首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na+ ions and the countertransport of a K+ ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na+ ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K+ ion bound in three possible sites, we show that binding of the K+ ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K+ ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.  相似文献   

2.
Excitatory amino acid transporters (EAATs) are crucial in maintaining extracellular levels of glutamate, the most abundant excitatory neurotransmitter, below toxic levels. The recent three-dimensional crystal structure of GltPh, an archaeal homolog of the EAATs, provides elegant structural details of this family of proteins, yet we know little about the mechanism of the bacterial transporter. Conflicting reports in the literature have described GltPh as an aspartate transporter driven by Na+ or a glutamate transporter driven by either Na+ or H+. Here we use purified protein reconstituted into liposomes to thoroughly characterize the ion and substrate dependence of the GltPh transport. We confirm that GltPh is a Na+-dependent transporter that is highly selective for aspartate over other amino acids, and we show that transport is coupled to at least two Na+ ions. In contrast to the EAATs, transport via GltPh is independent of H+ and K+. We propose a kinetic model of transport in which at least two Na+ ions are coupled to the cotransport of each aspartate molecule by GltPh, and where an ion- and substrate-free transporter reorients to complete the transport cycle.  相似文献   

3.
Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na+ and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na+ and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a Km= 61 ± 11 μM. Binding of Na+ to the empty transporter is associated with a Km = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a Km = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na+ binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system.  相似文献   

4.
Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl?) channels. The EAATs couple the transport of glutamate to the co-transport of three Na+ ions and one H+ ion into the cell, and the counter-transport of one K+ ion out of the cell. The EAAT Cl? channel is activated by the binding of glutamate and Na+, but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl? permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl? permeation and the mechanisms that underlie their split personality.  相似文献   

5.
In the mammalian retina, glutamate uptake is mediated by members of a family of glutamate transporters known as “excitatory amino acid transporters (EAATs).” Here we cloned and functionally characterized two retinal EAATs from mouse, the GLT-1/EAAT2 splice variant GLT-1c, and EAAT5. EAATs are glutamate transporters and anion-selective ion channels, and we used heterologous expression in mammalian cells, patch-clamp recordings and noise analysis to study and compare glutamate transport and anion channel properties of both EAAT isoforms. We found GLT-1c to be an effective glutamate transporter with high affinity for Na+ and glutamate that resembles original GLT-1/EAAT2 in all tested functional aspects. EAAT5 exhibits glutamate transport rates too low to be accurately measured in our experimental system, with significantly lower affinities for Na+ and glutamate than GLT-1c. Non-stationary noise analysis demonstrated that GLT-1c and EAAT5 also differ in single-channel current amplitudes of associated anion channels. Unitary current amplitudes of EAAT5 anion channels turned out to be approximately twice as high as single-channel amplitudes of GLT-1c. Moreover, at negative potentials open probabilities of EAAT5 anion channels were much larger than for GLT-1c. Our data illustrate unique functional properties of EAAT5, being a low-affinity and low-capacity glutamate transport system, with an anion channel optimized for anion conduction in the negative voltage range.  相似文献   

6.
The catalytic mechanism of 6-phosphogluconate dehydrogenase requires the inversion of a Lys/Glu couple from its natural ionization state. The pKa of these residues in free and substrate bound enzymes has been determined measuring by ITC the proton release/uptake induced by substrate binding at different pH values. Wt 6-phosphogluconate dehydrogenase from Trypanosoma brucei and two active site enzyme mutants, K185H and E192Q were investigated. Substrate binding was accompanied by proton release and was dependent on the ionization of a group with pKa 7.07 which was absent in the E192Q mutant. Kinetic data highlighted two pKa, 7.17 and 9.64, in the enzyme–substrate complex, the latter being absent in the E192Q mutant, suggesting that the substrate binding shifts Glu192 pKa from 7.07 to 9.64. A comparison of wt and E192Q mutant appears to show that the substrate binding shifts Lys185 pKa from 9.9 to 7.17. By comparing differences in proton release and the binding enthalpy of wt and mutant enzymes, the enthalpic cost of the change in the protonation state of Lys185 and Glu192 was estimated at ≈ 6.1 kcal/mol. The change in protonation state of Lys185 and Glu192 has little effect on Gibbs free energy, 240–325 cal/mol. However proton balance evidences the dissociation of other group(s) that can be collectively described by a single pKa shift from 9.1 to 7.54. This further change in ionization state of the enzyme causes an increase of free energy with a total cost of 1.2–2.3 kcal/mol to set the enzyme into a catalytically competent form.  相似文献   

