首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth’s atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere.  相似文献   

2.
We present what is, to our knowledge, a new methodology for high-resolution three-dimensional imaging of oxygen concentration near live cells. The cells are placed in the buffer solution of a stable paramagnetic probe, and electron spin-resonance microimaging is employed to map out the probe's spin-spin relaxation time (T2). This information is directly linked to the concentration of the oxygen molecule. The method is demonstrated with a test sample and with a small amount of live photosynthetic cells (cyanobacteria), under conditions of darkness and light. Spatial resolution of ∼30 × 30 × 100 μm is demonstrated, with ∼μM oxygen concentration sensitivity and sub-fmol absolute oxygen sensitivity per voxel. The use of electron spin-resonance microimaging for oxygen mapping near cells complements the currently available techniques based on microelectrodes or fluorescence/phosphorescence. Furthermore, with the proper paramagnetic probe, it will also be readily applicable for intracellular oxygen microimaging, a capability which other methods find very difficult to achieve.  相似文献   

3.
Hydrogen peroxide and the evolution of oxygenic photosynthesis   总被引:1,自引:0,他引:1  
The early atmosphere of the Earth is considered to have been reducing (H2 rich) or neutral (CO2-N2). The present atmosphere by contrast is highly oxidizing (20% O2). The source of this oxygen is generally agreed to have been oxygenic photosynthesis, whereby organisms use water as the electron donor in the production of organic matter, liberating oxygen into the atmosphere. A major question in the evolution of life is how oxygenic photosynthesis could have evolved under anoxic conditions — and also when this capability evolved. It seems unlikely that water would be employed as the electron donor in anoxic environments that were rich in reducing agents such as ferrous or sulfide ions which could play that role. The abiotic production of atmospheric oxidants could have provided a mechanism by which locally oxidizing conditions were sustained within spatially confined habitats thus removing the available reductants and forcing photosynthetic organisms to utilize water as the electron donor. We suggest that atmospheric H2O2 played the key role in inducing oxygenic photosynthesis because as peroxide increased in a local environment, organisms would not only be faced with a loss of reductant, but they would also be pressed to develop the biochemical apparatus (e.g., catalase) that would ultimately be needed to protect against the products of oxygenic photosynthesis. This scenario allows for the early evolution of oxygenic photosynthesis while global conditions were still anaerobic.  相似文献   

4.
A novel lab-scale tubular closed photobioreactor was developed and used for the assessment of the photosynthetic activity of an alkaliphilic microalgae mixed consortium under non-substrate limitation (i.e., bicarbonate excess), controlled irradiance, and mixing conditions. Two prominent haloalkaliphilic strains were identified as members of the consortium: Halospirulina sp. and Picochlorum sp. The photobioreactor (vol?=?0.5 L) consists of two interconnected U-shaped borosilicate glass tubes (internal diameter 2 cm) reaching a surface/volume ratio of 200 m2 m?3. This configuration specifically addressed the issue of the homogeneous light distribution among the microalgae suspended cells cultured by using fixed equidistant cool white light LEDs nearby the surface of the glass tubes. A soft homogeneous pneumatic mixing (i.e., airlift) was implemented in the culture fostering Reynolds numbers around 3000. The photosynthetic activity of the microalgae consortium was evaluated during different short-term kinetic assays by fitting the dynamics of the dissolved oxygen concentration to an oxygenic kinetic model. The photobioreactor operated in a closed loop allowed to control the produced oxygen by the extraction of the cumulated gas in the headspace. The use of this novel photobioreactor allowed the photosynthetic activity of microalgae suspended cells to be assessed, where the dissolved oxygen concentration and irradiance were the main parameters affecting the oxygenic rates under alkaline pH.  相似文献   

