首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green-sulfur bacteria have evolved a unique light-harvesting apparatus, the chlorosome, by which it is perfectly adapted to thrive photosynthetically under extremely low light conditions. We have used single-particle, optical spectroscopy to study the structure-function relationship of chlorosomes each of which incorporates hundreds of thousands of self-assembled bacteriochlorophyll (BChl) molecules. The electronically excited states of these molecular assemblies are described as Frenkel excitons whose photophysical properties depend crucially on the mutual arrangement of the pigments. The signature of these Frenkel excitons and its relation to the supramolecular organization of the chlorosome becomes accessible by optical spectroscopy. Because subtle spectral features get obscured by ensemble averaging, we have studied individual chlorosomes from wild-type Chlorobaculum tepidum by polarization-resolved fluorescence-excitation spectroscopy. This approach minimizes the inherent sample heterogeneity and allows us to reveal properties of the exciton states without ensemble averaging. The results are compared with predictions from computer simulations of various models of the supramolecular organization of the BChl monomers. We find that the photophysical properties of individual chlorosomes from wild-type Chlorobaculum tepidum are consistent with a (multiwall) helical arrangement of syn-anti stacked BChl molecules in cylinders and/or spirals of different size.  相似文献   

2.
In contrast to photosynthetic reaction centers, which share the same structural architecture, more variety is found in the light-harvesting antenna systems of phototrophic organisms. The largest antenna system described, so far, is the chlorosome found in anoxygenic green bacteria, as well as in a recently discovered aerobic phototroph. Chlorosomes are the only antenna system, in which the major light-harvesting pigments are organized in self-assembled supramolecular aggregates rather than on protein scaffolds. This unique feature is believed to explain why some green bacteria are able to carry out photosynthesis at very low light intensities. Encasing the chlorosome pigments is a protein-lipid monolayer including an additional antenna complex: the baseplate, a two-dimensional paracrystalline structure containing the chlorosome protein CsmA and bacteriochlorophyll a (BChl a). In this article, we review current knowledge of the baseplate antenna complex, which physically and functionally connects the chlorosome pigments to the reaction centers via the Fenna–Matthews–Olson protein, with special emphasis on the well-studied green sulfur bacterium Chlorobaculum tepidum (previously Chlorobium tepidum). A possible role for the baseplate in the biogenesis of chlorosomes is discussed. In the final part, we present a structural model of the baseplate through combination of a recent NMR structure of CsmA and simulation of circular dichroism and optical spectra for the CsmA–BChl a complex.  相似文献   

3.
Green sulfur bacteria (GSB) rely on the chlorosome, a light-harvesting apparatus comprised almost entirely of self-organizing arrays of bacteriochlorophyll (BChl) molecules, to harvest light energy and pass it to the reaction center. In Chlorobaculum tepidum, over 97% of the total BChl is made up of a mixture of four BChl c homologs in the chlorosome that differ in the number and identity of alkyl side chains attached to the chlorin ring. C. tepidum has been reported to vary the distribution of BChl c homologs with growth light intensity, with the highest degree of BChl c alkylation observed under low-light conditions. Here, we provide evidence that this functional response at the level of the chlorosome can be induced not only by light intensity, but also by temperature and a mutation that prevents phototrophic thiosulfate oxidation. Furthermore, we show that in conjunction with these functional adjustments, the fraction of cellular volume occupied by chlorosomes was altered in response to environmental conditions that perturb the balance between energy absorbed by the light-harvesting apparatus and energy utilized by downstream metabolic reactions.  相似文献   

4.
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome—the light-absorbing antenna complex—in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.  相似文献   

5.
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome—the light-absorbing antenna complex—in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.  相似文献   