7.
Whole-cell patch-clamp measurements of the current, Ip, produced by the Na+,K+-ATPase across the plasma membrane of rabbit cardiac myocytes show an increase in Ip over the extracellular Na+ concentration range 0–50 mM. This is not predicted by the classical Albers-Post scheme of the Na+,K+-ATPase mechanism, where extracellular Na+ should act as a competitive inhibitor of extracellular K+ binding, which is necessary for the stimulation of enzyme dephosphorylation and the pumping of K+ ions into the cytoplasm. The increase in Ip is consistent with Na+ binding to an extracellular allosteric site, independent of the ion transport sites, and an increase in turnover via an acceleration of the rate-determining release of K+ to the cytoplasm, E2(K+)2 → E1 + 2K+. At normal physiological concentrations of extracellular Na+ of 140 mM, it is to be expected that binding of Na+ to the allosteric site would be nearly saturated. Its purpose would seem to be simply to optimize the enzyme’s ion pumping rate under its normal physiological conditions. Based on published crystal structures, a possible location of the allosteric site is within a cleft between the α- and β-subunits of the enzyme.  相似文献   

8.
The transport cycle in the glutamate transporter (GlT) is catalyzed by the cotransport of three Na+ ions. However, the positions of only two of these ions (Na1 and Na2 sites) along with the substrate have been captured in the crystal structures reported for both the outward-facing and the inward-facing states of Gltph. Characterizing the third ion binding site (Na3) is necessary for structure-function studies attempting to investigate the mechanism of transport in GlTs at an atomic level, particularly for the determination of the sequence of the binding events during the transport cycle. In this study, we report a series of molecular dynamics simulations performed on various bound states of Gltph (the apo state, as well as in the presence of Na+, the substrate, or both), which have been used to identify a putative Na3 site. The calculated trajectories have been used to determine the water accessibility of potential ion-binding residues in the protein, as a prerequisite for their ion binding. Combined with conformational analysis of the key regions in the protein in different bound states and several additional independent simulations in which a Na+ ion was randomly introduced to the interior of the transporter, we have been able to characterize a putative Na3 site and propose a plausible binding sequence for the substrate and the three Na+ ions to the transporter during the extracellular half of the transport cycle. The proposed Na3 site is formed by a set of highly conserved residues, namely, Asp312, Thr92, and Asn310, along with a water molecule. Simulation of a fully bound state, including the substrate and the three Na+ ions, reveals a stable structure—showing closer agreement to the crystal structure when compared to previous models lacking an ion in the putative Na3 site. The proposed sequence of binding events is in agreement with recent experimental models suggesting that two Na+ ions bind before the substrate, and one after that. Our results, however, provide additional information about the sites involved in these binding events.  相似文献   

9.
The effect of metal ions on human activated Factor X (Factor Xa) hydrolysis of the chromogenic substrate benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222) was studied utilizing initial rate enzyme kinetics. The divalent metal ions Ca2+, Mn2+, and Mg2+ enhanced Factor Xa amidolytic activity with Km values of 30 μm, 20 μm, and 1.4 mm, respectively. Na+ activation of Factor Xa amidolytic activity was also found. The Km for Na+ activation was 0.31 m. Both the divalent metal ions and Na+ increased the affinity of Factor Xa for S2222 and had no effect on the maximal velocity of the reaction. Other monovalent cations were unable to activate Factor Xa. However, K+ was a competitive inhibitor of the Na+ activation (Ki = 0.14 m). Lanthanide ions inhibited Factor Xa amidolytic activity. Gd3+ inhibition of Factor Xa hydrolysis of S2222 was noncompetitive and had a Ki of 3 μm. The lanthanide ion inhibition could not be reversed by Ca2+ even when Ca2+ was present in a 1000-fold excess over its Km indicating nonidentity of the Factor Xa lanthanide and Ca2+ binding sites. It is concluded that the Factor Xa Ca2+ binding sites have characteristics different from those previously described for the Factor X molecule and that Mg2+, Na+, and K+ may be physiological regulators of Factor Xa activity.  相似文献   

