首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The blood-brain barrier (BBB) is formed by specialized tight junctions between endothelial cells that line brain capillaries to create a highly selective barrier between the brain and the rest of the body. A major problem to overcome in drug design is the ability of the compound in question to cross the BBB. Neuroactive drugs are required to cross the BBB to function. Conversely, drugs that target other parts of the body ideally should not cross the BBB to avoid possible psychotropic side effects. Thus, the task of predicting the BBB permeability of new compounds is of great importance. Two gold-standard experimental measures of BBB permeability are logBB (the concentration of drug in the brain divided by concentration in the blood) and logPS (permeability surface-area product). Both methods are time-consuming and expensive, and although logPS is considered the more informative measure, it is lower throughput and more resource intensive. With continual increases in computer power and improvements in molecular simulations, in silico methods may provide viable alternatives. Computational predictions of these two parameters for a sample of 12 small molecule compounds were performed. The potential of mean force for each compound through a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer is determined by molecular dynamics simulations. This system setup is often used as a simple BBB mimetic. Additionally, one-dimensional position-dependent diffusion coefficients are calculated from the molecular dynamics trajectories. The diffusion coefficient is combined with the free energy landscape to calculate the effective permeability (Peff) for each sample compound. The relative values of these permeabilities are compared to experimentally determined logBB and logPS values. Our computational predictions correlate remarkably well with both logBB (R2 = 0.94) and logPS (R2 = 0.90). Thus, we have demonstrated that this approach may have the potential to provide reliable, quantitatively predictive BBB permeability, using a relatively quick, inexpensive method.  相似文献   

2.
Blood–brain barrier (BBB) characteristics are induced and maintained by cross-talk between brain microvessel endothelial cells and neighbouring elements of the neurovascular unit. While pericytes are the cells situated closest to brain endothelial cells morphologically and share a common basement membrane, they have not been used in co-culture BBB models for testing drug permeability. We have developed and characterized a new syngeneic BBB model using primary cultures of the three main cell types of cerebral microvessels. The co-culture of endothelial cells, pericytes and astrocytes mimick the anatomical situation in vivo. In the presence of both pericytes and astrocytes rat brain endothelial cells expressed enhanced levels of tight junction (TJ) proteins occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. Further morphological evidence of the presence of interendothelial TJs was provided by electron microscopy. The transendothelial electrical resistance (TEER) of brain endothelial monolayers in triple co-culture, indicating the tightness of TJs reached 400 Ω cm2 on average, while the endothelial permeability coefficients (Pe) for fluorescein was in the range of 3 × 10?6 cm/s. Brain endothelial cells in the new model expressed glucose transporter-1, efflux transporters P-glycoprotein and multidrug resistance protein-1, and showed a polarized transport of rhodamine 123, a ligand for P-glycoprotein. To further characterize the model, drug permeability assays were performed using a set of 19 compounds with known in vivo BBB permeability. Good correlation (R2 = 0.89) was found between in vitro Pe values obtained from measurements on the BBB model and in vivo BBB permeability data. The new BBB model, which is the first model to incorporate pericytes in a triple co-culture setting, can be a useful tool for research on BBB physiology and pathology and to test candidate compounds for centrally acting drugs.  相似文献   

3.
In previous studies it was shown that polysorbate 80(PS80)-coated poly(n-butylcyano-acrylate) nanoparticles (PBCA-NP) are able to cross the blood–brain barrier (BBB) in vitro and in vivo. In order to explore and extend the potential applications of PBCA-NP as drug carriers, it is important to ascertain their effect on the BBB. The objective of the present study was to determine the effect of PS80-coated PBCA-NP on the BBB integrity of a porcine in vitro model. This has been investigated by monitoring the development of the transendothelial electrical resistance (TEER) after the addition of PBCA-NP employing impedance spectroscopy. Additionally, the integrity of the BBB in vitro was verified by measuring the passage of the reference substances 14C-sucrose and FITC-BSA after addition of PBCA-NP. In this study we will show that the application of PS80-coated PBCA-NP leads to a reversible disruption of the barrier after 4 h. The observed disruption of the barrier could also be confirmed by 14C-sucrose and FITC-BSA permeability studies. Comparing the TEER and permeability studies the lowest resistances and maximal values for permeabilities were both observed after 4 h. These results indicate that PS80-coated PBCA-NP might be suitable for the use as drug carriers. The reversible disruption also offers the possibility to use these particles as specific opener of the BBB. Instead of incorporating the therapeutic agents into the NP, the drugs may cross the BBB after being applied simultaneously with the PBCA-NP.  相似文献   

