首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We study the impact of the addition of particles of a range of sizes on the phase transition behavior of lung surfactant under compression. Charged particles ranging from micro- to nanoscale are deposited on lung surfactant films in a Langmuir trough. Surface area versus surface pressure isotherms and fluorescent microscope observations are utilized to determine changes in the phase transition behavior. We find that the deposition of particles close to 20 nm in diameter significantly impacts the coexistence of the liquid-condensed phase and liquid-expanded phase. This includes morphological changes of the liquid-condensed domains and the elimination of the squeeze-out phase in isotherms. Finally, a drastic increase of the domain fraction of the liquid-condensed phase can be observed for the deposition of 20-nm particles. As the particle size is increased, we observe a return to normal phase behavior. The net result is the observation of a critical particle size that may impact the functionality of the lung surfactant during respiration.  相似文献   

2.
Langmuir isotherms, fluorescence microscopy, and atomic force microscopy were used to study lung surfactant specific proteins SP-B and SP-C in monolayers of dipalmitoylphosphatidylglycerol (DPPG) and palmitoyloleoylphosphatidylglycerol (POPG), which are representative of the anionic lipids in native and replacement lung surfactants. Both SP-B and SP-C eliminate squeeze-out of POPG from mixed DPPG/POPG monolayers by inducing a two- to three-dimensional transformation of the fluid-phase fraction of the monolayer. SP-B induces a reversible folding transition at monolayer collapse, allowing all components of surfactant to remain at the interface during respreading. The folds remain attached to the monolayer, are identical in composition and morphology to the unfolded monolayer, and are reincorporated reversibly into the monolayer upon expansion. In the absence of SP-B or SP-C, the unsaturated lipids are irreversibly lost at high surface pressures. These morphological transitions are identical to those in other lipid mixtures and hence appear to be independent of the detailed lipid composition of the monolayer. Instead they depend on the more general phenomena of coexistence between a liquid-expanded and liquid-condensed phase. These three-dimensional monolayer transitions reconcile how lung surfactant can achieve both low surface tensions upon compression and rapid respreading upon expansion and may have important implications toward the optimal design of replacement surfactants. The overlap of function between SP-B and SP-C helps explain why replacement surfactants lacking in one or the other proteins often have beneficial effects.  相似文献   

3.
Fluorocarbon gases (gFCs) were found to inhibit the liquid-expanded (LE)/liquid-condensed (LC) phase transition of dipalmitoyl phosphatidylcholine (DPPC) Langmuir monolayers. The formation of domains of an LC phase, which typically occurs in the LE/LC coexistence region upon compression of DPPC, is prevented when the atmosphere above the DPPC monolayer is saturated with a gFC. When contacted with gFC, the DPPC monolayer remains in the LE phase for surface pressures lower than 38 mN m(-1), as assessed by compression isotherms and fluorescence microscopy (FM). Moreover, gFCs can induce the dissolution of preexisting LC phase domains and facilitate the respreading of the DPPC molecules on the water surface, as shown by FM and grazing incidence x-ray diffraction. gFCs have thus a highly effective fluidizing effect on the DPPC monolayer. This gFC-induced fluidizing effect was compared with the fluidizing effect brought about by a mixture of unsaturated lipids and proteins, namely the two commercially available lung surfactant substitutes, Curosurf and Survanta, which are derived from porcine and bovine lung extracts, respectively. The candidate FCs were chosen among those already investigated for biomedical applications, and in particular for intravascular oxygen transport, i.e., perfluorooctyl bromide, perfluorooctylethane, bis(perfluorobutyl)ethene, perfluorodecalin, and perfluorooctane. The fluidizing effect is most effective with the linear FCs. This study suggests that FCs, whose biocompatibility is well documented, may be useful in lung surfactant substitute compositions.  相似文献   

4.
We present a theoretical model for the liquid-expanded to liquid-condensed phase transition observed in many phospholipid monolayer films. The total two-dimensional pressure in the model is the sum of the hydrocarbon chain pressure and the surface pressure. The hydrocarbon chain pressure is calculated in an extended version of a model published earlier. The surface pressure results from a lowering of the surface tension in the monolayer over that of pure water, thus producing a force on a Langmuir float. When these two contributions are added, π/A isotherms are obtained which have slope discontinuities very similar to those observed experimentally. These results indicate that a successful model for lipid phase behavior must consider the interactions between head groups and water as well as cooperative hydrocarbon chain melting.  相似文献   