10.
The leucine transporter (LeuT) is a bacterial homolog of the human monoamine transporters, which are important pharmaceutical targets. There are no high-resolution structures of the human transporters available; however, LeuT has been crystallized in several different conformational states. Recently, an inward-facing conformation of LeuT was solved revealing an unexpectedly large movement of transmembrane helix 1a (TM1a). We have performed molecular dynamics simulations of the mutated and wild-type transporter, with and without the cocrystallized Fab antibody fragment, to investigate the properties of this inward-facing conformation in relation to transport by LeuT within the membrane environment. In all of the simulations, local conformational changes with respect to the crystal structure are consistently observed, especially in TM1a. Umbrella sampling revealed a soft potential for TM1a tilting. Furthermore, simulations of inward-facing LeuT with Na+ ions and substrate bound suggest that one of the Na+ ion binding sites is fully disrupted. Release of alanine and the second Na+ ion is also observed, giving insight into the final stage of the translocation process in atomistic detail.  相似文献   

11.
A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified.  相似文献   

12.
《Journal of molecular biology》2019,431(14):2554-2566
Proton transfer through membrane-bound ion channels is mediated by both water and polar residues of proteins, but the detailed molecular mechanism is challenging to determine. The tetrameric influenza A and B virus M2 proteins form canonical proton channels that use an HxxxW motif for proton selectivity and gating. The BM2 channel also contains a second histidine (His), H27, equidistant from the gating tryptophan, which leads to a symmetric H19xxxW23xxxH27 motif. The proton-dissociation constants (pKa's) of H19 in BM2 were found to be much lower than the pKa's of H37 in AM2. To determine if the lower pKa's result from H27-facilitated proton dissociation of H19, we have now investigated a H27A mutant of BM2 using solid-state NMR. 15N NMR spectra indicate that removal of the second histidine converted the protonation and tautomeric equilibria of H19 to be similar to the H37 behavior in AM2, indicating that the peripheral H27 is indeed the origin of the low pKa's of H19 in wild-type BM2. Measured interhelical distances between W23 sidechains indicate that the pore constriction at W23 increases with the H19 tetrad charge but is independent of the H27A mutation. These results indicate that H27 both accelerates proton dissociation from H19 to increase the inward proton conductance and causes the small reverse conductance of BM2. The proton relay between H19 and H27 is likely mediated by the intervening gating tryptophan through cation–π interactions. This relayed proton transfer may exist in other ion channels and has implications for the design of imidazole-based synthetic proton channels.  相似文献   