6.
The organization of bacteriochlorophyll c (BChl c) molecules was studied in normal and carotenoid-deficient chlorosomes isolated from the green phototrophic bacterium Chloroflexus aurantiacus. Carotenoid-deficient chlorosomes were obtained from cells grown in the presence of 60 µg of 2-hydroxybiphenyl per ml. At this concentration, BChl c synthesis was not affected while the formation of the 5.7 kDa chlorosome polypeptide was inhibited by about 50% (M. Foidl et al., submitted). Absorption, linear dichroism and circular dichroism spectroscopy showed that the organization of BChl c molecules with respect to each other as well as to the long axis of the chlorosomes was similar for both types of chlorosomes. Therefore, it is concluded that the organization of BChl c molecules is largely independent on the presence of the bulk of carotenoids as well as of at least half of the normal amount of the 5.7 kDa polypeptide. The Stark spectra of the chlorosomes, as characterized by a large difference polarizability for the ground- and excited states of the interacting BChl c molecules, were much more intense than those of individual pigments. It is proposed that this is caused by the strong overlap of BChl c molecules in the chlorosomes. In contrast to individual chlorophylls, BChl c in chlorosomes did not give rise to a significant difference permanent dipole moment for the ground- and excited states. This observation favors models for the BChl c organization which invoke the anti-parallel stacking of linear BChl c aggregates above those models in which linear BChl c aggregates are stacked in a parallel fashion. The difference between the Stark spectrum of carotenoid-deficient and WT chlorosomes indicates that the carotenoids are in the vicinity of the BChls.  相似文献   

7.
Green photosynthetic bacteria have unique light-harvesting antenna systems called chlorosomes. Chlorobaculum tepidum, a model organism of the bacteria, biosynthesized monogalactosyl- and rhamnosylgalactosyldiacylglycerides possessing a methylene-bridged palmitoleyl group characterized by a cis-substituted cyclopropane ring as the dominant glycolipids of its chlorosome surface. The formation of the cyclopropane ring was chemically inhibited by supplementation of sinefungin, an analog of S-adenosyl-l-methionine, into the bacterial cultivation. The presence of the cyclopropane ring reinforced acid resistance of the light-harvesting chlorosomes and suppressed acidic demetalation (pheophytinization) of bacteriochlorophyll-c pigments constructing the core part of chlorosomes. The ring-formation would represent direct and post-synthetic modifications of chlorosome membrane properties and was tolerant of acidic environments.  相似文献   