5.
We present a theoretical model for the liquid-expanded to liquid-condensed phase transition observed in many phospholipid monolayer films. The total two-dimensional pressure in the model is the sum of the hydrocarbon chain pressure and the surface pressure. The hydrocarbon chain pressure is calculated in an exteded version of a model published earlier. The surface pressure results from a lowering of the surface tension in the monolayer over that of pure water, thus producing a force on a Langmuir float. When these two contributions are added, pi/A isotherms are obtained which have slope discontinuities very similar to those observed experimentally. The results indicate that a successful model for lipid phase behavior must consider the interactions between head groups and water as well as cooperative hydrocarbon chain melting.  相似文献   

6.
Zeng Z  Li D  Xue W  Sun L 《Biophysical chemistry》2007,131(1-3):88-95
A simple surface equation of state is proposed to describe pi-A isotherms of pulmonary surfactant monolayers. The monolayer is considered as undergoing three characteristic states during the compression: the disordered liquid-expanded (LE) state, the ordered liquid-condensed (LC) state and the collapse state. Structural models of pure protein (SP-B and SP-C) monolayer are proposed to interpret the behavior characteristics of monolayer in the states. The area, ALC, is defined as an instantaneous LC-state area when the monolayer is under the complete LC state. The area, At, is defined as a transition area from the ordered LC state to the collapse state. And the collapse pressure, pi(max), is defined as the maximum surface pressure that the monolayer can bear before collapse. The ideal equation of state is revised by ALC, At and pi(max), and a new equation of state is obtained, which is applicable for pure components of pulmonary surfactant. The theoretical pi-A isotherms described by the equation of state are compared with the experimental ones for SP-B, SP-C, DPPC and DPPG, and good agreements are obtained. The equation of state is generalized to protein-lipid binary mixtures by introducing mixing rules. The predicted pi-A isotherms agree with the experimental ones for various pulmonary surfactant components and the average deviation is about 9.2%.  相似文献   

7.
Aqueous dispersions of a porcine lung surfactant (PLS) extract with and without cholesterol supplementation were analyzed by X-ray scattering. Lamellar liquid-crystalline and gel-type bilayer phases are formed, as in pure phosphatidylcholine (PC)-cholesterol systems. This PLS extract, developed for clinical applications, has a cholesterol content of less than 1% (w/w). Above the limit of swelling, the bilayer structure shows a melting (main) transition during heating at about 34 degrees C. When 13 mol% cholesterol was added to PLS, so that the cholesterol content of natural lung surfactant was reached, the X-ray scattering pattern showed pronounced changes. The main transition temperature was reduced to the range 20-25 degrees C, whereas according to earlier studies of disaturated PC-cholesterol bilayers in water the main transition remains almost constant when the amount of solubilized cholesterol is increased. Furthermore, the changes in scattering pattern at passing this transition in PLS-cholesterol samples were much smaller than at the same transition in PLS samples. These effects of cholesterol solubilization can be related to phase segregation within the bilayers, known from pure PC-cholesterol systems. One phase, solubilizing about 8 mol% cholesterol, exhibits a melting transition, whereas the other bilayer phase, with a liquid-crystalline disordered conformation, has a cholesterol content in the range 20-30 mol% and this phase shows no thermal transition. The relative amount of bilayer lipids that is transformed at the main transition in the PLS-cholesterol sample is therefore only half compared to that in PLS samples. The reduction in transition temperature in the segregated bilayer of lung surfactant lipids is probably an effect of enrichment of disaturated PC species in the phase, which is poor in cholesterol. This work indicates that cholesterol in lung surfactant regulates the crystallization behavior.  相似文献   

8.
The hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63–78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B. 2H NMR has been used to examine the effect of SP-B63–78 on the phase behavior and dynamics of bicellar lipid dispersions containing the longer chain phospholipids DMPC-d 54 and DMPG and the shorter chain lipid DHPC mixed with a 3∶1∶1 molar ratio. Below the gel-to-liquid crystal phase transition temperature of the longer chain components, bicellar mixtures form small, rapidly reorienting disk-like particles with shorter chain lipid components predominantly found around the highly curved particle edges. With increasing temperature, the particles coalesce into larger magnetically-oriented structures and then into more extended lamellar phases. The susceptibility of bicellar particles to coalescence and large scale reorganization makes them an interesting platform in which to study peptide-induced interactions between lipid assemblies. SP-B63–78 is found to lower the temperature at which the orientable phase transforms to the more extended lamellar phase. The peptide also changes the spectrum of motions contributing to quadrupole echo decay in the lamellar phase. The way in which the peptide alters interactions between bilayered micelle structures may provide some insight into some aspects of the role of full-length SP-B in maintaining a functional surfactant layer in lungs.  相似文献   

