首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regeneration of central nervous system (CNS) lesions requires movement of progenitor cells and production of their differentiated progeny. Although damage to the CNS clearly promotes these two processes, the interplay between these complex events and how it affects a response remains elusive. Here, we use spatial stochastic modeling to show that tradeoffs arise between production and recruitment during regeneration. Proper spatial control of cell cycle timing can mitigate these tradeoffs, maximizing recruitment, improving infiltration into the lesion, and reducing wasteful production outside of it. Feedback regulation of cell lineage dynamics alone however leads to spatial defects in cell recruitment, suggesting a novel, to our knowledge, hypothesis for the aggregation of cells to the periphery of a lesion in multiple sclerosis. Interestingly, stronger chemotaxis does not correct this aggregation and instead, substantial random cell motions near the site of the lesion are required to improve CNS regeneration.  相似文献   

2.
Following injuries to the adult mammalian CNS meningeal cells migrate into the lesion cavity, forming a fibrotic scar and accessory glia limitans. This infiltration re-establishes the meningeal layer that normally surrounds the CNS, and so reforms the barrier between the CNS and external environment, thus protecting the damaged region from events outside it. However, the newly formed meningeal layer and glia limitans may impede subsequent nerve regeneration through the injured region. This structure can be modelled in vitro using an astrocyte/meningeal co-culture system. We have examined patterns of neurite outgrowth on such cultures, and we find that axons cross readily from meningeal cells to astrocytes, but are unwilling to cross in the other direction. The distribution of cell surface and matrix molecules on these cultures is described, and the effect of various pharmacological interventions which can affect axon growth between the two cell types is summarised in this review.  相似文献   

3.
The repair of cockroach central nervous connectives, following selective glial disruption, involves an initial invasion of the lesion by a novel cell class. The available evidence, including that obtained using monoclonal antibodies, shows that these cells arise from circulating haemocytes. These invasive exogenous cells are restricted to the lesion zone. They are not only involved in initial repair of the peripheral glial elements, but may also be responsible for initiating recruitment and division of endogenous reactive cells. There is a clear anterior polarity in this recruitment, with significantly higher numbers of cells appearing anterior to, and then within, the lesion area. Characteristically, recognizable exogenous cells decline in number after 3 days, although there is no overall reduction in cell numbers within the lesion at this stage, nor has significant cell division begun. This suggests that the haemocyte-derived cells transform into, or are replaced by, functional perineurial glia, between 3 and 5 days, coincident with the restoration of the blood-brain barrier and the onset of endogenous cell division. Glial repair in the insect CNS can thus be divided into three phases which show striking similarities to the repair sequence in vertebrate brain. These include: an initial invasion of the lesion by exogenous cells, subsequent glial proliferation and then longer term fluxes in cell numbers and distribution.  相似文献   

4.
Injury to the central nervous system (CNS) can result in severe functional impairment. The brain and spinal cord, which constitute the CNS, have been viewed for decades as having a very limited capacity for regeneration. However, over the last several years, the body of evidence supporting the concept of regeneration and continuous renewal of neurons in specific regions of the CNS has increased. This evidence has significantly altered our perception of the CNS and has offered new hope for possible cell therapy strategies to repair lost function. Transplantation of stem cells or the recruitment of endogenous stem cells to repair specific regions of the brain or spinal cord is the next exciting research challenge. However, our understanding of the existing stem cell pool in the adult CNS remains limited. This review will discuss the identification and characterization of CNS stem cells in the adult brain and spinal cord.  相似文献   

