首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood clot formation is crucial to maintain normal physiological conditions but at the same time involved in many diseases. The mechanical properties of the blood clot are important for its functioning but complicated due to the many processes involved. The main structural component of the blood clot is fibrin, a fibrous network that forms within the blood clot, thereby increasing its mechanical rigidity. A constitutive model for the maturing fibrin network is developed that captures the evolving mechanical properties. The model describes the fibrin network as a network of fibers that become thicker in time. Model parameters are related to the structural properties of the network, being the fiber length, bending stiffness, and mass-length ratio. Results are compared with rheometry experiments in which the network maturation is followed in time for various loading frequencies and fibrinogen concentrations. Three parameters are used to capture the mechanical behavior including the mass-length ratio. This parameter agrees with values determined using turbidimetry experiments and is subsequently used to derive the number of protofibrils and fiber radius. The strength of the model is that it describes the mechanical properties of the maturing fibrin network based on it structural quantities. At the same time the model is relatively simple, which makes it suitable for advanced numerical simulations of blood clot formation during flow in blood vessels.  相似文献   

2.
Blood clot formation is important to prevent blood loss in case of a vascular injury but disastrous when it occludes the vessel. As the mechanical properties of the clot are reported to be related to many diseases, it is important to have a good understanding of their characteristics. In this study, a constitutive model is presented that describes the nonlinear viscoelastic properties of the fibrin network, the main structural component of blood clots. The model is developed using results of experiments in which the fibrin network is subjected to a large amplitude oscillatory shear (LAOS) deformation. The results show three dominating nonlinear features: softening over multiple deformation cycles, strain stiffening and increasing viscous dissipation during a deformation cycle. These features are incorporated in a constitutive model based on the Kelvin–Voigt model. A network state parameter is introduced that takes into account the influence of the deformation history of the network. Furthermore, in the period following the LAOS deformation, the stiffness of the networks increases which is also incorporated in the model. The influence of cross-links created by factor XIII is investigated by comparing fibrin networks that have polymerized for 1 and 2 h. A sensitivity analysis provides insights into the influence of the eight fit parameters. The model developed is able to describe the rich, time-dependent, nonlinear behavior of the fibrin network. The model is relatively simple which makes it suitable for computational simulations of blood clot formation and is general enough to be used for other materials showing similar behavior.  相似文献   

3.
4.

Background

Altered fibrin clot architecture is increasingly associated with cardiovascular diseases; yet, little is known about how fibrin networks are affected by small molecules that alter fibrinogen structure. Based on previous evidence that S-nitrosoglutathione (GSNO) alters fibrinogen secondary structure and fibrin polymerization kinetics, we hypothesized that GSNO would alter fibrin microstructure.

Methodology/Principal Findings

Accordingly, we treated human platelet-poor plasma with GSNO (0.01–3.75 mM) and imaged thrombin induced fibrin networks using multiphoton microscopy. Using custom designed computer software, we analyzed fibrin microstructure for changes in structural features including fiber density, diameter, branch point density, crossing fibers and void area. We report for the first time that GSNO dose-dependently decreased fibrin density until complete network inhibition was achieved. At low dose GSNO, fiber diameter increased 25%, maintaining clot void volume at approximately 70%. However, at high dose GSNO, abnormal irregularly shaped fibrin clusters with high fluorescence intensity cores were detected and clot void volume increased dramatically. Notwithstanding fibrin clusters, the clot remained stable, as fiber branching was insensitive to GSNO and there was no evidence of fiber motion within the network. Moreover, at the highest GSNO dose tested, we observed for the first time, that GSNO induced formation of fibrin agglomerates.