8.
The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.Chlorosomes (5, 13) are light-harvesting complexes found in three different phyla of photosynthetic bacteria. Chloroflexus aurantiacus belongs to the filamentous anoxygenic phototrophs (green nonsulfur bacteria) comprising members of the phylum Chloroflexi. All members of the green sulfur bacteria (phylum Chlorobi) contain chlorosomes. Very recently, a phototropic chlorosome-containing organism was found in the phylum Acidobacteria (9).Chlorosomes are oblong bodies attached to the inner side of the cytoplasmic membrane. A unique property of chlorosomes is that their main pigment, bacteriochlorophyll (BChl) c, d, or e, is organized in the form of an aggregate. A similar self-assembled aggregate can form in the absence of proteins and exhibits spectral and excitonic properties similar to those of pigments in the native chlorosomes (for a review, see reference 3). The BChl aggregates were suggested to form lamellar structures in chlorosomes of green sulfur bacteria with lamellar spacing between 2 and 3 nm, depending on the main BChl (BChl c or e) and the prevailing esterifying alcohol (38, 39). In this model, the lamellar layers are maintained by nonspecific hydrophobic interactions of the interdigitated esterifying alcohols, while the in-layer arrangement is mediated through specific interactions between the stacked chlorin rings. In BChl c-containing chlorosomes of Chlorobaculum tepidum (formerly Chlorobium tepidum), the lamellar system (spacing, ∼2 nm) often remains parallel for the whole length of the chlorosome (33, 38). In Chlorobaculum tepidum the lamellae exhibit considerable curvature, which was initially attributed to undulation (38), but recent end-on micrographs revealed a variety of curved lamellar structures, such as lamellar tubules or multilayered wraps, as well as undulations (33). Recently, when chlorosomes from a Chlorobaculum tepidum mutant with well-ordered BChl aggregates were used as a model for electron microscopy (EM) and nuclear magnetic resonance experiments, it was proposed that BChl aggregates form concentric nanotubes with the pigments arranged in helical spirals (14).In contrast, chlorosomes from BChl e-containing bacteria (e.g., Chlorobium phaeovibrioides) contain lamellar pigments that are organized into small domains with random orientations. It has been proposed that this arrangement improves the absorption of photons with different polarizations (39). This, together with aggregation-induced enlargement of the oscillator strength, enables the bacteria to survive under extremely low-light conditions. At this point it is unclear whether these domains also exhibit a multilayer tubular arrangement. The data suggest that while the lamellar nature of BChl aggregates seems to be conserved, the higher-order structure of chlorosomes may be different in different species.Chlorosomes attach to the cytoplasmic membrane via a crystalline baseplate that contains BChl a and carotenoids and acts as an intermediary in energy transfer from the chlorosome to the reaction centers in the membrane. The baseplate consists of multiple CsmA protein subunits (5.7 kDa in C. aurantiacus and 6.2 kDa in Chlorobaculum tepidum [8, 27, 34, 40]). In addition to its role in energy transfer, it has been proposed that the baseplate is essential for the long-range order of lamellar BChl aggregates (2, 19). In addition to CsmA, chlorosomes of C. aurantiacus contain a number of other proteins, all of which are located in the chlorosome envelope (for a review, see reference 13).Recent progress in understanding chlorosome structure has been limited to the Chlorobi, and it is unclear whether there is similar organization in chlorosomes from bacteria belonging to different phyla, such as the Chloroflexi. While Chloroflexi also employ chlorosomes as the main light-harvesting complex, genetically they are only distantly related to the Chlorobi. Chlorobi and Chloroflexi also exhibit substantial differences in the photosynthetic apparatus. The average size of chlorosomes from C. aurantiacus, the model organism of the Chloroflexi, has been reported to be smaller (100 by 30 by 15 nm) than the average size of chlorosomes from the Chlorobi (150 to 200 by 50 by 20 nm) (30, 32). C. aurantiacus chlorosomes contain a single homologue of BChl c (8-ethyl,12-methyl) (16) and several secondary homologues that harbor different esterifying alcohols. The main esterifying alcohol (stearol) and the minor secondary homologues have longer chains than the prevailing alcohol in Chlorobaculum tepidum (farnesol) (11, 16, 22).Carotenoids are thought to play important light-harvesting and protective roles in chlorosomes (10, 13, 26, 36, 37). These hydrophobic molecules were shown to partition into the apolar space between the chlorin planes together with the aliphatic chains of the esterifying alcohols (39), and they also contribute to the hydrophobic driving force during assembly (1, 20). C. aurantiacus exhibits much greater variability of the carotenoid/BChl molar ratio than the Chlorobi. This ratio was observed to increase at most 1.4-fold in the Chlorobi species studied, even if the light intensity was increased more than 2 orders of magnitude (from 0.1 to 50 microeinsteins m−2 s−1) (6, 7). However, when there was a moderate change in the light intensity (from 400 to 2,000 lx [41] or from 44 to 127 microeinsteins m−2 s−1 [22]), C. aurantiacus exhibited a robust increase (fivefold) in the carotenoid content. As a result, the carotenoid content can reach levels of approximately one carotenoid molecule per two BChl molecules (41). Thus, a C. aurantiacus chlorosome seems to be able to accumulate significantly more carotenoids than the average Chlorobaculum tepidum chlorosome, which exhibits about one carotenoid molecule per 10 BChl molecules (7, 39).In the present work we examined the overall structure, pigment arrangement, and composition of C. aurantiacus chlorosomes using cryo-electron tomography, X-ray scattering, and quantitative pigment analysis. C. aurantiacus chlorosomes appear to be thin with a distinct two-dimensional baseplate protein array. Our results also demonstrate that BChl c aggregates are lamellar, suggesting that this is a universal feature of chlorosome structure. The greater lamellar spacing is due to the longer esterifying alcohols and allows accommodation of more carotenoids.  相似文献   