5.
At least three proteins present in CNS myelin, Nogo, MAG and OMgp are capable of causing growth cone collapse and inhibiting neurite outgrowth in vitro. Surprisingly, Nogo and OMgp are also strongly expressed by many neurons (including neocortical projection cells). Nogo expression is increased by some cells at the borders of CNS lesion sites and by cells in injured peripheral nerves, but Nogo and CNS myelin are largely absent from spinal cord injury sites, which are none the less strongly inhibitory to axonal regeneration. Nogo is found on growing axons during development, suggesting possible functions for neuronal Nogo in axon guidance. Although Nogo, MAG and OMgp lack sequence homologies, they all bind to the Nogo receptor (NgR), a GPI-linked cell surface molecule which, in turn, binds p75 to activate RhoA. NgR is strongly expressed by cerebral cortical neurons but many other neurons express NgR weakly or not at all. Some neurons, such as DRG cells, respond to Nogo and CNS myelin in vitro although they express little or no NgR in vivo which, with other data, indicates that other receptors are available for NgR ligands. NgR expression is unaffected by injury to the nervous system, and there is no clear correlation between NgR expression by neurons and lack of regenerative ability. In the injured spinal cord, interactions between NgR and its ligands are most likely to be important for limiting regeneration of corticospinal and some other descending tracts; other receptors may be more important for ascending tracts. Antibodies to Nogo, mainly the poorly-characterised IN-1 or its derivatives, have been shown to enhance recovery from partial transections of the spinal cord. They induce considerable plasticity from the axons of corticospinal neurons, including sprouting across the midline and, to a limited extent, regeneration around the lesion. Regeneration of corticospinal axons induced by Nogo antibodies has not yet been demonstrated after complete transections or contusion injuries of the spinal cord. It is not clear whether antibodies against Nogo act on oligodendrocytes/myelin or by binding to neuronal Nogo, or whether they can stimulate regeneration of ascending axons in the spinal cord, most of which express little or no NgR. Despite these uncertainties, however, NgR and its ligands offer important new targets for enhancing plasticity and regeneration in the nervous system.  相似文献   

6.
The ability to recover from CNS injuries is strain dependent. Transgenic mice that weakly express the p41 CD74 isoform (an integral membrane protein functioning as a MHC class II chaperone) on an I-A(b) genetic background have normal CD4(+) T cell populations and normal surface expression of MHC class II, but their B cell development is arrested while the cells are still immature. After a CNS injury, these mice recover better than their matched wild-type controls. We generated p41-transgenic mice on an I-A(d) background (p41-I-A(d) mice), and found that their recovery from CNS injuries was worse than that of controls. A correlative inverse effect was seen with respect to the kinetics of T cell and B cell recruitment to the injured CNS and the expression of insulin-like growth factor at the lesion site. These results, besides verifying previous findings that B cells function in the damaged CNS, demonstrate that the outcome of a particular genetic manipulation may be strain dependent.  相似文献   

7.
Hepatocyte growth factor (HGF) is known to promote the survival and foster neuritic outgrowth of different subpopulations of CNS neurons during development. Together with its corresponding receptor c-mesenchymal-epithelial transition factor (Met), it is expressed in the developing and the adult murine, rat and human CNS. We have studied the role of HGF in paradigms of retinal ganglion cell (RGC) regeneration and cell death in vitro and in vivo. After application of recombinant HGF in vitro, survival of serum-deprived RGC-5 cells and of growth factor-deprived primary RGC was significantly increased. This was shown to be correlated to the phosphorylation of c-Met and subsequent activation of serine/threonine protein kinase Akt and MAPK downstream signalling pathways involved in neuronal survival. Furthermore, neurite outgrowth of primary RGC was stimulated by HGF. In vivo, c-Met expression in RGC was up-regulated after optic nerve axotomy lesion. Here, treatment with HGF significantly improved survival of axotomized RGC and enhanced axonal regeneration after optic nerve crush. Our data demonstrates that exogenously applied HGF has a neuroprotective and regeneration-promoting function for lesioned CNS neurons. We provide strong evidence that HGF may represent a trophic factor for adult CNS neurons, which may play a role as therapeutic target in the treatment of neurotraumatic and neurodegenerative CNS disorders.  相似文献   

8.
Adult neural progenitor cells (NPC) co-grafted with fibroblasts replace cystic lesion defects and promote cell-contact-mediated axonal regeneration in the acutely injured spinal cord. Fibroblasts are required as a platform to maintain NPC within the lesion; however, they are suspected to create an inhospitable milieu for regenerating central nervous system (CNS) axons. Therefore, we thought to replace fibroblasts by primary Schwann cells, which might serve as a superior scaffold to maintain NPC within the lesion and might further enhance axon regrowth and remyelination following spinal cord injury. Adult rats underwent a cervical dorsal column transection immediately followed by transplantation of either NPC/Schwann cell or NPC/Schwann cell/fibroblast co-grafts. Animals receiving Schwann cell or fibroblast grafts alone, or Schwann cell/fibroblast co-grafts served as controls. At 3 weeks after injury/transplantation, histological analysis revealed that only fibroblast-containing grafts were able to replace the cystic lesion defect. In both co-cultures and co-grafts, Schwann cells and NPC were segregated. Almost all NPC migrated out of the graft into the adjacent host spinal cord. As a consequence, only peripheral-type myelin, but no CNS-type myelin, was detected within co-grafts containing NPC/Schwann cells. Corticospinal axon regeneration into Schwann-cell-containing co-grafts was reduced. Taken together, Schwann cells within NPC grafts contribute to remyelination. However, Schwann cells fail as a supporting platform to maintain NPC within the graft and impair CNS axon regeneration; this makes them an unfavorable candidate to support/augment NPC grafts following spinal cord injury.This work was supported by the Institute International de Recherche en Paraplégie Geneva, on behalf of an anonymous donation, and ReForM-Program, University of Regensburg, School of Medicine.  相似文献   