9.
In cell biology (and in many biophysical) studies there is a natural tendency to consider ceramide as a highly condensed, solid-type lipid conferring rigidity and close packing to biomembranes. In the present work we advanced the understanding of the phase behavior of palmitoyl-ceramide restricted to a planar interface using Langmuir monolayers under strictly controlled and known surface packing conditions. Surface pressure–molecular area isotherms were complemented with molecular area–temperature isobars and with observations of the surface topography by Brewster Angle Microscopy. The results described herein indicate that palmitoyl-ceramide can exhibit expanded, as well as condensed phase states. Formation of three phases was found, depending on the surface pressure and temperature: a solid (1.80 nm thick), a liquid-condensed (1.73 nm thick, likely tilted) and a liquid-expanded (1.54 nm thick) phase over the temperature range 5–62 °C. A large hysteretic behavior is observed for the S phase monolayer that may indicate high resistance to domain boundary deformation. A second (or higher) order S  LC phase transition is observed at about room temperature while a first order LC  LE transition occurs in a range of temperature encompassing the physiological one (observed above 30 °C at low surface pressure). This phase behavior broadens the view of ceramide as a type of lipid not-always-rigid but able to exhibit polymorphic properties.  相似文献   

10.
The tear fluid protects the corneal epithelium from drying out as well as from invasion by pathogens. It also provides cell nutrients. Similarly to lung surfactant, it is composed of an aqueous phase covered by a lipid layer. Here we describe the molecular organization of the anterior lipid layer of the tear film. Artificial tear fluid lipid layers (ATFLLs) composed of egg yolk phosphatidylcholine (60 mol %), free fatty acids (20 mol %), cholesteryl oleate (10 mol %), and triglycerides (10 mol %) were deposited on the air-water interface and their physico-chemical behavior was compared to egg-yolk phosphatidylcholine monolayers by using Langmuir-film balance techniques, x-ray diffraction, and imaging techniques as well as in silico molecular level simulations. At low surface pressures, ATFLLs were organized at the air-water interface as heterogeneous monomolecular films. Upon compression the ATFLLs collapsed toward the air phase and formed hemispherelike lipid aggregates. This transition was reversible upon relaxation. These results were confirmed by molecular-level simulations of ATFLL, which further provided molecular-scale insight into the molecular distributions inside and dynamics of the tear film. Similar type of behavior is observed in lung surfactant but the folding takes place toward the aqueous phase. The results provide novel information of the function of lipids in the tear fluid.  相似文献   

11.
The alveolar lung surfactant (LS) is a complex lipid protein mixture that forms an interfacial monolayer reducing the surface tension to near zero values and thus preventing the lungs from collapse. Due to the expanding field of nanotechnology and the corresponding unavoidable exposure of human beings from the air, it is crucial to study the potential effects of nanoparticles (NPs) on the structural organization of the lung surfactant system. In the present study, we investigated both, the domain structure in pure DPPC monolayers as well as in lung surfactant model systems. In the pure lipid system we found that two different sized hydrophobic polymeric nanoparticles with diameter of ∼12 nm and ∼136 nm have contrasting effect on the functional and structural behavior. The small nanoparticles inserted into fluid domains at the LE-LC phase transition are not visibly disturbing the phase transition but disrupting the domain morphology of the LE phase. The large nanoparticles led to an expanded isotherm and to a significant decrease in the line tension and thus to a drastic disruption of the domain structures at a much lower number of nanoparticles with respect to the lipid. The surface activity of the model LS films again showed drastic variations due to presence of different sized NPs illustrated by the film balance isotherms and the atomic force microscopy. AFM revealed laterally profuse multilayer protrusion formation on compression but only in the presence of 136 nm sized nanoparticles. Moreover we investigated the vesicle insertion process into a preformed monolayer. A severe inhibition was observed only in the presence of ∼136 nm NPs compared to minor effects in the presence of ∼12 nm NPs. Our study clearly shows that the size of the nanoparticles made of the same material determines the interaction with biological membranes.  相似文献   

