首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In pancreatic β-cells, K,ATP channels respond to changes in glucose to regulate cell excitability and insulin release. Confirming a high sensitivity of electrical activity to K,ATP activity, mutations that cause gain of K,ATP function cause neonatal diabetes. Our aim was to quantitatively assess the contribution of K,ATP current to the regulation of glucose-dependent bursting by reproducing experimentally observed changes in excitability when K,ATP conductance is altered by genetic manipulation. A recent detailed computational model of single cell pancreatic β-cell excitability reproduces the β-cell response to varying glucose concentrations. However, initial simulations showed that the model underrepresents the significance of K,ATP activity and was unable to reproduce K,ATP conductance-dependent changes in excitability. By altering the ATP and glucose dependence of the L-type Ca2+ channel and the Na-K ATPase to better fit experiment, appropriate dependence of excitability on K,ATP conductance was reproduced. Because experiments were conducted in islets, which contain cell-to-cell variability, we extended the model from a single cell to a three-dimensional model (10×10×10 cell) islet with 1000 cells. For each cell, the conductance of the major currents was allowed to vary as was the gap junction conductance between cells. This showed that single cell glucose-dependent behavior was then highly variable, but was uniform in coupled islets. The study highlights the importance of parameterization of detailed models of β-cell excitability and suggests future experiments that will lead to improved characterization of β-cell excitability and the control of insulin secretion.  相似文献   

2.
《Biophysical journal》2022,121(8):1449-1464
ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in β-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.  相似文献   

3.
Taurine (Tau) is involved in beta (β)-cell function and insulin action regulation. Here, we verified the possible preventive effect of Tau in high-fat diet (HFD)-induced obesity and glucose intolerance and in the disruption of pancreatic β-cell morpho-physiology. Weaning Swiss mice were distributed into four groups: mice fed on HFD diet (36 % of saturated fat, HFD group); HTAU, mice fed on HFD diet and supplemented with 5 % Tau; control (CTL); and CTAU. After 19 weeks of diet and Tau treatments, glucose tolerance, insulin sensitivity and islet morpho-physiology were evaluated. HFD mice presented higher body weight and fat depots, and were hyperglycemic, hyperinsulinemic, glucose intolerant and insulin resistant. Their pancreatic islets secreted high levels of insulin in the presence of increasing glucose concentrations and 30 mM K+. Tau supplementation improved glucose tolerance and insulin sensitivity with a higher ratio of Akt phosphorylated (pAkt) related to Akt total protein content (pAkt/Akt) following insulin administration in the liver without altering body weight and fat deposition in HTAU mice. Isolated islets from HTAU mice released insulin similarly to CTL islets. HFD intake induced islet hypertrophy, increased β-cell/islet area and islet and β-cell mass content in the pancreas. Tau prevented islet and β-cell/islet area, and islet and β-cell mass alterations induced by HFD. The total insulin content in HFD islets was higher than that of CTL islets, and was not altered in HTAU islets. In conclusion, for the first time, we showed that Tau enhances liver Akt activation and prevents β-cell compensatory morpho-functional adaptations induced by HFD.  相似文献   

4.

Background

Insulin secreted by pancreatic islet β-cells is the principal regulating hormone of glucose metabolism and plays a key role in controlling glucose level in blood. Impairment of the pancreatic islet function may cause glucose to accumulate in blood, and result in diabetes mellitus. Recent studies have shown that mitochondrial dysfunction has a strong negative effect on insulin secretion.

Methods

In order to study the cause of dysfunction of pancreatic islets, a multiple cell model containing healthy and unhealthy cells is proposed based on an existing single cell model. A parameter that represents the function of mitochondria is modified for unhealthy cells. A 3-D hexagonal lattice structure is used to model the spatial differences among β-cells in a pancreatic islet. The β-cells in the model are connected through direct electrical connections between neighboring β-cells.