5.
Seedlings of Citrus grandis were fertilized every other days for 15 weeks with nutrient solution containing 0 (deficiency), 10 μM (control) or 500 μM (excess) H3BO3. CO2 assimilation and chlorophyll (Chl) content decreased to a greater degree in B-deficient than in B-excess leaves, but photosynthetic enzyme activities were similarly decreased. Starch accumulated in B-deficient leaves, but not in B-excess ones. Chlorophyll a fluorescence transient showed that the positive L- and K-steps were more pronounced in B-excess than in B-deficient leaves. Maximum quantum yield of primary photochemistry (Fv/Fm), maximum variable fluorescence (Fv), oxygen-evolving complex (OEC) were less decreased in B-deficient than in B-excess leaves, whereas minimum fluorescence (F0) was less increased in B-deficient leaves. Boron-deficient leaves displayed higher or similar antioxidant enzyme activities and higher ascorbate (AsA) and reduced glutathione (GSH) contents compared to B-excess leaves. Content of thiobarbituric acid (TBA) reactive compounds was less increased by B-deficiency than by B-excess. We conclude that B-deficient leaves are less damaged by oxidative stress than B-excess leaves due to their higher ability to scavenge reactive oxygen species. Both the donor (i.e. the OEC) and the acceptor sides of photosystem II were less photoinhibited by B-deficiency than by B-excess. The greater decrease in CO2 assimilation and Chl content in B-deficient leaves may be caused by the excessive accumulation of starch. The reduction of CO2 assimilation by B-excess is probably caused by a combination of factors such as oxidative damage, reduced photosynthetic enzyme activities and impaired electron transport capacity.  相似文献   

6.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

7.
The study has demonstrated that dopamine induces membrane depolarization and a loss of phosphorylation capacity in dose-dependent manner in isolated rat brain mitochondria during extended in vitro incubation and the phenomena are not prevented by oxyradical scavengers or metal chelators. Dopamine effects on brain mitochondria are, however, markedly prevented by reduced glutathione and N-acetyl cysteine and promoted by tyrosinase present in the incubation medium. The results imply that quinone oxidation products of dopamine are involved in mitochondrial damage under this condition. When PC12 cells are exposed to dopamine in varying concentrations (100-400 μM) for up to 24 h, a pronounced impairment of mitochondrial bio-energetic functions at several levels is observed along with a significant (nearly 40%) loss of cell viability with features of apoptotic nuclear changes and increased activities of caspase 3 and caspase 9 and all these effects of dopamine are remarkably prevented by N-acetyl cysteine. N-acetyl cysteine also blocks nearly completely the dopamine induced increase in reactive oxygen species production and the formation of quinoprotein adducts in mitochondrial fraction within PC12 cells and also the accumulation of quinone products in the culture medium. Clorgyline, an inhibitor of MAO-A, markedly decreases the formation of reactive oxygen species in PC12 cells upon dopamine exposure but has only mild protective actions against quinoprotein adduct formation, mitochondrial dysfunctions, cell death and caspase activation induced by dopamine. The results have indicated that quinone oxidation products and not reactive oxygen species are primarily involved in cytotoxic effects of dopamine and the mitochondrial impairment plays a central role in the latter process. The data have clear implications in the pathogenesis of Parkinson's disease.  相似文献   

8.
The present study evaluated the effects of 100 and 500 μM arsenate (Na2HAsO4) on pigment composition and photosynthesis in Hydrilla verticillata (L.f.) Royle. Arsenic accumulation increased in concentration and duration dependent manner. The maximum accumulation [568 μg(As) g?1(d.m.)] was observed at 500 μM concentration and 96-h exposure. This concentration led to a significant decline in chlorophyll a content and PS II efficiency during the whole experiment, and in chlorophyll b and carotenoids after 96 h, but no significant changes in photosynthetic pigments were noticed at 100 μM arsenate. Net photosynthetic rate, electron transport rate, and water use efficiency declined whereas transpiration rate increased, and stomatal conductance and photochemical quenching did not show any effect or increased. The content of reactive oxygen species increased and content of reduced ascorbate declined at 500 μM arsenate in comparison to the control.  相似文献   

9.
The effects of cadmium on physiological and ultrastructural characteristics were evaluated in 6-d-old seedlings of two Brassica napus L. cultivars Zheda 619 and ZS 758. Results show that Cd at lower concentration (100 μM) stimulated the seedling growth but at higher concentration (500 μM) inhibited the growth of both cultivars, decreased content of photosynthetic pigments, activities of antioxidant enzymes, and increased the content of malondialdehyde and reactive oxygen species. Cd content in different parts of seedlings was higher in ZS 758 than in Zheda 619. Electron micrographs illustrated that 500 μM Cd severely damaged the leaf and root tip cells of both cultivars. Under Cd stress, the size and number of starch grains, plastoglobuli, and lipid bodies in the chloroplasts increased. In the root tip cells, enlarged vacuoles, diffused cell walls, and undeveloped mitochondria were detected.  相似文献   