12.
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome.  相似文献   

13.
Although pressure-area isotherms are commonly measured for lipid monolayers, it is not always appreciated how much they can vary depending on experimental factors. Here, we compare experimental and simulated pressure-area isotherms for dipalmitoylphosphatidylcholine (DPPC) at temperatures ranging between 293.15 K and 323.15 K, and explore possible factors influencing the shape and position of the isotherms. Molecular dynamics simulations of DPPC monolayers using both coarse-grained (CG) and atomistic models yield results that are in rough agreement with some of the experimental isotherms, but with a steeper slope in the liquid-condensed region than seen experimentally and shifted to larger areas. The CG lipid model gives predictions that are very close to those of atomistic simulations, while greatly improving computational efficiency. There is much more variation among experimental isotherms than between isotherms obtained from CG simulations and from the most refined simulation available. Both atomistic and CG simulations yield liquid-condensed and liquid-expanded phase area compressibility moduli that are significantly larger than those typically measured experimentally, but compare well with some experimental values obtained under rapid compression.  相似文献   

14.
The studies reported here used fluorescence microscopy and Brewster angle microscopy to test the classical model of how pulmonary surfactant forms films that are metastable at high surface pressures in the lungs. The model predicts that the functional film is liquid-condensed (LC) and greatly enriched in dipalmitoyl phosphatidylcholine (DPPC). Both microscopic methods show that, in monolayers containing the complete set of phospholipids from calf surfactant, an expanded phase persists in coexistence with condensed domains at surface pressures approaching 70 mN/m. Constituents collapsed from the interface above 45 mN/m, but the relative area of the two phases changed little, and the LC phase never occupied more than 30% of the interface. Calculations based on these findings and on isotherms obtained on the continuous interface of a captive bubble estimated that collapse of other constituents increased the mol fraction of DPPC to no higher than 0.37. We conclude that monolayers containing the complete set of phospholipids achieve high surface pressures without forming a homogeneous LC film and with a mixed composition that falls far short of the nearly pure DPPC predicted previously. These findings contradict the classical model.  相似文献   

15.
We have recently reported that fluorocarbon gases exhibit an effective fluidizing effect on Langmuir monolayers of dipalmitoyl phosphatidylcholine (DPPC), preventing them from crystallizing up to surface pressures of ∼ 40 mN m− 1, i.e. well above the DPPC's equilibrium surface pressure. We now report that gaseous perfluorooctyl bromide (gPFOB) promotes the re-spreading of DPPC Langmuir monolayers compressed on a bovine serum albumin (BSA)-containing sub-phase. The latter protein is known to maintain a concentration-dependent surface pressure that can exceed the re-spreading pressure of collapsed monolayers. This phenomenon was proposed to be responsible for lung surfactant inactivation. Compression/expansion isotherms and fluorescence microscopy experiments were carried out to assess the monolayers' physical state. We have found that, during expansion under gPFOB-containing air, the surface pressure of a DPPC monolayer on a BSA-containing sub-phase decreased to much lower values than when the DPPC monolayer was expanded in the presence of BSA under air (∼ 0 mN m− 1 vs. ∼ 7.5 mN m− 1 at 120 Å2, respectively). Moreover, fluorescence images showed that, during expansion, the BSA-coupled DPPC monolayers, in contact with gPFOB, remained in the liquid-expanded state for surface pressures lower than 10 mN m− 1, whereas they were in a liquid-condensed semi-crystalline state, even at large molecular areas (120 Å2), when expanded under air. The re-incorporation of the PFOB molecules in the DPPC monolayer during expansion thus competes with the re-incorporation of BSA, thus preventing the latter from penetrating into the DPPC monolayer. We suggest that combinations of DPPC and a fluorocarbon gas may be useful in the treatment of lung conditions resulting from a deterioration of the native lung surfactant function due to plasma proteins, such as in the acute respiratory distress syndrome.  相似文献   