Results

The simulation results show that the low ratio of total mitochondrial volume over cytoplasm volume per β-cell is a main reason that causes some mitochondria to lose their function. The results also show that the overall insulin secretion will be seriously disrupted when more than 15% of the β-cells in pancreatic islets become unhealthy.

Conclusion

Analysis of the model shows that the insulin secretion can be reinstated by increasing the glucokinase level. This new discovery sheds light on antidiabetic medication.
  相似文献   

5.
The effects of phloretin on islet metabolism and insulin release have been studied in isolated pancreatic islets of the rat. At a concentration of 0.18 mM phloretin inhibited insulin release stimulated by glucose or leucine but did not affect the oxidation rates of glucose or leucine, the rate of glucose utilization and the islet content of ATP. Higher concentrations of phloretin caused inhibition of the rate of glucose metabolism, but stimulation of insulin release. Insulin release stimulated by phloretin was inhibited by mannoheptulose but was independent of extracellular Ca2+ and was not potentiated by caffeine. Both inhibitory and stimulatory effects of dextran-linked phloretin on insulin release were also seen; a concentration of dextran-linked phloretin that did not inhibit islet metabolism inhibited glucose-stimulated insulin release, but not release stimulated by leucine or glyceraldehyde. Higher concentrations of dextran-linked phloretin inhibited glucose oxidation but stimulated insulin release. These data are discussed in terms of current models of the β-cell glucose-sensor mechanism.  相似文献   

6.
Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D.  相似文献   

7.
Diphosphoinositol pentakisphosphate (IP7) is critical for the exocytotic capacity of the pancreatic β-cell, but its regulation by the primary instigator of β-cell exocytosis, glucose, is unknown. The high Km for ATP of the IP7-generating enzymes, the inositol hexakisphosphate kinases (IP6K1 and 2) suggests that these enzymes might serve as metabolic sensors in insulin secreting β-cells and act as translators of disrupted metabolism in diabetes. We investigated this hypothesis and now show that glucose stimulation, which increases the ATP/ADP ratio, leads to an early rise in IP7 concentration in β-cells. RNAi mediated knock down of the IP6K1 isoform inhibits both glucose-mediated increase in IP7 and first phase insulin secretion, demonstrating that IP6K1 integrates glucose metabolism and insulin exocytosis. In diabetic mouse islets the deranged ATP/ADP levels under both basal and glucose-stimulated conditions are mirrored in both disrupted IP7 generation and insulin release. Thus the unique metabolic sensing properties of IP6K1 guarantees appropriate concentrations of IP7 and thereby both correct basal insulin secretion and intact first phase insulin release. In addition, our data suggest that a specific cell signaling defect, namely, inappropriate IP7 generation may be an essential convergence point integrating multiple metabolic defects into the commonly observed phenotype in diabetes.  相似文献   

8.
《Biophysical journal》2020,118(10):2588-2595
Residing in the islets of Langerhans in the pancreas, β cells contribute to glucose homeostasis by managing the body’s insulin supply. Although it has been acknowledged that healthy β cells engage in heavy cell-to-cell communication to perform their homeostatic function, the exact role and effects of such communication remain partly understood. We offer a novel, to our knowledge, perspective on the subject in the form of 1) a dynamical network model that faithfully mimics fast calcium oscillations in response to above-threshold glucose stimulation and 2) empirical data analysis that reveals a qualitative shift in the cross-correlation structure of measured signals below and above the threshold glucose concentration. Combined together, these results point to a glucose-induced transition in β-cell activity thanks to increasing coordination through gap-junctional signaling and paracrine interactions. Our data and the model further suggest how the conservation of entire cell-cell conductance, observed in coupled but not uncoupled β cells, emerges as a collective phenomenon. An overall implication is that improving the ability to monitor β-cell signaling should offer means to better understand the pathogenesis of diabetes mellitus.  相似文献   