9.
Chlorosomes are the light-harvesting organelles in photosynthetic green bacteria and typically contain large amounts of bacteriochlorophyll (BChl) c in addition to smaller amounts of BChl a, carotenoids, and several protein species. We have isolated vestigial chlorosomes, denoted carotenosomes, from a BChl c-less, bchK mutant of the green sulfur bacterium Chlorobium tepidum. The physical shape of the carotenosomes (86 ± 17 nm × 66 ± 13 nm × 4.3 ± 0.8 nm on average) was reminiscent of a flattened chlorosome. The carotenosomes contained carotenoids, BChl a, and the proteins CsmA and CsmD in ratios to each other comparable to their ratios in wild-type chlorosomes, but all other chlorosome proteins normally found in wild-type chlorosomes were found only in trace amounts or were not detected. Similar to wild-type chlorosomes, the CsmA protein in the carotenosomes formed oligomers at least up to homo-octamers as shown by chemical cross-linking and immunoblotting. The absorption spectrum of BChl a in the carotenosomes was also indistinguishable from that in wild-type chlorosomes. Energy transfer from the bulk carotenoids to BChl a in carotenosomes was poor. The results indicate that the carotenosomes have an intact baseplate made of remarkably stable oligomeric CsmA–BChl a complexes but are flattened in structure due to the absence of BChl c. Carotenosomes thus provide a valuable material for studying the biogenesis, structure, and function of the photosynthetic antennae in green bacteria.  相似文献   

10.
《BBA》1987,891(3):275-285
The formation of excited states and energy transfer in chlorosomes of the green photosynthetic bacteria Chlorobium limicola and Chloroflexus aurantiacus were studied by measurements of flash-induced absorbance changes and fluorescence. Upon excitation with 35 ps, 532 nm flashes, large absorbance decreases around 750 nm were observed that were due to the disappearance of ground state absorption of the main pigment, bacteriochlorophyll (BChl) c. The absorbance changes decayed after the flash with a time constant of approx. 1 ns, together with faster components. Absorbance changes that could be ascribed to formation of excited BChl a were much smaller than those of BChl c. The yields of BChl c and BChl a fluorescence were measured as a function of the energy density of the exciting flash. At high energy a strong quenching occurred caused by annihilation of singlet excited states. An analysis of the results shows that energy transfer between BChl c molecules is very efficient and that in C. limicola excitations can probably move freely through the entire chlorosome (which contains about 10 000 BChls c). The chlorosome thus serves as a common antenna for several reaction centres. The small amounts of BChl a present in the chlorosomes of both species form clusters of only a few molecules. Upon cooling to 4 K the sizes of the domains of BChl c for energy transfer decreased considerably. The results are discussed in relation to recently suggested models for the pigment organization within chlorosomes.  相似文献   

11.
A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.  相似文献   

12.
Continuous cultures of Chloroflexus aurantiacus were cultivated in a chemostat in the light with varying bacteriochlorophyll (BChl) a/c ratios by changing the growth rate. Under these culture conditions all cells were homogeneously and reproducibly equipped with chlorosomes. In order to determine the number and size of chlorosomes in relation to different BChl contents morphometric measurements were performed on electron micrographs. The linear increase of BChl a contents coincided with an increasing number of chlorosomes per membrane area and per bacterium rather than with an enlargement of the average size of chlorosomes. The numbers of chlorosomes and therefore the percentage of chlorosome-covered cytoplasmic membrane increased linearly with increasing BChl a contents. The average size of the baseplates was largely constant in all cultures (mean 3,222±836 nm2). However, within individual cells the size of baseplates varied by a factor of 3.0, especially by the variation of the length. The exponential increase in BChl c contents coincided with an increasing number of chlorosomes (up to a factor of 2.3) and an enlargement of the average chlorosome volume (up to a factor of 1.9). The number of BChl a molecules per chlorosome was about 1,484±165, thus the number of reaction centers per chlorosome was 58±12. The data suggest, firstly, that BChl a is confined to areas (cytoplasmic membrane plus baseplate) as represented by the chlorosome attachment sites; secondly, that the degree of packing of BChl c molecules within chlorosomes increases with increasing BChl c contents.  相似文献   