Conclusions/Significance

Taken together, low dose GSNO modulated fibrin microstructure generating coarse fibrin networks with thicker fibers; however, higher doses of GSNO induced abnormal fibrin structures and fibrin agglomerates. Since GSNO maintained clot void volume, while altering fiber diameter it suggests that GSNO may modulate the remodeling or inhibition of fibrin networks over an optimal concentration range.  相似文献   

5.
Studies suggest that patients with deep vein thrombosis and diabetes often have hypercoagulable blood plasma, leading to a higher risk of thromboembolism formation through the rupture of blood clots, which may lead to stroke and death. Despite many advances in the field of blood clot formation and thrombosis, the influence of mechanical properties of fibrin in the formation of thromboembolisms in platelet-poor plasma is poorly understood. In this paper, we combine the concepts of reactive molecular dynamics and coarse-grained molecular modeling to predict the complex network formation of fibrin clots and the branching of fibrin monomers. The 340-kDa fibrinogen molecule was converted into a coarse-grained molecule with nine beads, and using our customized reactive potentials, we simulated the formation and polymerization process of a fibrin clot. The results show that higher concentrations of thrombin result in higher branch-point formation in the fibrin clot structure. Our results also highlight many interesting properties, such as the formation of thicker or thinner fibers depending on the thrombin concentration. To the best of our knowledge, this is the first successful molecular polymerization study of fibrin clots to focus on thrombin concentration.  相似文献   

6.
Fibrin fibers, which are ~100 nm in diameter, are the major structural component of a blood clot. The mechanical properties of single fibrin fibers determine the behavior of a blood clot and, thus, have a critical influence on heart attacks, strokes, and embolisms. Cross-linking is thought to fortify blood clots; though, the role of α-α cross-links in fibrin fiber assembly and their effect on the mechanical properties of single fibrin fibers are poorly understood. To address this knowledge gap, we used a combined fluorescence and atomic force microscope technique to determine the stiffness (modulus), extensibility, and elasticity of individual, uncross-linked, exclusively α-α cross-linked (γQ398N/Q399N/K406R fibrinogen variant), and completely cross-linked fibrin fibers. Exclusive α-α cross-linking results in 2.5× stiffer and 1.5× more elastic fibers, whereas full cross-linking results in 3.75× stiffer, 1.2× more elastic, but 1.2× less extensible fibers, as compared to uncross-linked fibers. On the basis of these results and data from the literature, we propose a model in which the α-C region plays a significant role in inter- and intralinking of fibrin molecules and protofibrils, endowing fibrin fibers with increased stiffness and elasticity.  相似文献   

7.
The distribution of intramembrane particles of nonactivated and activated human blood platelets was studied by freeze-fracture under various experimental conditions to see whether morphological evidence for a structural coupling between the platelet actomyosin system and the fibrin network in a retracting clot could be established. Membrane particles were evenly distributed in nonactivated platelets; the total number (E + P faces) was approximately 1,500/micrometers 2 of membrane, and there were two to three times more particles present on the E face than on the P face. Transformation of discoid platelets to "spiny spheres" by cooling did not change the particle distribution. Platelet activation and aggregation by serum or ADP caused no change in membrane particle density or distribution. Particle distribution was not changed in Ca2+-activated platelets fixed immediately before fibrin formation, but after fibrin formation and during clot retraction, particles were sometimes most frequent on the P face and tended to form distinct clusters, and aggregates of E face pits were observed. Blood platelets contain contractile proteins that are distinct as filaments in platelets in retracting clots. We suggest that the redistribution of particles seen in activated platelets during clot retraction reflects the esablishment of mechanical transmembrane links between the platelet actomyosin system and the fibrin net. The P-face particle clusters may represent sites of force transmission between actin filaments bonded to the inside of the membrane and the fibrin network at the outside. Thus, whereas membrane particles may not be directly involved in the attachment of actin filaments to membranes, the transmission of the force of the contractile system to an exterior substrate apparently involves the intramembrane particles.  相似文献   