9.
Animals that develop without extra-embryonic membranes (anamniotes--fish, amphibians) have impressive regenerative capacity, even to the extent of replacing entire limbs. In contrast, animals that develop within extra-embryonic membranes (amniotes--reptiles, birds, mammals) have limited capacity for regeneration as adults, particularly in the central nervous system (CNS). Much is known about the process of nerve development in fish and mammals and about regeneration after lesions in the CNS in fish and mammals. Because the retina of the eye and optic nerve are functionally part of the brain and are accessible in fish, frogs, and mice, optic nerve lesion and regeneration (ONR) has been extensively used as a model system for study of CNS nerve regeneration. When the optic nerve of a mouse is severed, the axons leading into the brain degenerate. Initially, the cut end of the axons on the proximal, eye-side of the injury sprout neurites which begin to grow into the lesion. Simultaneously, astrocytes of the optic nerve become activated to initiate wound repair as a first step in reestablishing the structural integrity of the optic nerve. This activation appears to initiate a cascade of molecular signals resulting in apoptotic cell death of the retinal ganglion cells axons of which make up the neural component of the optic nerve; regeneration fails and the injury is permanent. Evidence specifically implicating astrocytes comes from studies showing selective poisoning of astrocytes at the optic nerve lesion, along with activation of a gene whose product blocks apoptosis in retinal ganglion cells, creates conditions favorable to neurites sprouting from the cut proximal stump, growing through the lesion and into the distal portion of the injured nerve, eventually reaching appropriate targets in the brain. In anamniotes, astrocytes ostensibly present no such obstacle since optic nerve regeneration occurs without intervention; however, no systematic study of glial involvement has been done. In fish, vigorously growing neurites sprout from the cut axons and within a few days begin to re-enervate the brain. This review offers a new perspective on the role of glia, particularly astrocytes, as "gate-keepers;" i.e., as being permissive or inhibitory, by comparison between fish and mammals of glial function during ONR.  相似文献   

10.
Severe traumatic injury to the adult mammalian CNS leads to life-long loss of function. By contrast, several non-mammalian vertebrate species, including adult zebrafish, have a remarkable ability to regenerate injured organs, including the CNS. However, the cellular and molecular mechanisms that enable or prevent CNS regeneration are largely unknown. To study brain regeneration mechanisms in adult zebrafish, we developed a traumatic lesion assay, analyzed cellular reactions to injury and show that adult zebrafish can efficiently regenerate brain lesions and lack permanent glial scarring. Using Cre-loxP-based genetic lineage-tracing, we demonstrate that her4.1-positive ventricular radial glia progenitor cells react to injury, proliferate and generate neuroblasts that migrate to the lesion site. The newly generated neurons survive for more than 3 months, are decorated with synaptic contacts and express mature neuronal markers. Thus, regeneration after traumatic lesion of the adult zebrafish brain occurs efficiently from radial glia-type stem/progenitor cells.  相似文献   

11.
CNS lesions generally result in impaired function because regeneration of the adult CNS of mammals is poor. A variety of lesion models has been described that serve to further the understanding of the pathophysiology of the damaged tissue. A central cause of aborted regeneration is the glial scar that expresses a plethora of extracellular matrix molecules. Some of these are considered inhibitors of axon growth and regeneration. The laser lesion of the cortex offers the advantage that a circumscribed lesion of defined energy can be delivered to the cortex non-invasively through the intact dura mater and a thinly drilled wet translucent remnant of the skull. Previously, we have shown that distinct ECM is up-regulated in the penumbra of laser lesions in the rat visual cortex. We propose to transfer this model to the mouse, in view of the availability of a large number of genetical models in this small rodent. Here, we discuss this model and the lesion-related ECM that forms the focus of our analysis.  相似文献   

