首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this mini-review, we briefly discuss the physical origin of x-ray absorption spectroscopy (XAS) before illustrating its application using dinuclear metallohydrolases as exemplary systems. The systems we have selected for illustrative purposes present a challenging problem for XAS, one that is ideal to demonstrate the potential of this methodology for structure/function studies of metalloenzymes in general. When the metal ion is redox active, XAS provides a sensitive measure of oxidation-state-dependent differences. When the metal ion is zinc, XAS is the only spectroscopic method that will provide easily accessible structural information in solution. In the case of heterodimetallic sites, XAS has the unique ability to interrogate each metal site independently in the same sample. One of the strongest advantages of XAS is its ability to examine metal ion site structures with crystallographic precision, without the need for a crystal. This is key for studying flexible metal ion sites, such as those described in the selected examples, because it allows one to monitor structural changes that occur during substrate turnover.  相似文献   

2.
In this paper we provide a detailed biochemical and structural characterization of the active site of recombinant human prolidase, a dimeric metalloenzyme, whose misfunctioning causes a recessive connective tissue disorder (prolidase deficiency) characterized by severe skin lesions, mental retardation and respiratory tract infections. It is known that the protein can host two metal ions in the active site of each constituent monomer. We prove that two different kinds of metals (Mn and Zn) can be simultaneously present in the protein active sites with the protein partially maintaining its enzymatic activity. Structural information extracted from X-ray absorption spectroscopy measurements have been used to yield a full reconstruction of the atomic environment around each one of the two monomeric active sites. In particular, as for the metal ion occupation configuration of the recombinant human prolidase, we have found that one of the two active sites is occupied by two Zn ions and the second one by one Zn and one Mn ion. In both dinuclear units a histidine residue is bound to a Zn ion.  相似文献   

3.
Thermoanaerobacter brockii alcohol dehydrogenase (TbADH) is a zinc-dependent NADP(+)/H-linked class enzyme that reversibly catalyzes the oxidation of secondary alcohols to their corresponding ketones. Cobalt substitution studies of other members of the alcohol dehydrogenase (ADH) family showed that the cobalt-containing ADHs have a similar active site structure but slightly decreased activity compared to wild-type zinc ADHs. In contrast, the cobalt-substituted TbADH (Co-TbADH) exhibits an increase in specific activity compared to the native enzyme [Bogin, O., Peretz, M., and Burstein, Y. (1997) Protein Sci. 6, 450-458]. However, the structural basis underlying this behavior is not yet clear. To shed more light on this issue, we studied the local structure and electronics at the catalytic metal site in Co-TbADH by combining X-ray absorption (XAS) and quantum chemical calculations. Importantly, we show that the first metal-ligand coordination shell of Co-TbADH is distorted compared to its native tetrahedral coordination shell and forms an octahedral structure. This is mediated presumably by the addition of two water molecules and results in more positively charged catalytic metal ions. Recently, we have shown that the metal-ligand coordination number of the zinc ion in TbADH changes dynamically during substrate turnover. These structural changes are associated with a higher coordination number of the native catalytic zinc ion and the consequent buildup of a positive charge. Here we propose that the accumulation of a higher coordination number and positive charge at the catalytic metal ion in TbADH stabilizes the structure of the catalytic transition state and hence lowers the barrier for enzyme catalysis.  相似文献   

4.
In this work we present and analyse XAS measurements carried out on various portions of Prion-protein tetra-octa-repeat peptides in complexes with Cu(II) ions, both in the presence and in the absence of Zn(II). Because of the ability of the XAS technique to provide detailed local structural information, we are able to demonstrate that Zn acts by directly interacting with the peptide, in this way competing with Cu for binding with histidine. This finding suggests that metal binding competition can be important in the more general context of metal homeostasis.  相似文献   

5.
Mechanistic models for biochemical systems are frequently proposed from structural data. Site-directed mutagenesis can be used to test the importance of proposed functional sites, but these data do not necessarily indicate how these sites contribute to function. In this study, we applied an alternative approach to the catalytic mechanism of alkaline phosphatase (AP), a widely studied prototypical bimetallo enzyme. A third metal ion site in AP has been suggested to provide general base catalysis, but comparison of AP with an evolutionarily related enzyme casts doubt on this model. Removal of this metal site from AP has large differential effects on reactions of cognate and promiscuous substrates, and the results are inconsistent with general base catalysis. Instead, these and additional results suggest that the third metal ion stabilizes the transferred phosphoryl group in the transition state. These results establish a new mechanistic model for this prototypical bimetallo enzyme and demonstrate the power of a comparative approach for probing biochemical function.  相似文献   