9.
Defects in the development, maintenance or expansion of β-cell mass can result in impaired glucose metabolism and diabetes. N6-methyladenosine affects mRNA stability and translation efficiency, and impacts cell differentiation and stress response. To determine if there is a role for m6A in β-cells, we investigated the effect of Mettl14, a key component of the m6A methyltransferase complex, on β-cell survival and function using rat insulin-2 promoter-Cre-mediated deletion of Mettl14 mouse line (βKO). We found that βKO mice with normal chow exhibited glucose intolerance, lower levels of glucose-stimulated insulin secretion, increased β-cell death and decreased β-cell mass. In addition, HFD-fed βKO mice developed glucose intolerance, decreased β-cell mass and proliferation, exhibited lower body weight, increased adipose tissue mass, and enhanced insulin sensitivity due to enhanced AKT signaling and decreased gluconeogenesis in the liver. HFD-fed βKO mice also showed a decrease in de novo lipogenesis, and an increase in lipolysis in the liver. RNA sequencing in islets revealed that Mettl14 deficiency in β-cells altered mRNA expression levels of some genes related to cell death and inflammation. Together, we showed that Mettl14 in β-cells plays a key role in β-cell survival, insulin secretion and glucose homeostasis.  相似文献   

10.
The non-steroidal compound STX modulates the hypothalamic control of core body temperature and energy homeostasis. The aim of this work was to study the potential effects of STX on pancreatic β-cell function. 1-10 nM STX produced an increase in glucose-induced insulin secretion in isolated islets from male mice, whereas it had no effect in islets from female mice. This insulinotropic effect of STX was abolished by the anti-estrogen ICI 182,780. STX increased intracellular calcium entry in both whole islets and isolated β-cells, and closed the K(ATP) channel, suggesting a direct effect on β-cells. When intraperitoneal glucose tolerance test was performed, a single dose of 100 μg/kg body weight STX improved glucose sensitivity in males, yet it had a slight effect on females. In agreement with the effect on isolated islets, 100 μg/kg dose of STX enhanced the plasma insulin increase in response to a glucose load, while it did not in females. Long-term treatment (100 μg/kg, 6 days) of male mice with STX did not alter body weight, fasting glucose, glucose sensitivity or islet insulin content. Ovariectomized females were insensitive to STX (100 μg/kg), after either an acute administration or a 6-day treatment. This long-term treatment was also ineffective in a mouse model of mild diabetes. Therefore, STX appears to have a gender-specific effect on blood glucose homeostasis, which is only manifested after an acute administration. The insulinotropic effect of STX in pancreatic β-cells is mediated by the closure of the K(ATP) channel and the increase in intracellular calcium concentration. The in vivo improvement in glucose tolerance appears to be mostly due to the enhancement of insulin secretion from β-cells.  相似文献   

11.
AimsVolatile anesthetics, such as isoflurane, reverse glucose-induced inhibition of pancreatic adenosine triphosphate-sensitive potassium (KATP) channel activity, resulting in reduced insulin secretion and impaired glucose tolerance. No previous studies have investigated the effects of intravenous anesthetics, such as propofol, on pancreatic KATP channels. We investigated the cellular mechanisms underlying the effects of isoflurane and propofol on pancreatic KATP channels and insulin secretion.Main methodsIntravenous glucose tolerance tests (IVGTT) were performed on male rabbits. Pancreatic islets were isolated from male rats and used for a perifusion study, measurement of intracellular ATP concentration ([ATP]i), and patch clamp experiments.Key findingsGlucose stimulus significantly increased insulin secretion during propofol anesthesia, but not isoflurane anesthesia, in IVGTT study. In perifusion experiments, both islets exposed to propofol and control islets not exposed to anesthetic had a biphasic insulin secretory response to a high dose of glucose. However, isoflurane markedly inhibited glucose-induced insulin secretion. In a patch clamp study, the relationship between ATP concentration and channel activity could be fitted by the Hill equation with a half-maximal inhibition of 22.4, 15.8, and 218.8 μM in the absence of anesthetic, and with propofol, and isoflurane, respectively. [ATP]i and single KATP channel conductance did not differ in islets exposed to isoflurane or propofol.SignificanceOur results indicate that isoflurane, but not propofol, decreases the ATP sensitivity of KATP channels and impairs glucose-stimulated insulin release. These differential actions of isoflurane and propofol on ATP sensitivity may explain the differential effects of isoflurane and propofol on insulin release.  相似文献   