13.
Chlorosome antenna complexes from green photosynthetic bacteria   总被引:1,自引:0,他引:1  
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment–pigment interactions as opposed to protein–pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.  相似文献   

14.
The self-aggregated state of bacteriochlorophyll (BChl) c molecules in chlorosomes belonging to a bchQ bchR mutant of the green sulfur bacteria Chlorobaculum tepidum, which mostly produces a single 17(2)-farnesyl-(R)-[8-ethyl,12-methyl]BChl c homologue, was characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy and high-resolution electron microscopy. A nearly complete (1)H and (13)C chemical shift assignment was obtained from well-resolved homonuclear (13)C-(13)C and heteronuclear (1)H-(13)C NMR data sets collected from (13)C-enriched chlorosome preparations. Pronounced doubling (1:1) of specific (13)C and (1)H resonances revealed the presence of two distinct and nonequivalent BChl c components, attributed to all syn- and all anti-coordinated parallel stacks, depending on the rotation of the macrocycle with respect to the 3(1)-methyl group. Steric hindrance from the 20-methyl functionality induces structural differences between the syn and anti forms. A weak but significant and reproducible reflection at 1/0.69 nm(-1) in the direction perpendicular to the curvature of cylindrical segments observed with electron microscopy also suggests parallel stacking of BChl c molecules, though the observed lamellar spacing of 2.4 nm suggests weaker packing than for wild-type chlorosomes. We propose that relaxation of the pseudosymmetry observed for the wild type and a related BChl d mutant leads to extended domains of alternating syn and anti stacks in the bchQ bchR chlorosomes. Domains can be joined to form cylinders by helical syn-anti transition trajectories. The phase separation in domains on the cylindrical surface represents a basic mechanism for establishing suprastructural heterogeneity in an otherwise uniform supramolecular scaffolding framework that is well-ordered at the molecular level.  相似文献   

15.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   

16.
Candidatus Chlorothrix halophila” is a recently described halophilic, filamentous, anoxygenic photoautotroph (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004) that was enriched from the hypersaline microbial mats at Guerrero Negro, Mexico. Analysis of the photosynthetic apparatus by negative staining, spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the photosynthetic apparatus in this organism has similarities to the photosynthetic apparatus in both the Chloroflexi and Chlorobi phyla of green photosynthetic bacteria. The chlorosomes were found to be ellipsoidal and of various sizes, characteristics that are comparable to characteristics of chlorosomes in other species of green photosynthetic bacteria. The absorption spectrum of whole cells was dominated by the chlorosome bacteriochlorophyll c (BChl c) peak at 759 nm, with fluorescence emission at 760 nm. A second fluorescence emission band was observed at 870 nm and was tentatively attributed to a membrane-bound antenna complex. Fluorescence emission spectra obtained at 77 K revealed another complex that fluoresced at 820 nm, which probably resulted from the chlorosome baseplate complex. All of these results suggest that BChl c is present in the chlorosomes of “Ca. Chlorothrix halophila,” that BChl a is present in the baseplate, and that there is a membrane-bound antenna complex. Analysis of the proteins in the chlorosomes revealed an ~6-kDa band, which was found to be related to the BChl c binding protein CsmA found in other green bacteria. Overall, the absorbance and fluorescence spectra of “Ca. Chlorothrix halophila” revealed an interesting mixture of photosynthetic characteristics that seemed to have properties similar to properties of both phyla of green bacteria when they were compared to the photosynthetic characteristics of Chlorobium tepidum and Chloroflexus aurantiacus.  相似文献   