6.
XAS of Zn-peptide binary and ternary complexes prepared using peptides mimicking the potential metal binding sites of rabbit skeletal muscle AMP deaminase (AMPD) strongly suggest that the region 48-61 of the enzyme contains a zinc binding site, whilst the region 360-372 of the enzyme is not able to form 1:1 complexes with zinc, in contrast with what has been suggested for the corresponding region of yeast AMPD. XAS performed on fresh preparations of rabbit skeletal muscle AMPD provides evidence for a dinuclear zinc site in the enzyme compatible with a (mu-aqua)(mu-carboxylato)dizinc(II) core with an average of two histidine residues at each metal site and a Zn-Zn distance of about 3.3 Angstrom. The data indicate that zinc is not required for HPRG/AMPD interaction, both zinc ions being bound to the catalytic subunit of the enzyme, one to the three conserved amino acid residues among those four assumed to be in contact with zinc in yeast AMPD, and the other at the N-terminal region, probably to His-52, Glu-53 and His-57. Tryptic digests of different enzyme preparations demonstrate the existence of two different protein conformations and of a zinc ion connecting the N-terminal and C-terminal regions of AMPD.  相似文献   

7.
Cations play critical roles in ribozyme structure and catalysis. Unraveling the contributions of cations as catalytic cofactors is a complex process, due to their role in inducing RNA folding and their potential ability to influence chemical reactions. Recent studies have made progress in separating these roles by directly comparing ion-induced folding with ribozyme activity. In addition, spectroscopic studies have allowed some ribozyme metal sites to be directly observed in solution, providing binding affinities and ligand information. The emerging picture suggests that important cation sites can be classified according to their affinities and properties, and can be located within the ribozyme structure. At moderate ionic strengths, a common theme is emerging for some ribozymes of structural sites that have relatively high metal ion affinities and a second type of metal site with weaker affinity that is responsible for catalysis or structural fine-tuning. In the larger ribozymes, apparent clusters of metal-sensitive positions are observed.  相似文献   

8.
A number of bacterial metal transporters belong to the ABC transporter family. To better understand the structural determinants of metal selectivity of one such transporter, we previously determined the structure of the periplasmic domain of a zinc transporter, ZnuA, from Synechocystis 6803 and found that ZnuA binds zinc via three histidines. Unique to these ABC zinc transporters, ZnuA has a highly charged and mobile loop that protrudes from the protein in the vicinity of the metal binding site that we had suggested might facilitate zinc acquisition. To further examine the function of this loop, the structure and zinc binding properties of two ZnuA variants were determined. When the loop is entirely deleted, zinc still binds to the three histidines. However, unlike what was suggested from the structure of a similar solute binding protein, TroA, release of zinc occurs concomitantly with large conformational changes in two of the three chelating histidines. These structural results combined with isothermal titration calorimetry data demonstrate that there are at least two classes of zinc binding sites: the high-affinity site in the cleft between the two domains and at least one additional site on the flexible loop. This loop has approximately 100-fold weaker affinity for zinc than the high-affinity zinc binding site, and its deletion does not affect the high-affinity site. From these results, we suggest that this region might be a sensor for high periplasmic levels of zinc.  相似文献   

9.
In the first step of self-splicing, group I introns utilize an exogenous guanosine nucleophile to attack the 5'-splice site. Removal of the 2'-hydroxyl of this guanosine results in a 10 (6)-fold loss in activity, indicating that this functional group plays a critical role in catalysis. Biochemical and structural data have shown that this hydroxyl group provides a ligand for one of the catalytic metal ions at the active site. However, whether this hydroxyl group also engages in hydrogen-bonding interactions remains unclear, as attempts to elaborate its function further usually disrupt the interactions with the catalytic metal ion. To address the possibility that this 2'-hydroxyl contributes to catalysis by donating a hydrogen bond, we have used an atomic mutation cycle to probe the functional importance of the guanosine 2'-hydroxyl hydrogen atom. This analysis indicates that, beyond its role as a ligand for a catalytic metal ion, the guanosine 2'-hydroxyl group donates a hydrogen bond in both the ground state and the transition state, thereby contributing to cofactor recognition and catalysis by the intron. Our findings continue an emerging theme in group I intron catalysis: the oxygen atoms at the reaction center form multidentate interactions that function as a cooperative network. The ability to delineate such networks represents a key step in dissecting the complex relationship between RNA structure and catalysis.  相似文献   