8.
A model is presented outlining the molecular and cellular events that occur during the early stages of the wound healing process. The underlying theme is that there is a specific binding interaction between fibrin, the major clot protein, and hyaluronic acid (HA), a constituent of the wound extracellular matrix. This binding interaction, which could also be stabilized by other cross-linking components, provides the driving force to organize a three-dimensional HA matrix attached to and interdigitated with the initial fibrin matrix. The HA-fibrin matrix plays a major role in the subsequent tissue reconstruction processes. We suggest that HA and fibrin have both structural and regulatory functions at different times during the wound healing process. The concentration of HA in blood and in the initial clot is very low. This is consistent with the proposed interaction between HA and fibrin(ogen), which could interfere with either fibrinogen activation or fibrin assembly and cross-linking. We propose that an activator (e.g. derived from a plasma precursor, platelets or surrounding cells) is produced during the clotting reaction and then stimulates one or more blood cell types to synthesize and secrete HA into the fibrin matrix of the clot. We predict that HA controls the stability of the matrix by regulating the degradation of fibrin. The new HA-fibrin matrix increases or stabilizes the volume and porosity of the clot and then serves as a physical support, a scaffold through which cells trapped in the clot or cells infiltrating from the peripheral edge of the wound can migrate. The HA-fibrin matrix also actively stimulates or induces cell motility and activates and regulates many functions of blood cells, which are involved in the inflammatory response, including phagocytosis and chemotaxis. The secondary HA-fibrin matrix itself is then modified as cells continue to migrate into the wound, secreting hyaluronidase and plasminogen activator to degrade the HA and fibrin. At the same time these cells secrete collagen and glycosaminoglycans to make a more differentiated matrix. The degradation products derived from both fibrin and HA are, in turn, important regulatory molecules which control cellular functions involved in the inflammatory response and new blood vessel formation in the healing wound. The proposed model generates a number of testable experimental predictions.  相似文献   

9.
Fibrinogen, upon enzymatic conversion to monomeric fibrin, provides the building blocks for fibrin polymer, the scaffold of blood clots and thrombi. Little has been known about the force-induced unfolding of fibrin(ogen), even though it is the foundation for the mechanical and rheological properties of fibrin, which are essential for hemostasis. We determined mechanisms and mapped the free energy landscape of the elongation of fibrin(ogen) monomers and oligomers through combined experimental and theoretical studies of the nanomechanical properties of fibrin(ogen), using atomic force microscopy-based single-molecule unfolding and simulations in the experimentally relevant timescale. We have found that mechanical unraveling of fibrin(ogen) is determined by the combined molecular transitions that couple stepwise unfolding of the γ chain nodules and reversible extension-contraction of the α-helical coiled-coil connectors. These findings provide important characteristics of the fibrin(ogen) nanomechanics necessary to understand the molecular origins of fibrin viscoelasticity at the fiber and whole clot levels.  相似文献   

10.
Thrombosis is a leading cause of morbidity and mortality throughout the world. Thrombolytic agents are important for both the prevention and treatment of thrombosis. Fibrin clot and turbidity assays revealed that it was able to inhibit the formation of fibrin clot. Chlorogenic acid degraded blood clot and inhibited the enzymatic activity of procoagulant proteases, thrombin, activated factor X (FXa), and activated factor XIII (FXIIIa). Chlorogenic acid was found to delay activated partial thromboplastin time, prothrombin time, and thrombin time. PFA‐100 assays showed that it prolonged the closure time of citrated whole human blood. It demonstrated the antithrombotic effect in collagen and epinephrine‐induced acute thromboembolism mice model. These antithrombotic profiles together with its anticoagulant and platelet disaggregation properties, and lack of toxicity to NIH‐3T3 and 3T3‐L1 cells, make it a potential agent for thrombotic treatment and prevention.  相似文献   