4.
In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins -catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.This work is dedicated to the memory of Werner Risau (died 13.12.1998), who initiated this collaboration  相似文献   

5.
It appears thatthe expression of vascular endothelial growth factor (VEGF) isincreased during brain injury and thus may contribute to disruption ofthe blood-brain barrier (BBB) during cerebrovascular trauma. The firstgoal of this study was to determine the effect of VEGF on permeabilityof the BBB in vivo. The second goal was to determine possible cellularmechanisms by which VEGF increases permeability of the BBB. We examinedthe pial microcirculation in rats using intravital fluorescencemicroscopy. Permeability of the BBB [clearance of FITC-labeleddextran of molecular mass 10,000 Da (FITC-dextran-10K)] anddiameter of pial arterioles were measured in absence and presence ofVEGF (0.01 and 0.1 nM). During superfusion with vehicle (saline),clearance of FITC-dextran-10K from pial vessels was minimal anddiameter of pial arterioles remained constant. Topical application ofVEGF (0.01 nM) did not alter permeability of the BBB toFITC-dextran-10K or arteriolar diameter. However, superfusion with VEGF(0.1 nM) produced a marked increase in clearance of FITC-dextran-10Kand a modest dilatation of pial arterioles. To determine a potentialrole for nitric oxide and stimulation of soluble guanylate cyclase inVEGF-induced increases in permeability of the BBB and arteriolardilatation, we examined the effects ofNG-monomethyl-L-arginine(L-NMMA; 10 µM) and1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1.0 µM), respectively.L-NMMA and ODQ inhibitedVEGF-induced increases in permeability of the BBB and arteriolardilatation. The findings of the present study suggest that VEGF, whichappears to be increased in brain tissue during cerebrovascular trauma, increases the permeability of the BBB via the synthesis/release ofnitric oxide and subsequent activation of soluble guanylate cyclase.  相似文献   

6.
Aims It is a huge challenge to understand the blood–brain barrier (BBB), which is a key element in neuroinflammation associated with many brain diseases. The BBB also regulates the passage of xenobiotics into the central nervous system (CNS), and therefore influences drug efficacy. This may be due to the presence of ATP binding cassette transporters such as P-glycoprotein (Pgp) on the BBB, which are efflux pumps known to transport many drugs. The peptide endothelin 1 (ET-1) is involved in different kinds of CNS diseases and neuroinflammation, and is known to modulate Pgp transport activity. Although there are data from animal models, data from human models are scarce. We evaluated Pgp expression and transport activity in adult human brain microvascular endothelial cells (HBMECs) when exposing an adult human in vitro BBB model to ET-1. Methods Adult HBMECs were cocultured with human adult glial cells on a TranswellsR to mimic blood and CNS compartments. These human in vitro BBBs were exposed for 24 h to 100 nM and 10 nM ET-1. Pgp expression was assessed by flow cytometry and its transport activity by measuring radiolabelled digoxin passage. Results After exposure to ET-1, flow cytometry showed no shift of fluorescence intensity for a Pgp specific antibody. The passage of digoxin increased with a significant decrease of Q ratio for 10 nM ET-1. Conclusion Our results show that ET-1 has no effect on Pgp expression of adult HBMECs, but does modulate Pgp transport activity.  相似文献   

7.
Efficient delivery of therapeutics across the neuroprotective blood–brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High‐fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo‐like barrier properties in a microfluidic BBB model. This BBB‐on‐a‐chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo‐like values of trans‐endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm2 on day 3 on chip and were sustained above 2000 Ω · cm2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC‐dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB‐on‐a‐chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time‐based design of a microfluidic platform will enable integration with other organ modules to simulate multi‐organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184–194. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Cerebral fungal infections represent an important public health concern, where a key element of pathophysiology is the ability of the fungi to cross the blood-brain barrier (BBB). Yet the mechanism used by micro-organisms to cross such a barrier and invade the brain parenchyma remains unclear. This study investigated the effects of gliotoxin (GTX), a mycotoxin secreted by Aspergillus fumigatus, on the BBB using brain microvascular endothelial cells (BMECs) derived from induced pluripotent stem cells (iPSCs). We observed that both acute (2 h) and prolonged (24 h) exposure to GTX at the level of 1 μM or higher compromised BMECs monolayer integrity. Notably, acute exposure was sufficient to disrupt the barrier function in iPSC-derived BMECs, resulting in decreased transendothelial electrical resistance (TEER) and increased fluorescein permeability. Further, our data suggest that such disruption occurred without affecting tight junction complexes, via alteration of cell-matrix interactions, alterations in F-actin distribution, through a protein kinase C-independent signaling. In addition to its effect on the barrier function, we have observed a low permeability of GTX across the BBB. This fact can be partially explained by possible interactions of GTX with membrane proteins. Taken together, this study suggests that GTX may contribute in cerebral invasion processes of Aspergillus fumigatus by altering the blood-brain barrier integrity without disrupting tight junction complexes.  相似文献   