10.
Cadmium (Cd) is an important industrial and environmental pollutant. In animals, the liver is the major target organ of Cd toxicity. In this study, rat hepatocytes were treated with 2.5~10 μM Cd for various durations. Studies on nuclear morphology, chromatin condensation, and apoptotic cells demonstrate that Cd concentrations ranging within 2.5~10 μM induced apoptosis. The early-stage marker of apoptosis, i.e., decreased mitochondrial membrane potential, was observed as early as 1.5 h at 5 μM Cd. Significant (P?P?2+ concentration ([Ca2+] i ) of Cd-exposed cells significantly increased (P?2+] i may play an important role in apoptosis. Overall, these results showed that oxidative stress and Ca2+ signaling were critical mediators of the Cd-induced apoptosis of rat hepatocytes.  相似文献   

11.
A series of novel resveratrol derivatives were designed, synthesised and evaluated as potential therapeutic agents for the treatment of Alzheimer’s disease. Among these compounds, compound 7l, (E)-5-(4-(isopropylamino)styryl)benzene-1,3-diol, exhibited potent ß-amyloid aggregation inhibition activity, which was confirmed by a ThT fluorescence assay (71.65% at 20 μM) and transmission electron microscopy (TEM). Compound 7l also exhibited good antioxidant activity (4.12 Trolox equivalents in an oxygen radical absorbance capacity assay and a 37% reduction in reactive oxygen species in cells at 10 μM). The cytotoxicity analysis of compounds 7f, 7i, 7j and 7l indicated that these compounds have lower toxicities than resveratrol at 60 μM.  相似文献   

12.
Thiazolidinedione (TD) derivatives exhibit algicidal activity against harmful algal blooming species such as Chattonella marina, Heterosigma akashiwo, and Cochlodinium polykrikoides, as reported previously. In this study, the efficacies and selectivities of TD derivatives were tested by analyzing the structure–activity relationships of various TD derivatives. To investigate structure–activity relationships for growth inhibition of harmful algae, we added a methylene group between the cyclohexyl ring and oxygen of 5-(3-chloro-4-hydroxybenzylidene)-TD, which decreased the inhibitory potency of compound 17. Interestingly, another addition of a methylene group significantly increased the inhibitory potency against C. polykrikoides. The addition of 1 μM compound 17 resulted in the cell rupture of harmful algae after less than 10 h incubation at 20 °C. Compound 17 was applied to both harmful and non-harmful algae and showed a drastic reduction in the efficiency of photosystem II, resulting in reduced photosynthetic oxygen evolution. Compound 17 at a 5 μM concentration destroyed all of the harmful algae, while algicidal activity against non-harmful algae did not exceed 30% of the control within the concentration range tested. In contrast, a herbicide, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, tested at a 5 μM concentration, exhibited 40–70% algicidal activity relative to that of the control against both harmful and non-harmful algae. Compound 17 is a promising lead compound for the development of algicides to control harmful algal blooming species.  相似文献   

13.
The effects of 24-epibrassinolide under high temperature in eggplant (Solanum melongena L.) seedlings were studied by investigating the plant growth, chlorophyll content, photosynthesis and antioxidant systems. High temperature significantly inhibited the plant growth and markedly decreased the chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate, while it increased intercellular CO2 concentration. In a similar manner, high temperature also decreased significantly maximum quantum efficiency of PSII, potential photochemical efficiency, the quantum efficiency of PSII, photochemical quenching, the excitation capture efficiency of open centers, and increased non-photochemical quenching. Application of 0.05–0.2 μM EBR remarkably promoted the plant growth and alleviated high-temperature-induced inhibition of photosynthesis. Under high temperature, reactive oxygen species levels and lipid peroxidation were markedly increased, which were remarkably inhibited by application of 0.05–0.2 μM EBR. The activities of antioxidative enzymes such as superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, and contents of ascorbic acid and reduced glutathione were significantly increased during high-temperature treatments, and these increases were more pronounced than those of EBR at 0.05–0.2 μM treatment. The EBR treatment also greatly enhanced contents of proline, soluble sugar and protein under high-temperature stress. Taken together, it can be concluded that 0.05–0.2 μM EBR could alleviate the detrimental effects of high temperatures on plant growth by increasing photosynthetic efficiency and enhancing antioxidant enzyme systems. Addition of 0.1 μM EBR had the best ameliorative effect against high temperature, while the addition of 0.4 μM EBR had no significant effects.  相似文献   