17.
Chlorobaculum [Cba.] tepidum is known to grow optimally at 48–52 °C and can also be cultured at ambient temperatures. In this paper, we prepared constant temperature, temperature shift, and temperature shift followed by backshift cultures and investigated the intrinsic properties and spectral features of chlorosomes from those cultures using various approaches, including temperature-dependent measurements on circular dichroism (CD), UV–visible, and dynamic light scattering. Our studies indicate that (1) chlorosomes from constant temperature cultures at 50 and 30 °C exhibited more resistance to heat relative to temperature shift cultures; (2) as temperature increases bacteriochlorophyll c (BChl c) in chlorosomes is prone to demetalation, which forms bacteriopheophytin c, and degradation under aerobic conditions. Some BChl c aggregates inside reduced chlorosomes prepared in low-oxygen environments can reform after heat treatments; (3) temperature shift cultures synthesize and incorporate more BChl c homologs with a smaller substituent at C-8 on the chlorin ring and less BChl c homologs with a larger long-chain alcohol at C-173 versus constant-temperature cultures. We hypothesize that the long-chain alcohol at C-173 (and perhaps together with the substituent at C-8) may account for thermal stability of chlorosomes and the substituent at C-8 may assist self-assembling BChls; and (4) while almost identical absorption spectra are detected, chlorosomes from different growth conditions exhibited differences in the rotational length of the CD signal, and aerobic and reduced chlorosomes also display different Qy CD intensities. Further, chlorosomes exhibited changes of CD features in response to temperature increases. Additionally, we compare temperature-dependent studies for the Cba. tepidum chlorosomes and previous studies for the Chloroflexus aurantiacus chlorosomes. Together, our work provides useful and novel insights on the properties and organization of chlorosomes.  相似文献   

18.
Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Their excitation energy flows via a small protein, CsmA embedded in the baseplate to the photosynthetic reaction centres. Chlorosomes allow for photosynthesis at very low light intensities by ultra-rapid transfer of excitations to reaction centres and enable organisms with chlorosomes to live at extraordinarily low light intensities under which no other phototrophic organisms can grow. This article reviews several aspects of chlorosomes: the supramolecular and molecular organizations and the light-harvesting and spectroscopic properties. In addition, it provides some novel information about the organization of the baseplate.  相似文献   

19.
Chlorosomes, the main antenna complexes of green photosynthetic bacteria, were isolated from null mutants of Chlorobium tepidum, each of which lacked one enzyme involved in the biosynthesis of carotenoids. The effects of the altered carotenoid composition on the structure of the chlorosomes were studied by means of x-ray scattering and electron cryomicroscopy. The chlorosomes from each mutant strain exhibited a lamellar arrangement of the bacteriochlorophyll c aggregates, which are the major constituents of the chlorosome interior. However, the carotenoid content and composition had a pronounced effect on chlorosome biogenesis and structure. The results indicate that carotenoids with a sufficiently long conjugated system are important for the biogenesis of the chlorosome baseplate. Defects in the baseplate structure affected the shape of the chlorosomes and were correlated with differences in the arrangement of lamellae and spacing between the lamellar planes of bacteriochlorophyll aggregates. In addition, comparisons among the various mutants enabled refinement of the assignments of the x-ray scattering peaks. While the main scattering peaks come from the lamellar structure of bacteriochlorophyll c aggregates, some minor peaks may originate from the paracrystalline arrangement of CsmA in the baseplate.  相似文献   

20.
We present a molecular-scale model of Bacteriochlorophyll a (BChl a) binding to the chlorosome protein A (CsmA) of Chlorobaculum tepidum, and the aggregated pigment–protein dimer, as determined from protein–ligand docking and quantum chemistry calculations. Our calculations provide strong evidence that the BChl a molecule is coordinated to the His25 residue of CsmA, with the magnesium center of the bacteriochlorin ring situated <3 Å from the imidazole nitrogen atom of the histidine sidechain, and the phytyl tail aligned along the nonpolar residues of the α-helix of CsmA. We also confirm that the Q y band in the absorption spectra of BChl a experiences a large (+16 to +43 nm) redshift when aggregated with another BChl a molecule in the CsmA dimer, compared to the BChl a in solvent; this redshift has been previously established by experimental researchers. We propose that our model of the BChl a–CsmA binding motif, where the dimer contains parallel aligned N-terminal regions, serves as the smallest repeating unit in a larger model of the para-crystalline chlorosome baseplate protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号