12.
Axons in the central nervous system (CNS) of adult mammals do not regenerate after injury. Mammalian CNS differs in this respect from other mammalian tissues, including the peripheral nervous system (PNS), and from the CNS of lower vertebrates. In most parts of the body, including the nervous system, injury triggers an inflammatory reaction involving macrophages. This reaction is needed for tissue healing; when it is delayed or insufficient, healing is incomplete. The CNS, although needing an efficient inflammatory reaction resembling that in the periphery for tissue healing, appears to have lost the ability to supply it. We suggest that restricted CNS recruitment and activation of macrophages are linked to regeneration failure and might reflect the immune privilege that characterizes the mammalian CNS. As macrophages play a critical role in tissue restoration, and because their recruitment and activation are among the most upstream of the events leading to tissue healing, overcoming the deficiencies in these steps might trigger a self-repair process leading to recovery after CNS injury.  相似文献   

13.
Migration and accumulation of microglial cells at sites of injury are important for nerve repair. Recent studies on the leech central nervous system (CNS), in which synapse regeneration is successful, have shown that nitric oxide (NO) generated immediately after injury by endothelial nitric oxide synthase (eNOS) stops migrating microglia at the lesion. The present study obtained results indicating that NO may act earlier, on microglia migration, and aimed to determine mechanisms underlying NO's effects. Injury induced cGMP immunoreactivity at the lesion in a pattern similar to that of eNOS activity, immunoreactivity, and microglial cell accumulation, which were all focused there. The soluble guanylate cyclase (sGC) inhibitor methylene blue (MB) at 60 microM abolished cGMP immunoreactivity at lesions and blocked microglial cell migration and accumulation without interfering with axon conduction. Time-lapse video microscopy of microglia in living nerve cords showed MB did not reduce cell movement but reduced directed movement, with significantly more cells moving away from the lesion or reversing direction and fewer cells moving toward the lesion. The results indicate a new role for NO, directing the microglial cell migration as well as stopping it, and show that NO's action may be mediated by cGMP.  相似文献   

14.
Among echinoderms, crinoids are well known for their remarkable regenerative potential. Regeneration depends mainly on progenitor cells (undifferentiated or differentiated), which migrate and proliferate in the lesion site. The crucial role of the “progenitor” elements involved in the regenerative processes, in terms of cell recruitment, sources, and fate, is a central problem in view of its topical interest and biological implications. The spectacular regenerative potential of crinoids is used to replace lost internal and external organs. In particular, the process of arm regeneration in the feather star Antedon mediterranea is the regeneration model most extensively explored to date. We have addressed the morphological and functional characterization of the cell phenotypes responsible for the arm regenerative processes by using an in vitro approach. This represents the first successful attempt to culture cells involved in crinoid regeneration. A comparison of these results with others from previous in vivo investigations confirms the diverse cell types contributing to regeneration and underscores their involvement in migration, proliferation, and dedifferentiation processes.  相似文献   