9.
A series of Tacrine–Homoisoflavonoid hybrids were designed, synthesised and evaluated as inhibitors of cholinesterases (ChEs) and human monoamine oxidases (MAOs). Most of the compounds were found to be potent against both ChEs and MAO-B. Among these hybrids, compound 8b, with a 6 carbon linker between tacrine and (E)-7-hydroxy-3-(4-methoxybenzylidene)chroman-4-one, proved to be the most potent against AChE and MAO-B with IC50 values of 67.9 nM and 0.401 μM, respectively. This compound was observed to cross the blood–brain barrier (BBB) in a parallel artificial membrane permeation assay for the BBB (PAMPA-BBB). The results indicated that compound 8b is an excellent multifunctional promising compound for development of novel drugs for Alzheimer’s disease (AD).  相似文献   

10.
Geissoschizine methyl ether (GM) in Uncaria hook, a galenical constituent of yokukansan is thought to be one of active components in the psychotropic effect of yokukansan, a traditional Japanese medicine (kampo medicine). However, there is no data on the blood–brain barrier (BBB) permeability of Uncaria hook-derived alkaloids containing GM. In this study, we investigated the BBB permeability of seven Uncaria hook alkaloids (GM, isocorynoxeine, isorhynchophylline, hirsuteine, hirsutine, rhynchophylline, and corynoxeine) using in vivo and in vitro methods. In the in vivo experiment, seven alkaloids in the plasma and brain of rats orally administered with yokukansan were measured by liquid chromatography–mass spectroscopy/mass spectrometric multiple reaction monitoring assay. In the in vitro experiment, the BBB permeability of seven alkaloids were examined using the BBB model composed of co-culture of endothelial cells, pericytes, and astrocytes. In the in vivo study, six components containing GM but not isocorynoxeine were detected in the plasma, and three (GM, hirsuteine, and corynoxeine) of components were detected in the brain. The in vitro BBB permeability data indicated that seven alkaloids were able to cross brain endothelial cells in culture conditions and that the BBB permeability of GM was higher than those of the other six alkaloids. These results suggest that target ingredient GM in yokukansan administered orally is absorbed into the blood and then reaches the brain through the BBB. This evidence further supports the possibility that GM is an active component in the psychotropic effect of yokukansan.  相似文献   

11.
The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. Because disruption of the BBB may contribute to many brain disorders, they are of considerable interests in the identification of the molecular mechanisms of BBB development and integrity. We here report that the giant protein AHNAK is expressed at the plasma membrane of endothelial cells (ECs) forming specific blood-tissue barriers, but is absent from the endothelium of capillaries characterized by extensive molecular exchanges between blood and extracellular fluid. In the brain, AHNAK is widely distributed in ECs with BBB properties, where it co-localizes with the tight junction protein ZO-1. AHNAK is absent from the permeable brain ECs of the choroid plexus and is down-regulated in permeable angiogenic ECs of brain tumors. In the choroid plexus, AHNAK accumulates at the tight junctions of the choroid epithelial cells that form the blood-cerebrospinal fluid (CSF) barrier. In EC cultures, the regulation of AHNAK expression and its localization corresponds to general criteria of a protein involved in barrier organization. AHNAK is up-regulated by angiopoietin-1 (Ang-1), a morphogenic factor that regulates brain EC permeability. In bovine cerebral ECs co-cultured with glial cells, AHNAK relocates from the cytosol to the plasma membrane when endothelial cells acquire BBB properties. Our results identify AHNAK as a protein marker of endothelial cells with barrier properties.  相似文献   

12.
血脑屏障与脑血管疾病的相关研究   总被引:1,自引:0,他引:1  
血脑屏障(blood brain barrier,BBB)的主要结构包括:脑毛细血管内皮细胞及其间的紧密连接(tight junction,TJ)、基底膜、基 底膜下星型胶质细胞终足。血脑屏障是存在于血液和脑组织之间的一层屏障系统,在许多大脑疾患的病理过程中,BBB 的破坏导 致通透性增高都是不可避免的一个环节。BBB是保证中枢神经系统的正常生理功能的重要屏障系统。目前已有大量关于血脑屏 障通透性在脑血管疾病中的变化研究。本文分别从血脑屏障的结构和功能,药物通过血脑屏障的方法和功能,脑缺血损伤、阿尔 茨海默病、帕金森病和多发性硬化症等不同的脑病变与血脑屏障通透性的变化及中医药应用等方面做一综述。有针对性地对 BBB和大脑疾病进行进一步的研究与探索,将会为临床治疗相关疾病带来新的视角与机遇。  相似文献   