12.
ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12–16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6−/− mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6−/− mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6−/− islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes.  相似文献   

13.
The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes) and low-frequency oscillations (period approx. 1.5 hours). Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units) with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model’s success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different islets of Langerhans, glycolitic-induced oscillations or β-cell sensitivity to the rate of change of glycemia.  相似文献   

14.
《Endocrine practice》2010,16(5):763-769
ObjectiveTo study the mechanism of increased insulin secretion in response to short-term administration of dexamethasone.MethodsMale Wistar rats were injected intraperitoneally with dexamethasone (dexamethasone; 200 mcg/kg body weight per day) or saline for 3 consecutive days. Insulin secretion in response to glucose, ionomycin, and KCl was quantified in islets isolated from the animals, and the amount of glucokinase was measured by Western blot.ResultsDexamethasone-treated animals had 1.18-fold higher fasting blood glucose concentration and 6.5-fold increase in fasting serum insulin concentration compared with findings from animals injected with saline. Compared with islets isolated from control rats, islets from dexamethasone-treated rats secreted more insulin at 60 minutes in response to 5.5 mM glucose (416.4 vs 115.6 fmoles/10 islets, P = .011) and in response to 16.6 mM glucose (985.5 vs 520.6 fmoles/10 islets, P = .014); no change in insulin secretion was observed at 10 minutes. Insulin secretion from islets of dexamethasone-treated rats and control rats was not differentially augmented in response to either ionomycin or potassium chloride. Glucokinase expression was not altered by treatment with dexamethasone.ConclusionsAugmentation of insulin secretion in response to glucose in the pancreatic islets from dexamethasone-treated rats is preserved in islets studied in vitro. The increase in glucose-stimulated insulin secretion appears to be mediated by steps upstream to β -cell membrane depolarization and the attended increase in intracellular calcium in the signaling pathway of insulin secretion. (Endocr Pract. 2010;16:763-769)  相似文献   

15.
We report the discovery of the glucose-dependent insulin secretogogue activity of a novel class of polycyclic guanidines through phenotypic screening as part of the Lilly Open Innovation Drug Discovery platform. Three compounds from the University of California, Irvine, 13, having the 3-arylhexahydropyrrolo[1,2-c]pyrimidin-1-amine scaffold acted as insulin secretagogues under high, but not low, glucose conditions. Exploration of the structure–activity relationship around the scaffold demonstrated the key role of the guanidine moiety, as well as the importance of two lipophilic regions, and led to the identification of 9h, which stimulated insulin secretion in isolated rat pancreatic islets in a glucose-dependent manner.  相似文献   

16.
Cyclic ADP-ribose (cADPR), accumulated in pancreatic β-cells in response to elevated ATP levels after glucose stimulation, mobilizes Ca2+ from the endoplasmic reticulum through the ryanodine receptor (RyR) and thereby induces insulin secretion. We have recently demonstrated in an in vitro study that cADPR activates RyR through binding to FK506-binding protein 12.6 (FKBP12.6), an accessory protein of RyR. Here we generated FKBP12.6-deficient (FKBP12.6−/−) mice by homologous recombination. FKBP12.6−/− mice showed glucose intolerance coupled to insufficient insulin secretion upon a glucose challenge. Insulin secretion in response to glucose was markedly impaired in FKBP12.6−/− islets, while sulfonylurea- or KCl-induced insulin secretion was unaffected. No difference was found in the glucose oxidation rate between FKBP12.6−/− and wild-type islets. These results indicate that FKBP12.6 plays a role in glucose-induced insulin secretion downstream of ATP production, independently of ATP-sensitive K+ channels, in pancreatic β-cells.  相似文献   