13.
Sodium proton antiporters are essential enzymes that catalyze the exchange of sodium ions for protons across biological membranes. The crystal structure of NhaA has provided a basis to explore the mechanism of ion exchange and its unique regulation by pH. Here, the mechanism of the pH activation of the antiporter is investigated through functional and computational studies of several variants with mutations in the ion‐binding site (D163, D164). The most significant difference found computationally between the wild type antiporter and the active site variants, D163E and D164N, are low pKa values of Glu78 making them insensitive to pH. Although in the variant D163N the pKa of Glu78 is comparable to the physiological one, this variant cannot demonstrate the long‐range electrostatic effect of Glu78 on the pH‐dependent structural reorganization of trans‐membrane helix X and, hence, is proposed to be inactive. In marked contrast, variant D164E remains sensitive to pH and can be activated by alkaline pH shift. Remarkably, as expected computationally and discovered here biochemically, D164E is viable and active in Na+/H+ exchange albeit with increased apparent KM. Our results unravel the unique electrostatic network of NhaA that connect the coupled clusters of the “pH sensor” with the binding site, which is crucial for pH activation of NhaA. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The Na+,K+-ATPase (NKA) and non-gastric H+,K+- ATPase (ngHKA) share ~65 % sequence identity, and nearly identical catalytic cycles. These pumps alternate between inward-facing (E1) and outward-facing (E2) conformations and differ in their exported substrate (Na+ or H+) and stoichiometries (3 Na+:2 K+ or 1 H+:1 K+). We reported that structures of the NKA-mimetic ngHKA mutant K794S/A797P/W940/R949C (SPWC) with 2 K+ occluded in E2-Pi and 3 Na+-bound in E1·ATP states were nearly identical to NKA structures in equivalent states. Here we report the cryo-EM structures of K794A and K794S, two poorly-selective ngHKA mutants, under conditions to stabilize the E1·ATP state. Unexpectedly, the structures show a hybrid with both E1- and E2-like structural features. While transmembrane segments TM1-TM3 and TM4's extracellular half adopted an E2-like conformation, the rest of the protein assumed an E1 configuration. Two spherical densities, likely bound Na+, were observed at cation-binding sites I and III, without density at site II. This explains the E2-like conformation of TM4's exoplasmic half. In NKA, oxygen atoms derived from the unwound portion of TM4 coordinated Na+ at site II. Thus, the lack of Na+ at site II of K794A/S prevents the luminal portion of TM4 from taking an E1-like position. The K794A structure also suggests that incomplete coordination of Na+ at site III induces the halfway rotation of TM6, which impairs Na+-binding at the site II. Thus, our observations provide insight into the molecular mechanism of E2-E1 transition and cooperative Na+-binding in the NKA and other related cation pumps.  相似文献   

15.
The U6 RNA internal stem-loop (U6 ISL) is a highly conserved domain of the spliceosome that is important for pre-mRNA splicing. The U6 ISL contains an internal loop that is in equilibrium between two conformations controlled by the protonation state of an adenine (pKa = 6.5). Lower pH favors formation of a protonated C-A+ wobble pair and base flipping of the adjacent uracil. Higher pH favors stacking of the uracil and allows an essential metal ion to bind at this position. Here, we define the minimal-energy path for this conformational transition. To do this, we solved the U6 ISL structure at higher pH (8.0) in order to eliminate interference from the low-pH conformer. This structure reveals disruption of the protonated C-A+ pair and formation of a new C-U pair, which explains the preference for a stacked uracil at higher pH. Next, we used nudged elastic band molecular dynamics simulations to calculate the minimum-energy path between the two conformations. Our results indicate that the C-U pair is dynamic, which allows formation of the more stable C-A+ pair upon adenine protonation. After formation of the C-A+ pair, the unpaired uracil follows a minor-groove base-flipping pathway. Molecular dynamics simulations suggest that the extrahelical uracil is stabilized by contacts with the adjacent helix.  相似文献   

16.
The properties of a mercurial-dependent adenosine triphosphatase activity have been examined in isolated beef heart mitochondria. The reaction differs from that induced by uncouplers in that it is associated with extensive ion uptake and osmotic swelling, is highly specific for K+ over Na+, and is enhanced by respiration. Evidence is presented which suggests that the following events can account for the observations: (1) The mercurial blocks the phosphate transporter so that phosphate hydrolyzed from ATP is trapped in the matrix. (2) This interior negative potential causes cations to move inward and swelling results. (3) Permeability to K+ but not to Na+ is enhanced greatly by the reaction of the mercurial with the membrane. The inward movement of K+ closely resembles that produced by valinomycin, in that it is accompanied by proton ejection into the medium and it rapidly establishes a condition in which ion gradients cannot be maintained. This marked increase in permeability may be related to the pH gradient and is manifest as additional passive swelling in the absence of sucrose and passive contraction when sucrose is present. A comparison of the kinetics of swelling and of ATP hydrolysis shows that the elevated rates of ATPase are correlated with this condition of high permeability. When a corresponding condition of high permeability to Na+ is established by treatment with gramicidin or EDTA, the mercurial-dependent ATPase is nearly as rapid in Na+ as in the K+ medium. It appears, therefore, that the K+ specificity resides at the level of membrane permeability and is not a feature of the ATPase reaction per se. (4) Respiration appears to affect the ATPase reaction by virtue of its ability to extrude ions from the matrix in the presence of the mercurial. p-Chloromercuriphenyl sulfonate causes a switch from respiration-dependent ion accumulation to respiration-dependent ion extrusion to occur. A model to explain these reactions is presented.  相似文献   