13.
The blood–brain barrier (BBB) has unique structures in order to protect the central nervous system. In addition to the tight junction of the microvessel endothelium, there is a uniform and narrow matrix-like basement membrane (BM) sandwiched between the vessel wall and the astrocyte foot processes ensheathing the cerebral microvessel. To understand the mechanism by which these structural components modulate permeability of the BBB, we developed a mathematical model for water and solute transport across the BBB. The fluid flow in the cleft regions of the BBB were approximated by the Poiseuille flow while those in the endothelial surface glycocalyx layer (SGL) and BM were approximated by the Darcy and Brinkman flows, respectively. Diffusion equations in each region were solved for the solute transport. The anatomical parameters were obtained from electron microscopy studies in the literature. Our model predicts that compared to the peripheral microvessels with endothelium only, the BM and the wrapping astrocytes can reduce hydraulic conductivity (Lp) of the BBB and the permeability to sodium fluorescein (PNaF) by up to 6-fold when the fiber density in the BM is the same as that in the SGL. Even when the SGL and the tight junctions of the endothelium are compromised, the BM and astrocyte foot processes can still maintain the low Lp and PNaF of the BBB. Our model predictions indicate that the BM and astrocytes of the BBB provide a great protection to the CNS under both physiological and pathological conditions.  相似文献   

14.
Alzheimer’s disease (AD) is the most commonly form of dementia in the elderly. The development of molecules able to detect biomarkers characteristic of AD is critical to its understanding and treatment. However, such molecules must be able to pass blood-brain barrier (BBB) which is a major impediment to the entry of many therapeutic drugs into the brain. Such a limitation applies to the development of magnetic resonance imaging molecular neuroimaging agents using biomarkers of AD-like β-amyloid deposits, as the common extracellular contrast agents (CAs) are not able to cross an intact BBB. In this work, we have studied the ability of a series of simple Eu3+ complexes to enter cells overexpressing or not the ABCB1 (P-gp or P-glycoprotein) protein, which is expressed at the BBB and in human embryonic astrocytes. The intracellular uptake of the Eu3+ complexes of linear and macrocyclic polyaminocarboxylate ligands with different charges and lipophilicities was followed by atomic absorption spectrometry. Based on biochemical argument, we propose that lipophilic contrast agents can be efficiently taken up by cells and accumulate inside mitochondria when they are positively charged. The important point is that they are not P-gp substrates, which is one of the major obstacles for them to cross the BBB.  相似文献   

15.
In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood–brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft–Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated.  相似文献   

16.
(1) The blood–brain barrier (BBB) characteristics of cerebral endothelial cells are induced by organ-specific local signals. Brain endothelial cells lose their phenotype in cultures without cross-talk with neighboring cells. (2) In contrast to astrocytes, pericytes, another neighboring cell of endothelial cells in brain capillaries, are rarely used in BBB co-culture systems. (3) Seven different types of BBB models, mono-culture, double and triple co-cultures, were constructed from primary rat brain endothelial cells, astrocytes and pericytes on culture inserts. The barrier integrity of the models were compared by measurement of transendothelial electrical resistance and permeability for the small molecular weight marker fluorescein. (4) We could confirm that brain endothelial monolayers in mono-culture do not form tight barrier. Pericytes induced higher electrical resistance and lower permeability for fluorescein than type I astrocytes in co-culture conditions. In triple co-culture models the tightest barrier was observed when endothelial cells and pericytes were positioned on the two sides of the porous filter membrane of the inserts and astrocytes at the bottom of the culture dish. (5) For the first time a rat primary culture based syngeneic triple co-culture BBB model has been constructed using brain pericytes beside brain endothelial cells and astrocytes. This model, mimicking closely the anatomical position of the cells at the BBB in vivo, was superior to the other BBB models tested. (6) The influence of pericytes on the BBB properties of brain endothelial cells may be as important as that of astrocytes and could be exploited in the construction of better BBB models.  相似文献   

