首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined the complete amino acid sequence of a 20K Da COOH-terminal fragment of porcine NADPH-cytochrome P-450 reductase. The 20K Da fragment is probably produced by a proteolytic cleavage of the intact protein in porcine liver microsomes, and since the cleavage does not affect enzymatic activity, the fragment has been studied as a distinct domain. The sequence comprises 175 amino acids including three cysteine residues, one of which has been previously identified as protected by NADPH from S-carboxymethylation. The NADPH-protected cysteine lies in a stretch of 12 residues with partial homology to glutathione reductase, and is adjacent to a hydrophobic region containing a glycine-rich stretch homologous to other FAD-containing proteins. The predicted secondary structure over this entire region is beta-sheet/beta-turn/beta-sheet/alpha-helix/beta-sheet/beta-turn/alpha-h elix corresponding to hydrophobic residues 21-28/glycine-rich residues 29-33/residues 34-38/residues 39-54/residues 56-61/NADPH-protected cysteine residues 62-78/residues 71-82. It is possible that the 20K Da domain provided a significant portion of the sequence responsible for binding FAD and NADPH in the intact enzyme. This data provides a basis for further active site studies.  相似文献   

2.
D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent endogenous ligand of N-methyl-D-aspartate type glutamate receptors. It also has been suggested that D-DOPA, the stereoisomer of L-DOPA, is oxidized by DAO and then converted to dopamine via an alternative biosynthetic pathway. Here, we provide direct crystallographic evidence that D-DOPA is readily fitted into the active site of human DAO, where it is oxidized by the enzyme. Moreover, our kinetic data show that the maximal velocity for oxidation of D-DOPA is much greater than for D-serine, which strongly supports the proposed alternative pathway for dopamine biosynthesis in the treatment of Parkinson's disease. In addition, determination of the structures of human DAO in various states revealed that the conformation of the hydrophobic VAAGL stretch (residues 47-51) to be uniquely stable in the human enzyme, which provides a structural basis for the unique kinetic features of human DAO.  相似文献   

3.
Cholesterol oxidase (3 beta-hydroxysteroid oxidase, EC 1.1.3.6) is an FAD-dependent enzyme that carries out the oxidation and isomerization of steroids with a trans A : B ring junction. The crystal structure of the enzyme from Brevibacterium sterolicum has been determined using the method of isomorphous replacement and refined to 1.8 A resolution. The refined model includes 492 amino acid residues, the FAD prosthetic group and 453 solvent molecules. The crystallographic R-factor is 15.3% for all reflections between 10.0 A and 1.8 A resolution. The structure is made up of two domains: an FAD-binding domain and a steroid-binding domain. The FAD-binding domain consists of three non-continuous segments of sequence, including both the N terminus and the C terminus, and is made up of a six-stranded beta-sheet sandwiched between a four-stranded beta-sheet and three alpha-helices. The overall topology of this domain is very similar to other FAD-binding proteins. The steroid-binding domain consists of two non-continuous segments of sequence and contains a six-stranded antiparallel beta-sheet forming the "roof" of the active-site cavity. This large beta-sheet structure and the connections between the strands are topologically similar to the substrate-binding domain of the FAD-binding protein para-hydroxybenzoate hydroxylase. The active site lies at the interface of the two domains, in a large cavity filled with a well-ordered lattice of 13 solvent molecules. The flavin ring system of FAD lies on the "floor" of the cavity with N-5 of the ring system exposed. The ring system is twisted from a planar conformation by an angle of approximately 17 degrees, allowing hydrogen-bond interactions between the protein and the pyrimidine ring of FAD. The amino acid residues that line the active site are predominantly hydrophobic along the side of the cavity nearest the benzene ring of the flavin ring system, and are more hydrophilic on the opposite side near the pyrimidine ring. The cavity is buried inside the protein molecule, but three hydrophobic loops at the surface of the molecule show relatively high temperature factors, suggesting a flexible region that may form a possible path by which the substrate could enter the cavity. The active-site cavity contains one charged residue, Glu361, for which the side-chain electron density suggests a high degree of mobility for the side-chain. This residue is appropriately positioned to act as the proton acceptor in the proposed mechanism for the isomerization step.  相似文献   