17.
Background aimsWe recently showed that co-transplantation of mesenchymal stromal cells (MSCs) improves islet function and revascularization in vivo. Pre-transplant islet culture is associated with the loss of islet cells. MSCs may enhance islet cell survival or function by direct cell contact mechanisms and soluble mediators. We investigated the capacity of MSCs to improve islet cell survival or β-cell function in vitro using direct and indirect contact islet-MSC configurations. We also investigated whether pre-culturing islets with MSCs improves islet transplantation outcome.MethodsThe effect of pre-culturing islets with MSCs on islet function in vitro was investigated by measuring glucose-stimulated insulin secretion. The endothelial cell density of fresh islets and islets cultured with or without MSCs was determined by immunohistochemistry. The efficacy of transplanted islets was tested in vivo using a syngeneic streptozotocin-diabetic minimal islet mass model. Graft function was investigated by monitoring blood glucose concentrations.ResultsIndirect islet-MSC co-culture configurations did not improve islet function in vitro. Pre-culturing islets using a direct contact MSC monolayer configuration improved glucose-stimulated insulin secretion in vitro, which correlated with superior islet graft function in vivo. MSC pre-culture had no effect on islet endothelial cell number in vitro or in vivo.ConclusionsPre-culturing islets with MSCs using a direct contact configuration maintains functional β-cell mass in vitro and the capacity of cultured islets to reverse hyperglycemia in diabetic mice.  相似文献   

18.
We have previously reported that obesity-induced diabetes developed in high-fat diet (HFD)-fed BDF1 mice. This is caused by insufficient insulin response to an excess glucose load. In this study, we have shown that the enhanced expression of retinaldehyde dehydrogenase 3 (Raldh3) causes functional disorders of pancreatic islets in diabetic mouse models. In the pancreatic islets of HFD-induced diabetic BDF1 mice and spontaneously diabetic C57BL/KsJdb/db mice, gene expression analysis with oligonucleotide microarray revealed a significant increase in Raldh3 expression. Exposure to a culture medium containing a higher glucose concentration (25 mM) significantly increased Raldh3 expression in murine MIN6 and alphaTC1 clone 9 cells, which derived from the α and β-cells of pancreatic islets, respectively. Overexpression of Raldh3 reduced the insulin secretion in MIN6 cells, and surprisingly, increased the glucagon secretion in alphaTC1 clone 9 cells. Furthermore, the knockdown of Raldh3 expression with siRNA decreased the glucagon secretion in alphaTC1 clone 9 cells. Raldh3 catalyzes the conversion of 13-cis retinal to 13-cis retinoic acid and we revealed that 13-cis retinoic acid significantly reduces cell viability in MIN6 and alphaTC1 clone 9 cells, but not in cells of H4IIEC3, 3T3-L1, and COS-1 cell lines. These findings suggest that an increasing expression of Raldh3 deregulates the balanced mechanisms of insulin and glucagon secretion in the pancreatic islets and may induce β-cell dysfunction leading to the development of type 2 diabetes.  相似文献   

19.
20.
Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical (EDC) used as the base compound in the manufacture of polycarbonate plastics. It alters pancreatic β-cell function and can be considered a risk factor for type 2 diabetes in rodents. Here we used ERβ-/- mice to study whether ERβ is involved in the rapid regulation of K(ATP) channel activity, calcium signals and insulin release elicited by environmentally relevant doses of BPA (1 nM). We also investigated these effects of BPA in β-cells and whole islets of Langerhans from humans. 1 nM BPA rapidly decreased K(ATP) channel activity, increased glucose-induced [Ca(2+)](i) signals and insulin release in β-cells from WT mice but not in cells from ERβ-/- mice. The rapid reduction in the K(ATP) channel activity and the insulinotropic effect was seen in human cells and islets. BPA actions were stronger in human islets compared to mouse islets when the same BPA concentration was used. Our findings suggest that BPA behaves as a strong estrogen via nuclear ERβ and indicate that results obtained with BPA in mouse β-cells may be extrapolated to humans. This supports that BPA should be considered as a risk factor for metabolic disorders in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号