17.
18.
1. The properties of 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF 6847) were studied chemically and spectroscopically. Two molecular species of SF6847 were identified: the undissociated form (SFH; ?363, 10 mM?1) and the dissociated form (SF?; ?454, 35 mM?1). The pKa value of the molecule was determined to be 6.9.2. On the basis of these properties the interactions of SF6847 with liposomes and valinomycin · K+ were studied. The partition constants of SFH (Knp and SF? (K?p) to liposomes were determined separately; Knp was 56 mM?1 and was independent of the pH of the medium, whereas K?p dependend greatly on the pH, being 1.2 mM?1 at pH 7.0 and 2.9 mM?1 at pH 8.0. Using these values, the partition constant of total SF6847 (Kp) was calculated and found to be essentially the same as that calculated from the kinetics of proton uptake. It was concluded that the amount of SF? bound to liposomes is rate limiting for proton uptake.3. The effects of membrane potential on partition constants were studied. The K?p decreased greatly upon generation of a membrane potential negative inside the liposomes but increased upon generation of a membrane potential positive inside the liposomes.4. The interaction of SF6847 with valinomycin in aqueous solution and in liposomes was demonstrated only in the presence of potassium ion. Potassium ion could not be replaced by sodium ion. Evidence was obtained for the formation of the ternary complex valinomycin · K+ · SF? in liposomes and in hexane. It was concluded that SF? became more soluble in the liposomal membranes on formation of this ternary complex. All these results support our proposed mechanism for the proton uptake cycle (Yamaguchi, A. and Anraku, Y. (1978) Biochim. Biophys. Acta 501, 136–149).  相似文献   

19.
Protonation of an aminoglycoside antibiotic kanamycin A sulfate was studied by potentiometric titrations at variable ionic strength, sulfate concentration and temperature. From these results the association constants of differently protonated forms of kanamycin A with sulfate and enthalpy changes for protonation of each amino group were determined. The protonation of all amino groups of kanamycin A is exothermic, but the protonation enthalpy does not correlate with basicity as in a case of simple polyamines. The sites of stepwise protonation of kanamycin A have been assigned by analysis of 1H-13C-HSQC spectra at variable pH in D2O. Plots of chemical shifts for each H and C atom of kanamycin A vs. pH were fitted to the theoretical equation relating them to pKa values of ionogenic groups and it was observed that changes in chemical shifts of all atoms in ring C were controlled by ionization of a single amino group with pKa 7.98, in ring B by ionization of two amino groups with pKa 6.61 and 8.54, but in ring A all atoms felt ionization of one group with pKa 9.19 and some atoms felt ionization of a second group with pKa 6.51, which therefore should belong to amino group at C3 in ring B positioned closer to the ring A while higher pKa 8.54 can be assigned to the group at C1. This resolves the previously existed uncertainty in assignment of protonation sites in rings B and C.  相似文献   

20.
Antiporters are ubiquitous membrane proteins that catalyze obligatory exchange between two or more substrates across a membrane in opposite directions. Some utilize proton electrochemical gradients generated by primary pumps by coupling the downhill movement of one or more protons to the movement of a substrate. Since the direction of the proton gradient usually favors proton movement toward the cytoplasm, their function results in removal of substrates other than protons from the cytoplasm, either into acidic intracellular compartments or out to the medium. H+-coupled antiporters play central roles in living organisms, for example, storage of neurotransmitter and other small molecules, resistance to antibiotics, homeostasis of ionic content and more. Biochemical and structural data support a general mechanism for H+-coupled antiporters whereby the substrate and the protons cannot bind simultaneously to the protein. In several cases, it was shown that the binding sites overlap, and therefore, there is a direct competition between the protons and the substrate. In others, the “competition” seems to be indirect and it is most likely achieved by allosteric mechanisms. The pKa of one or more carboxyls in the protein must be tuned appropriately in order to ensure the feasibility of such a mechanism. In this review, I discuss in detail the case of EmrE, a multidrug transporter from Escherichia coli and evaluate the information available for other H+-coupled antiporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号