16.
To determine if lateral phase separation occurs in films of pulmonary surfactant, we used epifluorescence microscopy and Brewster angle microscopy (BAM) to study spread films of calf lung surfactant extract (CLSE). Both microscopic methods demonstrated that compression produced domains of liquid-condensed lipids surrounded by a liquid-expanded film. The temperature dependence of the pressure at which domains first emerged for CLSE paralleled the behavior of its most prevalent component, dipalmitoyl phosphatidylcholine (DPPC), although the domains appeared at pressures 8-10 mN/m higher than for DPPC over the range of 20-37 degrees C. The total area occupied by the domains at room temperature increased to a maximum value at 35 mN/m during compression. The area of domains reached 25 +/- 5% of the interface, which corresponds to the predicted area of DPPC in the monolayer. At pressures above 35 mN/m, however, both epifluorescence and BAM showed that the area of the domains decreased dramatically. These studies therefore demonstrate a pressure-dependent gap in the miscibility of surfactant constituents. The monolayers separate into two phases during compression but remain largely miscible at higher and lower surface pressures.  相似文献   

17.
Our study highlights the tight relationship between protein binding to monolayers and the phase-state of the phospholipids. Interaction of mitochondrial creatine kinase with phospholipidic membranes was analysed using a two-phase monolayer system containing anionic phospholipids under chain mismatch conditions. Monolayers were made up of mixtures of DMPC/DPPG or DPPC/DMPG containing 40% negatively charged phospholipids which is approximately the negative charge content of the mitochondrial inner membrane. Langmuir isotherms of these monolayers showed that they underwent a phase transition from a liquid expanded state to a liquid-condensed phase at about 2 mN/m and 5 mN/m respectively. Interface morphology modifications caused by injection of mtCK under these monolayers at low or high surface pressure were monitored by Brewster angle microscopy. This work provides evidence that the presence at the air/water interface of discrete domains with increased charge density, may lead to difference in partition of soluble proteins such as mtCK, interacting with the lipid monolayer. Conversely these proteins may help to organize charged phospholipid domains in a membrane.  相似文献   

18.
We have investigated using molecular dynamics simulations, the influence of the interaction cut-off and water model on the surface-pressure area isotherms of dipalmitoylphosphatidylcholine monolayers, where the phospholipids and the water molecules are modelled atomistically. We find that both the cut-off employed and the water model, influence the pressure area isotherms and the location of the liquid-expanded to liquid-condensed transitions. The combination of the Berger's et al. force field, with the TIP4P/2005 water model, and a long cut-off for the pair interactions ( ≥ 1.7 nm) provides a more accurate prediction of the surface pressure–area isotherm and reproduces the liquid condensed–liquid expanded transition observed in the experiments at 310 K.  相似文献   

19.
Endogenous lung surfactant, and lung surfactant replacements used to treat respiratory distress syndrome, can be inactivated during lung edema, most likely by serum proteins. Serum albumin shows a concentration-dependent surface pressure that can exceed the respreading pressure of collapsed monolayers in vitro. Under these conditions, the collapsed surfactant monolayer can not respread to cover the interface, leading to higher minimum surface tensions and alterations in isotherms and morphology. This is an unusual example of a blocked phase transition (collapsed to monolayer form) inhibiting bioactivity. The concentration-dependent surface activity of other common surfactant inhibitors including fibrinogen and lysolipids correlates well with their effectiveness as inhibitors. These results show that respreading pressure may be as important as the minimum surface tension in the design of replacement surfactants for respiratory distress syndrome.  相似文献   

20.
Ectoine and hydroxyectoine belong to the family of compatible solutes and are among the most abundant osmolytes in nature. These compatible solutes protect biomolecules from extreme conditions and maintain their native function. In the present study, we have investigated the effect of ectoine and hydroxyectoine on the domain structures of artificial lung surfactant films consisting of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and the lung surfactant specific surfactant protein C (SP-C) in a molar ratio of 80:20:0.4. The pressure-area isotherms are found to be almost unchanged by both compatible solutes. The topology of the fluid domains shown by scanning force microscopy, which is thought to be responsible for the biophysical behavior under compression, however, is modified giving rise to the assumption that ectoine and hydroxyectoine are favorable for a proper lung surfactant function. This is further evidenced by the analysis of the insertion kinetics of lipid vesicles into the lipid-peptide monolayer, which is clearly enhanced in the presence of both compatible solutes. Thus, we could show that ectoine and hydroxyectoine enhance the function of lung surfactant in a simple model system, which might provide an additional rationale to inhalative therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号