11.
Low concentrations of actin filaments (F-actin) inhibit the rate and extent of turbidity developed during polymerization of purified fibrinogen by thrombin. Actin incorporates into the fibrin clot in a concentration-dependent manner that does not reach saturation, indicating nonspecific trapping of actin filaments in the fibrin network. Actin does not retard activation of fibrinogen by thrombin, but rather the alignment of fibrin protofibrils into bundles which constitute the coarse clot. In contrast, equivalent F-actin concentrations have little or no effect on the turbidity of plasma clots. The difference is attributed to the presence of a plasma protein, gelsolin, that severs actin filaments. Purified gelsolin greatly reduces the effect of F-actin on the turbidity of a pure fibrin clot and decreases the fraction of actin incorporated by the clot. A calculation of the extent to which the gelsolin concentrations used in these experiments reduce the fraction of actin filaments which are long enough to impede each other's rotational diffusion indicates that it is the overlapping actin filaments which retard the association of fibrin protofibrils. The findings suggest that one role for the F-actin depolymerizing and particularly actin severing activities in blood is to prevent actin filaments released by tissue injury from interfering with the formation of coarse fibrin clots.  相似文献   

12.
Proteolytic degradation of fibrin, the major structural component in blood clots, is critical both during normal wound healing and in the treatment of ischemic stroke and myocardial infarction. Fibrin-containing clots experience substantial strain due to platelet contraction, fluid shear, and mechanical stress at the wound site. However, little is understood about how mechanical forces may influence fibrin dissolution. We used video microscopy to image strained fibrin clots as they were degraded by plasmin, a major fibrinolytic enzyme. Applied strain causes up to 10-fold reduction in the rate of fibrin degradation. Analysis of our data supports a quantitative model in which the decrease in fibrin proteolysis rates with strain stems from slower transport of plasmin into the clot. We performed fluorescence recovery after photobleaching (FRAP) measurements to further probe the effect of strain on diffusive transport. We find that diffusivity perpendicular to the strain axis decreases with increasing strain, while diffusivity along the strain axis remains unchanged. Our results suggest that the properties of the fibrin network have evolved to protect mechanically loaded fibrin from degradation, consistent with its function in wound healing. The pronounced effect of strain upon diffusivity and proteolytic susceptibility within fibrin networks offers a potentially useful means of guiding cell growth and morphology in fibrin-based biomaterials.  相似文献   

13.
This article describes the role John Ferry played in relating the location of cross-linked gamma-chains in fibrin fibrils to the mechanical properties of fibrin clot.  相似文献   

14.
Thrombelastography (TEG) is a method that is used to conduct global assays that monitor fibrin formation and fibrinolysis and platelet aggregation in whole blood. The purpose of this study was to use a well-characterized tissue factor (Tf) reagent and contact pathway inhibitor (corn trypsin inhibitor, CTI) to develop a reproducible thrombelastography assay. In this study, blood was collected from 5 male subjects (three times). Clot formation was initiated in whole blood with 5 pM Tf in the presence of CTI, and fibrinolysis was induced by adding tissue plasminogen activator (tPA). Changes in viscoelasticity were then monitored by TEG. In quality control assays, our Tf reagent, when used at 5 pM, induced coagulation in whole blood in 3.93 ± 0.23 min and in plasma in 5.12 ± 0.23 min (n=3). In TEG assays, tPA significantly decreased clot strength (maximum amplitude, MA) in all individuals but had no effect on clot time (R time). The intraassay variability (CVa<10%) for R time, angle, and MA suggests that these parameters reliably describe the dynamics of fibrin formation and degradation in whole blood. Our Tf reagent reproducibly induces coagulation, making it an ideal tool to quantify the processes that contribute to mechanical clot strength in whole blood.  相似文献   

15.
Fibrinogen, the major structural precursor of blood clots, was deglycosylated by peptide-N-(N-acetyl-beta-glucosaminyl)asparagine amidase without denaturation of the polypeptide chains. Deglycosylated fibrinogen behaved normally in clinical coagulation assays, although it is less soluble than normal fibrinogen. However, the turbidity of clots formed from deglycosylated fibrinogen always rose faster and higher than that of clots from normal fibrinogen. Scanning and transmission electron microscopy demonstrated that fibrin made from clots of deglycosylated fibrinogen consisted of thicker, less-branched fiber bundles in a more porous network. Moreover, the degree of lateral aggregation was directly related to clot turbidity and inversely related to branching. Deglycosylation promoted turbidity development, lateral aggregation, and porosity of clots under all conditions tested. All other steps in the coagulation pathways appeared to be unaffected by the absence of carbohydrate. These results suggest that carbohydrate constitutively affects the behavior of deglycosylated fibrinogens by 1) contributing a repulsive force that promotes fibrinogen solubility and limits fibrin assembly and 2) sensitizing fibrin to conditions that influence assembly and clot structure.  相似文献   