10.
J Gelles  S I Chan 《Biochemistry》1985,24(15):3963-3972
Cytochrome c oxidase contains a copper ion electron-transfer site, CuA, which has previously been found to be unreactive with externally added reagents under conditions in which the protein remains structurally intact. We have studied the reaction of cytochrome oxidase with sodium p-(hydroxymercuri) benzoate (pHMB) and found that the reaction proceeds, under appropriate conditions, to give an excellent yield of a particular derivative of the CuA center that has electron paramagnetic resonance and near-infrared absorption spectroscopic properties which are distinctly different from those of the unmodified center. Spectroscopic and chemical characterization of the other metal ion sites of the enzyme reveals little or no effect of the pHMB modification on the structures of and reactions at those sites. Of particular interest is the observation that the modified enzyme still displays a substantial fraction of the native steady-state activity of electron transfer from ferrocytochrome c to O2. Although the modified copper center retains the ability to receive electrons from the powerful reductant Na2S2O4 and to transfer electrons to O2, it is not significantly reduced when the enzyme is treated with milder (higher potential) reductants such as NADH/phenazine methosulfate or the physiological substrate ferrocytochrome c. CuA exhibits many spectroscopic and chemical properties which make it highly atypical of cuproprotein active sites; the singular nature of this site has prompted speculation about the importance of the structural peculiarities of this metal ion center in the catalytic cycle of the enzyme. In this work, we demonstrate that the unusual features of this site are not prerequisites for competent catalysis of electron transfer and O2 reduction by the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Prior studies of the metal ion dependence of the self-cleavage reaction of the HDV genomic ribozyme led to a mechanistic framework in which the ribozyme can self-cleave by multiple Mg2+ ion-independent and -dependent channels [Nakano et al. (2001) Biochemistry 40, 12022]. In particular, channel 2 involves cleavage in the presence of a structural Mg2+ ion without participation of a catalytic divalent metal ion, while channel 3 involves both structural and catalytic Mg2+ ions. In the present study, experiments were performed to probe the nature of the various divalent ion sites and any specificity for Mg2+. A series of alkaline earth metal ions was tested for the ability to catalyze self-cleavage of the ribozyme under conditions that favor either channel 2 or channel 3. Under conditions that populate primarily channel 3, nearly identical K(d)s were obtained for Mg2+, Ca2+, Ba2+, and Sr2+, with a slight discrimination against Ca2+. In contrast, under conditions that populate primarily channel 2, tighter binding was observed as ion size decreases. Moreover, [Co(NH3)6]3+ was found to be a strong competitive inhibitor of Mg2+ for channel 3 but not for channel 2. The thermal unfolding of the cleaved ribozyme was also examined, and two transitions were found. Urea-dependent studies gave m-values that allowed the lower temperature transition to be assigned to tertiary structure unfolding. The effects of high concentrations of Na+ on the melting temperature for RNA unfolding and the reaction rate revealed ion binding to the folded RNA, with significant competition of Na+ (Hill coefficient of 1.5-1.7) for a structural Mg2+ ion and an unusually high intrinsic affinity of the structural ion for the RNA. Taken together, these data support the existence of two different classes of metal ion sites on the ribozyme: a structural site that is inner sphere with a major electrostatic component and a preference for Mg2+, and a weak catalytic site that is outer sphere with little preference for a particular divalent ion.  相似文献   

12.
Arthropodan hemocyanins are giant respiratory proteins responsible for oxygen transport. They exhibit unusual assemblies of up to 48 structural subunits. Hemocyanin from Carcinus aestuarii contains three major and two minor structural subunits. Here, we reveal the primary structure of the gamma-type 75 kDa subunit of Carcinus aestuarii hemocyanin, CaeSS2, and combine structure-based sequence alignments, tryptophan fluorescence, and glycosylation analyses to provide insights into the structural and functional organisation of CaeSS2. We identify three functional domains and three conserved histidine residues that most likely participate in the formation of the copper active site in domain 2. Oxygen-binding ability of Carcinus aestuarii Hc and its structural subunit 2 was studied using CD and fluorescence spectroscopy. Removing the copper dioxygen system from the active site led to a decrease of the melting temperature, which can be explained by a stabilizing effect of the binding metal ion. To study the quenching effect of the active site copper ions in hemocyanins, the copper complex Cu(II)(PuPhPy)2+ was used, which appears as a very strong quencher of the tryptophan emission. Furthermore, the structural localization was clarified and found to explain the observed fluorescence behavior of the protein. Sugar analysis reveals that CaeSS2 is glycosylated, and oligosaccharide chains connected to three O-glycosylated and one N-glycosylated sites were found.  相似文献   