14.
The effects of Cd have been investigated in tomato (Lycopersicon esculentum) plants grown in a controlled environment in hydroponics, using Cd concentrations of 10 and 100 μM. Cadmium treatment led to major effects in shoots and roots of tomato. Plant growth was reduced in both Cd treatments, leaves showed chlorosis symptoms when grown at 10 μM Cd and necrotic spots when grown at 100 μM Cd, and root browning was observed in both treatments. An increase in the activity of phosphoenolpyruvate carboxylase, involved in anaplerotic fixation of CO2 into organic acids, was measured in root extracts of Cd-exposed plants. Also, significant increases in the activities of several enzymes from the Krebs cycle were measured in root extracts of tomato plants grown with Cd. In leaf extracts, significant increases in citrate synthase, isocitrate dehydrogenase and malate dehydrogenase activities were also found at 100 μM Cd, whereas fumarase activity decreased. These data suggest that at low Cd supply (10 μM) tomato plants accumulate Cd in roots and this mechanism may be associated to an increased activity in the PEPC–MDH–CS metabolic pathway involved in citric acid synthesis in roots. Also, at low Cd supply some symptoms associated with a moderate Fe deficiency could be observed, whereas at high Cd supply (100 μM) effects on growth overrule any nutrient interaction caused by excess Cd. Cadmium excess also caused alterations on photosynthetic rates, photosynthetic pigment concentrations and chlorophyll fluorescence, as well as in nutrient homeostasis.  相似文献   

15.
Reactive oxygen formation plays a mechanistic role in the cardiotoxicity of doxorubicin, a chemotherapeutic agent that remains an important component of treatment programs for breast cancer and hematopoietic malignancies. To examine the role of doxorubicin-induced reactive oxygen species (ROS) in drug-related cardiac apoptosis, murine embryonic fibroblast cell lines were derived from the hearts of glutathione peroxidase 1 (Gpx-1) knockout mice. Cells from homozygous Gpx-1 knockout mice and parental animals were propagated with (Se+) and without (Se-) 100 nM sodium selenite. Activity levels of the peroxide detoxifying selenoprotein glutathione peroxidase (GSHPx) were marginally detectable (<1.6 nmol/min/mg) in fibroblasts from homozygous knockout animals whether or not cells were supplemented with selenium. GSHPx activity in Se- cells from parental murine fibroblasts was also <1.6 nmol/min/mg, whereas GSHPx levels in Se+ parental murine fibroblasts were 12.9 ± 2.7 nmol/min/mg (mean ± SE; P < 0.05). Catalase, superoxide dismutase, glutathione reductase, glutathione S-transferase, glucose 6-phosphate dehydrogenase, and reduced glutathione activities did not differ amongst the four cell lines. Reactive oxygen production increased from 908 ± 122 (arbitrary units) for untreated control cells to 1668 ± 54 following exposure to 1 μM doxorubicin for 24 h in parental fibroblasts not supplemented with selenium (P < 0.03); reactive oxygen formation in doxorubicin-treated parental fibroblasts propagated in selenium was 996 ± 69 (P = not significant compared to untreated control cells). Reactive oxygen levels in homozygous Gpx-1 knockout fibroblasts, irrespective of selenium supplementation status, were increased and equivalent to that in selenium deficient wild type fibroblasts. When cardiac fibroblasts were exposed to doxorubicin (0.05 μM) for 96 h and examined for cell cycle alterations by flow cytometry, and apoptosis by TUNEL assay, marked G2 arrest and TUNEL positivity were observed in knockout fibroblasts in the presence or absence of supplemental selenium, and in parental fibroblasts propagated without selenium. Parental fibroblasts propagated with selenium and exposed to the same concentration of doxorubicin demonstrated modest TUNEL positivity and substantially diminished amounts of low molecular weight DNA. These results were replicated in cardiac fibroblasts exposed to doxorubicin (1–2 μM) for 2 h (to mimic clinical drug dosing schedules) and examined 96 h following initiation of drug exposure. Doxorubicin uptake in cardiac fibroblasts was similar irrespective of the mRNA expression level or activity of GSHPx. These experiments suggest that the intracellular levels of doxorubicin-induced reactive oxygen species (ROS) are modulated by GSHPx and play an important role in doxorubicin-related apoptosis and altered cell cycle progression in murine cardiac fibroblasts.  相似文献   

16.
Melatonin was found in the fresh water characeae Chara australis. The concentrations (~4 μg/g of tissue) were similar in photosynthesizing cells, independent of their position on the plant and rhizoids (roots) without chloroplasts. Exogenous melatonin, added at 10 μM to the artificial pond water, increased quantum yield of photochemistry of photosystem II by 34%. The increased efficiency appears to be due to the amount of open reaction centers of photosystem II, rather than increased efficiency of each reaction center. More open reaction centers reflect better functionality of all photosynthetic transport chain constituents. We suggest that melatonin protection against reactive oxygen species covers not only chlorophyll, but also photosynthetic proteins in general.  相似文献   