17.
A set of semi-rigid cyclic and acyclic bis-quaternary ammonium analogs, which were part of a drug discovery program aimed at identifying antagonists at neuronal nicotinic acetylcholine receptors, were investigated to determine structural requirements for affinity at the blood–brain barrier choline transporter (BBB CHT). This transporter may have utility as a drug delivery vector for cationic molecules to access the central nervous system. In the current study, a virtual screening model was developed to aid in rational drug design/ADME of cationic nicotinic antagonists as BBB CHT ligands. Four 3D-QSAR comparative molecular field analysis (CoMFA) models were built which could predict the BBB CHT affinity for a test set with an r2 <0.5 and cross-validated q2 of 0.60, suggesting good predictive capability for these models. These models will allow the rapid in silico screening of binding affinity at the BBB CHT of both known nicotinic receptor antagonists and virtual compound libraries with the goal of informing the design of brain bioavailable quaternary ammonium analogs that are high affinity selective nicotinic receptor antagonists.  相似文献   

18.
Peptides have been shown in both in vivo and in vitro systems to cross the blood-brain barrier (BBB) and so affect function on the side contralateral to their origin. Some peptides cross primarily by transmembrane diffusion, a nonsaturable mechanism largely dependent on the lipid solubility of the peptide. Other peptides are transported by saturable systems across the BBB. These transport systems can be in the CNS to blood direction, as in the cases of Tyr-MIF-1 and methionine enkephalin, in the blood to CNS direction, as in the case of peptide T, or bidirectional, as in the case of LHRH. Other factors that also affect the amount of peptide crossing the BBB include binding in blood, volume of distribution, enzymatic resistance, and half-time disappearance from the blood. An in vitro model of the BBB has been characterized and used to confirm that peptides can cross the BBB. Results with the model agree with those obtained in vivo and have been used to study the permeability of the BBB to peptides, the effect of peptides on BBB integrity, the cellular pathway peptides and proteins use to cross the BBB, and the ability of the BBB to degrade peptides. The in vivo and in vitro methods have been used together to develop halogenated enkephalin analogs that are enzymatically resistant, cross the BBB readily to accumulate in areas of the brain rich in opiate receptors, and are powerful analgesics. This shows how the principles elucidated for peptide passage across the BBB can be used to develop therapeutic peptides and how those peptides can be further tested in complementary in vivo and in vitro systems.  相似文献   

19.
Hemorrhagic transformation is a major complication associated with tissue plasminogen activator (tPA) therapy for ischemic stroke. We studied the effect of tPA on the blood–brain barrier (BBB) function with our in vitro monolayer model generated using rat brain microvascular endothelial cells subjected either to normoxia or to hypoxia/reoxygenation (H/R) with or without the administration of tPA. The barrier function was evaluated by the transendothelial electrical resistance (TEER), the permeability of sodium fluorescein and Evans’ blue-albumin (EBA), and the uptake of lucifer yellow (LY). The permeability of sodium fluorescein and EBA was used as an index of paracellular and transcellular transport, respectively. The administration of tPA increased the permeability of EBA and the uptake of LY under normoxia. It enhanced the increase in the permeability of both sodium fluorescein and EBA, the decrease in the TEER, and the disruption in the expression of ZO-1 under H/R conditions. Administration of tPA could cause an increase in the transcellular transport under normoxia, and both the transcellular and paracellular transport of the BBB under H/R conditions in vitro. Even in humans, tPA may lead to an opening of the BBB under non-ischemic conditions and have an additional effect on the ischemia-induced BBB disruption.  相似文献   

20.
Biopharmaceuticals, including recombinant proteins, monoclonal antibody therapeutics, and antisense or RNA interference drugs, cannot be developed as drugs for the brain, because these large molecules do not cross the blood-brain barrier (BBB). Biopharmaceuticals must be re-engineered to cross the BBB, and this is possible with genetically engineered molecular Trojan horses. A molecular Trojan horse is an endogenous peptide, or peptidomimetic monoclonal antibody (mAb), which enters brain from blood via receptor-mediated transport on endogenous BBB transporters. Recombinant neurotrophins, single chain Fv antibodies, or therapeutic enzymes may be re-engineered as IgG fusion proteins. The engineering of IgG-avidin fusion proteins enables the BBB delivery of biotinylated drugs. The IgG fusion proteins are new chemical entities that are dual or triple function molecules that bind multiple receptors. The fusion proteins are able both to enter the brain, by binding an endogenous BBB receptor, and to induce the desired pharmacologic effect in brain, by binding target receptors in the brain behind the BBB. The development of molecular Trojan horses for BBB drug delivery allows the re-engineering of biopharmaceuticals that, owing to the BBB problem, could not otherwise be developed as new drugs for the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号