13.
The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction's transition state. Herein, we report a study on Cd(2+) rescue of the deleterious phosphorothioate substitution at the cleavage site. Under all conditions, the Cd(2+) concentration dependence can be accounted for by binding of a single rescuing metal ion. The affinity of the rescuing Cd(2+) is sensitive to perturbations at the P9/G10.1 site but not at the cleavage site or other sites in the conserved core. These observations led to a model in which a metal ion bound at the P9/G10.1 site in the ground state acquires an additional interaction with the cleavage site prior to and in the transition state. A titration experiment ruled out the possibility that a second tight-binding metal ion (< 10 microM) is involved in the rescue, further supporting the single metal ion model. Additionally, weakening Cd(2+) binding at the P9/G10.1 site did not result in the biphasic binding curve predicted from other models involving two metal ions. The large stereospecific thio-effects at the P9/G10.1 and the cleavage site suggest that there are interactions with these oxygen atoms in the normal reaction that are compromised by replacement of oxygen with sulfur. The simplest interpretation of the substantial rescue by Cd(2+) is that these atoms interact with a common metal ion in the normal reaction. Furthermore, base deletions and functional group modifications have similar energetic effects on the transition state in the Cd(2+)-rescued phosphorothioate reaction and the wild-type reaction, further supporting the model that a metal ion bridges the P9/G10.1 and the cleavage site in the normal reaction (i.e., with phosphate linkages rather than phosphorothioate linkages). These results suggest that the hammerhead undergoes a substantial conformational rearrangement to attain its catalytic conformation. Such rearrangements appear to be general features of small functional RNAs, presumably reflecting their structural limitations.  相似文献   

14.
L A Luck  J J Falke 《Biochemistry》1991,30(17):4257-4261
The Escherichia coli D-galactose and D-glucose receptor possesses a Ca(II)-binding site closely related in structure and metal-binding characteristics to the eukaryotic EF-hand sites. Only the structure of the Ca(II)-occupied site is known. To investigate the structural change triggered by Ca(II) and Sr(II) binding, we have used 19F NMR to probe five 5-fluorotryptophan (5F-Trp) and seven 3-fluorophenylalanine (3F-Phe) positions in the structure, extending the approach described in the preceding article. Of particular interest were two 5F-Trp residues near the N terminus of the Ca(II) site at positions 127 and 133. Substitution of the larger Sr(II) for Ca(II) triggered 19F NMR frequency shifts of the 5F-Trp127 and -133 resonances, indicating a detectable structural change in the Ca(II) site. In contrast, the three 5F-Trp resonances from distant regions of the structure exhibited no detectable frequency shifts. When the metal was removed from the Ca(II) site, the 5F-Trp127 and -133 frequencies shifted to a new value similar to that observed for free 5F-Trp in aqueous solvent, and this new frequency was a function of the H2O to D2O ratio, indicating that the residues had become solvent exposed. Metal removal yielded small or undetectable frequency shifts for the three distant 5F-Trp resonances and for four of the five resolved 3F-Phe resonances. The allosteric coupling of the metal and sugar binding sites was observed to be slight: depletion of metal ions was observed to reduce the D-galactose affinity of the receptor by 2-fold. Together the results indicate that the structural changes in the Ca(II) site are primarily localized in the region of the site. Removal of the metal ion from the site exposes the nearby 5F-Trp127 and -133 residues to the solvent, suggesting that the empty site has a more open structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The enzyme L-aspartase from Escherichia coli has an absolute specificity for its amino acid substrate. An examination of a wide range of structural analogues of L-aspartic acid did not uncover any alternate substrates for this enzyme. A large number of competitive inhibitors of the enzyme have been characterized, with inhibition constants ranging over 2 orders of magnitude. A divalent metal ion is required for enzyme activity above pH 7, and this requirement is met by many transition and alkali earth metals. The binding stoichiometry has been established to be one metal ion bound per subunit. Paramagnetic relaxation studies have shown that the divalent metal ion binds at the recently discovered activator site on L-aspartase and not at the enzyme active site. Enzyme activators are bound within 5 A of the enzyme-bound divalent metal ion. The activator site is remote from the active site of the enzyme, since the relaxation of inhibitors that bind at the active site is not affected by paramagnetic metal ions bound at the activator site.  相似文献   