17.
Single cells of five different Microcystis species (M. ichthyoblabe, M. viridis, M. flos-aquae, M. wesenbergii, and M. aeruginosa) were batch-cultured at different temperatures and light intensities: (a) 25 °C and 50 μmol photons m?2 s?1 (control culture); (b) 25 °C and 10 μmol photons m?2 s?1; and (c) 15 °C and 50 μmol photons m?2 s?1. The extracellular polysaccharide content was significantly higher in treatments b and c than in the control treatment. All Microcystis species existed as single cells under the control treatment but formed colonies in treatments b and c. All of the colonies were irregular with indistinct margins. M. ichthyoblabe, M. viridis, M. flos-aquae, and M. wesenbergii formed colonies with similar morphologies and their cells were loosely aggregated. In contrast, M. aeruginosa formed denser colonies with no distinct holes. The colony morphologies differed from the classic morphology of M. ichthyoblabe field-grown colonies but resembled that of small colonies found in Lake Taihu (Yangtze Delta Plain, China) during early spring. This indicates that field- and laboratory-grown colonies are governed by similar formation processes. We suggest that in laboratory and field environments, M. ichthyoblabe (or M. flos-aquae) colonies are representative of small colonies formed from single Microcystis cells, whereas the morphology of older colonies evolves to resemble M. wesenbergii and M. aeruginosa colonies.  相似文献   

18.

A new empirical model for the net oxygen production rate of an alkaliphilic microalgae consortium (AMC) with prominent members of Picochlorum and Pseudoanabaena was developed as a function of sulfide at concentrations up to 1.50 mM. The kinetic model consists of a non-continuous function with two domains for sulfide concentration, which describes the enhancement and the inhibition of net photosynthetic oxygen production. Small doses of sulfide can foster the photosynthetic activity evaluated by a Gaussian type of kinetic model; while, at a total sulfide concentration higher than 1.00 mM, the photosynthetic activity was inhibited following a linear inverse response. This study shows that small sulfide concentrations around 0.60 mM improved the photosynthetic activity by up to 90% compared to assays without sulfide. Moreover, the sulfide influence on the oxygenic photosynthetic activity of the AMC was confirmed after one year, suggesting that the kinetic model could be helpful for the design and operation of photobioreactors to improve the performance of microalgae cells exposed to hydrogen sulfide.

  相似文献   

19.
The effect of low temperatures on fatty acid biosynthesis in plants   总被引:12,自引:2,他引:10       下载免费PDF全文
1. Of three systems, bulb tissue, plant leaf tissue and intact green algal (Chlorella vulgaris) cells, only the former shows an increase in rate of formation of unsaturated fatty acids with decrease in temperature. 2. In bulb tissue the oxygen concentration is rate-limiting for synthesis of unsaturated fatty acids at temperatures down to 10°. 3. At elevated oxygen concentrations the formation of unsaturated fatty acids in bulb tissue increases with temperature. 4. The failure of photosynthetic tissues to respond to either lower temperatures or increased oxygen concentrations in the presence of light is attributed to photosynthetic production of excess of oxygen. This is supported by the fact that in the dark a potentiating oxygen effect on the formation of unsaturated fatty acids can be demonstrated. 5. The HCO3 ion concentration has a small effect on the formation of unsaturated fatty acids. 6. Elevated content of unsaturated acids at lower temperatures in plants is attributed to increases in oxygen concentration in solution.  相似文献   

20.
In the course of our search for neuroprotective agents, dysideamine (1), a new sesquiterpene aminoquinone, was isolated along with bolinaquinone (2) from Indonesian marine sponge of Dysidea sp. Compounds 1 and 2 showed neuroprotective effect against iodoacetic acid (IAA)-induced cell death at 10 μM concentration in mouse HT22 hippocampal neuronal cells. Dysideamine (1) inhibited production of reactive oxygen species (ROS) by IAA treatment, whereas it exhibited no effect on depletion of intracellular ATP of the IAA-treated HT22 cells. Moreover, 1 induced neurite outgrowth against mouse neuroblastma Neuro 2A cells with increase of acetylcholinesterase (AChE) activity, which is a marker of neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号