoustic recordings. However, these methods are generally data-hungry and progress has been limited by challenges related to the lack of labeled datasets adequate for training and testing. Large quantities of known and as yet unidentified broadband signal types mingle in marine recordings, with variability introduced by acoustic propagation, source depths and orientations, and interacting signals. Manual classification of these datasets is unmanageable without an in-depth knowledge of the acoustic context of each recording location. A signal classification pipeline is presented which combines unsupervised and supervised learning phases with opportunities for expert oversight to label signals of interest. The method is illustrated with a case study using unsupervised clustering to identify five toothed whale echolocation click types and two anthropogenic signal categories. These categories are used to train a deep network to classify detected signals in either averaged time bins or as individual detections, in two independent datasets. Bin-level classification achieved higher overall precision (>99%) than click-level classification. However, click-level classification had the advantage of providing a label for every signal, and achieved higher overall recall, with overall precision from 92 to 94%. The results suggest that unsupervised learning is a viable solution for efficiently generating the large, representative training sets needed for applications of deep learning in passive acoustics.  相似文献   

17.
Huang WL  Tung CW  Huang HL  Hwang SF  Ho SY 《Bio Systems》2007,90(2):573-581
Accurate prediction methods of protein subnuclear localizations rely on the cooperation between informative features and classifier design. Support vector machine (SVM) based learning methods are shown effective for predictions of protein subcellular and subnuclear localizations. This study proposes an evolutionary support vector machine (ESVM) based classifier with automatic selection from a large set of physicochemical composition (PCC) features to design an accurate system for predicting protein subnuclear localization, named ProLoc. ESVM using an inheritable genetic algorithm combined with SVM can automatically determine the best number m of PCC features and identify m out of 526 PCC features simultaneously. To evaluate ESVM, this study uses two datasets SNL6 and SNL9, which have 504 proteins localized in 6 subnuclear compartments and 370 proteins localized in 9 subnuclear compartments. Using a leave-one-out cross-validation, ProLoc utilizing the selected m=33 and 28 PCC features has accuracies of 56.37% for SNL6 and 72.82% for SNL9, which are better than 51.4% for the SVM-based system using k-peptide composition features applied on SNL6, and 64.32% for an optimized evidence-theoretic k-nearest neighbor classifier utilizing pseudo amino acid composition applied on SNL9, respectively.  相似文献   

18.
Lipid droplets (LDs) are key organelles in cancer cells proliferation, growth, and response to stress. These nanometric structures can aggregate to reach the size of microns becoming important cell components. Although it is known that LDs contain various lipids, their chemical composition is still under investigation. Moreover, their function in cell's response to exogenous factors is also not fully understood. Raman spectroscopy, together with chemometrics, has been shown to be a powerful tool for analytical analyses of cancer cell components on the subcellular level. It provides the opportunity to analyse LDs in a label-free manner in live cells. In the current study, this method was applied to investigate LDs composition in untreated and irradiated with X-ray beams prostate cancer cells. Raman mapping technique proved lipids accumulation in PC-3 cells and allowed visualization of LDs spatial distribution in cytoplasm. A heterogeneous composition of LDs was revealed by detailed analysis of Raman spectra. Interestingly, PC-3 cells were found to accumulate either triacylglycerols or cholesteryl esters. Finally, effect of X-ray radiation on the cells was investigated using Raman spectroscopy and fluorescence staining. Significant influence of LDs in the process of cell response was confirmed and time dependence of this phenomenon was determined.  相似文献   

19.
The subcellular locations of proteins are important functional annotations. An effective and reliable subcellular localization method is necessary for proteomics research. This paper introduces a new method---PairProSVM---to automatically predict the subcellular locations of proteins. The profiles of all protein sequences in the training set are constructed by PSI-BLAST and the pairwise profile-alignment scores are used to form feature vectors for training a support vector machine (SVM) classifier. It was found that PairProSVM outperforms the methods that are based on sequence alignment and amino-acid compositions even if most of the homologous sequences have been removed. This paper also demonstrates that the performance of PairProSVM is sensitive (and somewhat proportional) to the degree of its kernel matrix meeting the Mercer's condition. PairProSVM was evaluated on Reinhardt and Hubbard's, Huang and Li's, and Gardy et al.'s protein datasets. The overall accuracies on these three datasets reach 99.3\%, 76.5\%, and 91.9\%, respectively, which are higher than or comparable to those obtained by sequence alignment and by the methods compared in this paper.  相似文献   

20.
Predicting the interactions between all the possible pairs of proteins in a given organism (making a protein-protein interaction map) is a crucial subject in bioinformatics. Most of the previous methods based on supervised machine learning use datasets containing approximately the same number of interacting pairs of proteins (positives) and non-interacting pairs of proteins (negatives) for training a classifier and are estimated to yield a large number of false positives. Thinking that the negatives used in previous studies cannot adequately represent all the negatives that need to be taken into account, we have developed a method based on multiple Support Vector Machines (SVMs) that uses more negatives than positives for predicting interactions between pairs of yeast proteins and pairs of human proteins. We show that the performance of a single SVM improved as we increased the number of negatives used for training and that, if more than one CPU is available, an approach using multiple SVMs is useful not only for improving the performance of classifiers but also for reducing the time required for training them. Our approach can also be applied to assessing the reliability of high-throughput interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号