16.
Enzymes are complex macromolecules that catalyze chemical reactions at their active sites. Important information about catalytic interactions is commonly gathered by perturbation or mutation of active site residues that directly contact substrates. However, active sites are engaged in intricate networks of interactions within the overall structure of the macromolecule, and there is a growing body of evidence about the importance of peripheral interactions in the precise structural organization of the active site. Here, we use functional studies, in conjunction with published structural information, to determine the effect of perturbation of a peripheral metal ion binding site on catalysis in a well-characterized catalytic RNA, the Tetrahymena thermophila group I ribozyme. We perturbed the metal ion binding site by site-specifically introducing a phosphorothioate substitution in the ribozyme's backbone, replacing the native ligands (the pro-R (P) oxygen atoms at positions 307 and 308) with sulfur atoms. Our data reveal that these perturbations affect several reaction steps, including the chemical step, despite the absence of direct contacts of this metal ion with the atoms involved in the chemical transformation. As structural probing with hydroxyl radicals did not reveal significant change in the three-dimensional structure upon phosphorothioate substitution, the effects are likely transmitted through local, rather subtle conformational rearrangements. Addition of Cd(2+), a thiophilic metal ion, rescues some reaction steps but has deleterious effects on other steps. These results suggest that native interactions in the active site may have been aligned by the naturally occurring peripheral residues and interactions to optimize the overall catalytic cycle.  相似文献   

17.
Ribosomes are multifunctional RNP complexes whose catalytic activities absolutely depend on divalent metal ions. It is assumed that structurally and functionally important metal ions are coordinated to highly ordered RNA structures that form metal ion binding pockets. One potent tool to identify the structural surroundings of high-affinity metal ion binding pockets is metal ion-induced cleavage of RNA. Exposure of ribosomes to divalent metal ions, such as Pb2+, Mg2+, Mn2+, and Ca2+, resulted in site-specific cleavage of rRNAs. Sites of strand scission catalyzed by different cations accumulate at distinct positions, indicating the existence of general metal ion binding centers in the highly folded rRNAs in close proximity to the cleavage sites. Two of the most efficient cleavage sites are located in the 5' domain of both 23S and 16S rRNA, regions that are known to self-fold even in the absence of ribosomal proteins. Some of the efficient cleavage sites were mapped to the peptidyl transferase center located in the large ribosomal subunit. Furthermore, one of these cleavages was clearly diminished upon AcPhe-tRNA binding to the P site, but was not affected by uncharged tRNA. This provides evidence for a close physical proximity of a metal ion to the amino acid moiety of charged tRNAs. Interestingly, comparison of the metal ion cleavage pattern of eubacterial 70S with that of human 80S ribosomes showed that certain cleavage sites are evolutionarily highly conserved, thus demonstrating an identical location of a nearby metal ion. This suggests that cations, bound to evolutionarily constrained binding sites, are reasonable candidates for being of structural or functional importance.  相似文献   

18.
19.
Transmissible spongiform encephalopathies are associated with the misfolding of the cellular Prion Protein (PrPC) to an abnormal protein isoform, called scrapie prion protein (PrPSc). The structural rearrangement of the fragment of N-terminal domain of the protein spanning residues 91–127 is critical for the observed structural transition. The amyloidogenic domain of the protein encloses two copper-binding sites corresponding to His-96 and His-111 residues that act as anchors for metal ion binding. Previous studies have shown that Cu(II) sequestration by both sites may modulate the peptide’s tendency to aggregation as it inflicts the hairpin-like structure that stabilizes the transition states leading to β-sheet formation. On the other hand, since both His sites differ in their ability to Cu(II) sequestration, with His-111 as a preferred binding site, we found it interesting to test the role of Cu(II) coordination to this single site on the structural properties of amyloidogenic domain. The obtained results reveal that copper binding to His-111 site imposes precise backbone bending and weakens the natural tendency of apo peptide to β-sheet formation.  相似文献   

20.
The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号