16.
Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fibrinogen molecules. Using a nanomanipulation system, we investigated the mechanical properties of individual fibrin fibers. The fibers were stretched with the atomic force microscope, and stress-versus-strain data was collected for fibers formed with and without ligation by the activated transglutaminase factor XIII (FXIIIa). We observed that ligation with FXIIIa nearly doubled the stiffness of the fibers. The stress-versus-strain behavior indicates that fibrin fibers exhibit properties similar to other elastomeric biopolymers. We propose a mechanical model that fits our observed force extension data, is consistent with the results of the ligation data, and suggests that the large observed extensibility in fibrin fibers is mediated by the natively unfolded regions of the molecule. Although some models attribute fibrin's force-versus-extension behavior to unfolding of structured regions within the monomer, our analysis argues that these models are inconsistent with the measured extensibility and elastic modulus.  相似文献   

17.
Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0–0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots.  相似文献   

18.
As the structural backbone of blood clots, fibrin networks carry out the mechanical task of stemming blood flow at sites of vascular injury. These networks exhibit a rich set of remarkable mechanical properties, but a detailed picture relating the microscopic mechanics of the individual fibers to the overall network properties has not been fully developed. In particular, how the high strain and failure characteristics of single fibers affect the overall strength of the network is not known. Using a combined fluorescence/atomic force microscope nanomanipulation system, we stretched 2-D fibrin networks to the point of failure, while recording the strain of individual fibers. Our results were compared to a pair of model networks: one composed of linearly responding elements and a second of nonlinear, strain-stiffening elements. We find that strain-stiffening of the individual fibers is necessary to explain the pattern of strain propagation throughout the network that we observe in our experiments. Fiber strain-stiffening acts to distribute strain more equitably within the network, reduce strain maxima, and increase network strength. Along with its physiological implications, a detailed understanding of this strengthening mechanism may lead to new design strategies for engineered polymeric materials.  相似文献   

19.
The major structural component of a blood clot is a mesh of fibrin fibers. Our goal was to determine whether fibrinogen glycation and fibrin fiber diameter have an effect on the mechanical properties of single fibrin fibers. We used a combined atomic force microscopy/fluorescence microscopy technique to determine the mechanical properties of individual fibrin fibers formed from blood plasma. Blood samples were taken from uncontrolled diabetic patients as well as age-, gender-, and body-mass-index-matched healthy individuals. The patients then underwent treatment to control blood glucose levels before end blood samples were taken. The fibrinogen glycation of the diabetic patients was reduced from 8.8 to 5.0 mol glucose/mol fibrinogen, and the healthy individuals had a mean fibrinogen glycation of 4.0 mol glucose/mol fibrinogen. We found that fibrinogen glycation had no significant systematic effect on single-fiber modulus, extensibility, or stress relaxation times. However, we did find that the fiber modulus, Y, strongly decreases with increasing fiber diameter, D, as Y ∝ D?1.6. Thin fibers can be 100 times stiffer than thick fibers. This is unusual because the modulus is a material constant and should not depend on the sample dimensions (diameter) for homogeneous materials. Our finding, therefore, implies that fibrin fibers do not have a homogeneous cross section of uniformly connected protofibrils, as is commonly thought. Instead, the density of protofibril connections, ρPb, strongly decreases with increasing diameter, as ρPb ∝ D?1.6. Thin fibers are denser and/or have more strongly connected protofibrils than thick fibers. This implies that it is easier to dissolve clots that consist of fewer thick fibers than those that consist of many thin fibers, which is consistent with experimental and clinical observations.  相似文献   

20.
The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ~0.1 and ~2 molecules/μm2. Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot’s structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot’s occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号