15.
During endochondral bone development, bone‐forming osteoblasts have to colonize the regions of cartilage that will be replaced by bone. In adulthood, bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, as a prerequisite for skeletal health. A failure of osteoblasts to reach the sites in need of bone formation may contribute to impaired fracture repair. Conversely, stimulation of osteogenic cell recruitment may be a promising osteo‐anabolic strategy to improve bone formation in low bone mass disorders such as osteoporosis and in bone regeneration applications. Yet, still relatively little is known about the cellular and molecular mechanisms controlling osteogenic cell recruitment to sites of bone formation. In vitro, several secreted growth factors have been shown to induce osteogenic cell migration. Recent studies have started to shed light on the role of such chemotactic signals in the regulation of osteoblast recruitment during bone remodeling. Moreover, trafficking of osteogenic cells during endochondral bone development and repair was visualized in vivo by lineage tracing, revealing that the capacity of osteoblast lineage cells to move into new bone centers is largely confined to undifferentiated osteoprogenitors, and coupled to angiogenic invasion of the bone‐modeling cartilage intermediate. It is well known that the presence of blood vessels is absolutely required for bone formation, and that a close spatial and temporal relationship exists between osteogenesis and angiogenesis. Studies using genetically modified mouse models have identified some of the molecular constituents of this osteogenic–angiogenic coupling. This article reviews the current knowledge on the process of osteoblast lineage cell recruitment to sites of active bone formation in skeletal development, remodeling, and repair, considering the role of chemo‐attractants for osteogenic cells and the interplay between osteogenesis and angiogenesis in the control of bone formation. Birth Defects Research (Part C) 99:170–191, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Intracerebral (i.c.) infection with lymphocytic choriomeningitis virus (LCMV) is one of the most studied models for virus-induced immunopathology, and based on results from perforin-deficient mice, it is currently assumed that fatal disease directly reflects perforin-mediated cell lysis. However, recent studies have revealed additional functional defects within the effector T cells of LCMV-infected perforin-deficient mice, raising the possibility that perforin may not be directly involved in mediating lethal disease. For this reason, we decided to reevaluate the role of perforin in determining the outcome of i.c. infection with LCMV. We confirmed that the expansion of virus-specific CD8(+) T cells is unimpaired in perforin-deficient mice. However, despite the fact that the virus-specific CD8(+) effector T cells in perforin-deficient mice are broadly impaired in their effector function, these mice invariably succumb to i.c. infection with LCMV strain Armstrong, although a few days later than matched wild-type mice. Upon further investigation, we found that this delay correlates with the delayed recruitment of inflammatory cells to the central nervous system (CNS). However, CD8(+) effector T cells were not kept from the CNS by sequestering in infected extraneural organ sites such as liver or lungs. Thus, the observed dysfunctionality regarding the production of proinflammatory mediators probably results in the delayed recruitment of effector cells to the CNS, and this appears to be the main explanation for the delayed onset of fatal disease in perforin-deficient mice. However, once accumulated in the CNS, virus-specific CD8(+) T cells can induce fatal CNS pathology despite the absence of perforin-mediated lysis and reduced capacity to produce several key cytokines.  相似文献   

17.
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, has long been thought to be mediated by Th1 CD4(+) T cells. Using adoptive transfer techniques, transfer of CNS specific Th1 T cells was sufficient to induce EAE in naive mice. However, recent studies found a vital role for IL-17 in induction of EAE. These studies suggested that a fraction of IL-17-producing T cells that contaminate Th1 polarized cell lines are largely responsible for initiation of EAE. In this study, we tracked the appearance and cytokine production capacity of adoptively transferred cells within the CNS of mice throughout EAE disease. IL-17-producing, adoptively transferred cells were not enriched over the low percentages present in vitro. Thus, there was no selective recruitment and/or preferential proliferation of adoptively transferred IL-17-producing cells during the induction of EAE. Instead a large number of CNS infiltrating host T cells in mice with EAE were capable of producing IL-17 following ex vivo stimulation. The IL-17-producing T cells contained both alphabeta and gammadelta TCR(+) T cells with a CD4(+)CD8(-) or CD4(-)CD8(-) phenotype. These cells concentrated within the CNS within 3 days of adoptive transfer, and appeared to play a role in EAE induction as adoptive transfer of Th1 lines derived from wild-type mice into IL-17-deficient mice induced reduced EAE clinical outcomes. This study demonstrates that an encephalitogenic Th1 cell line induces recruitment of host IL-17-producing T cells to the CNS during the initiation of EAE and that these cells contribute to the incidence and severity of disease.  相似文献   

18.
Traumatic damage to the central nervous system (CNS) destroys the blood-brain barrier (BBB) and provokes the invasion of hematogenous cells into the neural tissue. Invading leukocytes, macrophages and lymphocytes secrete various cytokines that induce an inflammatory reaction in the injured CNS and result in local neural degeneration, formation of a cystic cavity and activation of glial cells around the lesion site. As a consequence of these processes, two types of scarring tissue are formed in the lesion site. One is a glial scar that consists in reactive astrocytes, reactive microglia and glial precursor cells. The other is a fibrotic scar formed by fibroblasts, which have invaded the lesion site from adjacent meningeal and perivascular cells. At the interface, the reactive astrocytes and the fibroblasts interact to form an organized tissue, the glia limitans. The astrocytic reaction has a protective role by reconstituting the BBB, preventing neuronal degeneration and limiting the spread of damage. While much attention has been paid to the inhibitory effects of the astrocytic component of the scars on axon regeneration, this review will cover a number of recent studies in which manipulations of the fibroblastic component of the scar by reagents, such as blockers of collagen synthesis have been found to be beneficial for axon regeneration. To what extent these changes in the fibroblasts act via subsequent downstream actions on the astrocytes remains for future investigation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号