4.
Y Yin  N S Sampson  A Vrielink  P I Lario 《Biochemistry》2001,40(46):13779-13787
Cholesterol oxidase catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. An asparagine residue (Asn485) at the active site is believed to play an important role in catalysis. To test the precise role of Asn485, we mutated it to a leucine and carried out kinetic and crystallographic studies. Steady-state kinetic analysis revealed a 1300-fold decrease in the oxidation k(cat)/K(m) for the mutant enzyme whereas the k(cat)/K(m) for isomerization is only 60-fold slower. The primary kinetic isotope effect in the mutant-catalyzed reaction indicates that 3alpha-H transfer remains the rate-determining step. Measurement of the reduction potentials for the wild-type and N485L enzymes reveals a 76 mV decrease in the reduction potential of the FAD for the mutant enzyme relative to wild type. The crystal structure of the mutant, determined to 1.5 A resolution, reveals a repositioning of the side chain of Met122 near Leu485 to form a hydrophobic pocket. Furthermore, the movement of Met122 facilitates the binding of an additional water molecule, possibly mimicking the position of the equatorial hydroxyl group of the steroid substrate. The wild-type enzyme shows a novel N-H...pi interaction between the side chain of Asn485 and the pyrimidine ring of the cofactor. The loss of this interaction in the N485L mutant destabilizes the reduced flavin and accounts for the decreased reduction potential and rate of oxidation. Thus, the observed structural rearrangement of residues at the active site, as well as the kinetic data and thermodynamic data for the mutant, suggests that Asn485 is important for creating an electrostatic potential around the FAD cofactor enhancing the oxidation reaction.  相似文献   

5.
A cDNA encoding -amino acid oxidase (DAO;EC 1.4.3.3) has been isolated from a BALB/c mouse kidney cDNA library by hybridization with the cDNA for the porcine enzyme. Analysis of the nucleotide (nt) sequence of the clone revealed that it has a 1647-nt sequence with a 5′-terminal untranslated region of 68 nt that encodes 345 amino acids (aa), and a 3′-terminal untranslated region of 544 nt that contains the polyadenylation signal sequence ATTAAA. The deduced aa sequence showed 77 and 78% aa identity with the porcine and human enzymes, respectively. Two catalytically important aa residues, Tyr228 and His307, of the porcine enzyme, were both conserved in these three species. RNA blot hybridization analysis indicated that a DAO mRNA, of 2 kb, exists in mouse kidney and brain, but not liver. Synthesis of a functional mouse enzyme in Escherichia coli was achieved through the use of a vector constructed to insert the coding sequence of the mouse DAO cDNA downstream from the tac promoter of plasmid pKK223-3, which was designed so as to contain the lac repressor gene inducible by isopropyl-β- -thiogalactopyranoside. Immunoblot analysis confirmed the synthesis and induction of the mouse DAO protein, and the molecular size of the recombinant mouse DAO was found to be identical to that of the mouse kidney enzyme. Moreover, the maximum activity of the mouse recombinant DAO was estimated to be comparable with that of the porcine DAO synthesized in E. coli cells.  相似文献   

6.
M D Distefano  K G Au  C T Walsh 《Biochemistry》1989,28(3):1168-1183
Mercuric reductase, a flavoenzyme that possess a redox-active cystine, Cys135Cys140, catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, we have constructed mutants lacking a redox-active disulfide by eliminating Cys135 (Ala135Cys140), Cys140 (Cys135Ala140), or both (Ala135Ala140). Additionally, we have made double mutants that lack Cys135 (Ala135Cys139Cys140) or Cys140 (Cys135Cys139Ala140) but introduce a new Cys in place of Gly139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. These differences are manifested in a 23-nm range in enzyme-bound FAD lambda max values, an 80-nm range in thiolate to flavin charge-transfer absorbance maxima, and a ca. 100-mV range in FAD reduction potential. Preliminary evidence for the Ala135Cys139Cys140 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala135Cys140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. For these activities, there is a linear correlation between log kappa cat and enzyme-bound FAD reduction potential. In a sensitive Hg(II)-mediated enzyme-bound FADH2 reoxidation assay, all mutant enzymes were able to undergo at least one catalytic event at rates 50-1000-fold slower than that of the wild-type enzyme. We have also observed the reduction of Hg(II) by free FADH2. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. We conclude that the Cys135 and Cys140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate.  相似文献   

7.
In the biosynthesis of several anthracyclines, aromatic polyketides produced by many Streptomyces species, the aglycone core is modified by a specific flavin adenine dinucleotide (FAD)- and NAD(P)H-dependent aklavinone-11-hydroxylase. Here, we report the crystal structure of a ternary complex of this enzyme from Streptomyces purpurascens, RdmE, with FAD and the substrate aklavinone. The enzyme is built up of three domains, a FAD-binding domain, a domain involved in substrate binding, and a C-terminal thioredoxin-like domain of unknown function. RdmE exhibits structural similarity to aromatic hydroxylases from the p-hydroxybenzoate hydroxylase family, but unlike most other related enzymes, RdmE is a monomer. The substrate is bound in a hydrophobic pocket in the interior of the enzyme, and access to this pocket is provided through a different route than for the isoalloxazine ring of FAD—the backside of the ligand binding cleft. The architecture of the substrate binding pocket and the observed enzyme-aklavinone interactions provide a structural explanation for the specificity of the enzyme for non-glycosylated substrates with C9-R stereochemistry. The isoalloxazine ring of the flavin cofactor is bound in the “out” conformation but can be modeled in the “in” conformation without invoking large conformational changes of the enzyme. This model places the flavin ring in a position suitable for catalysis, almost perpendicular to the tetracyclic ring system of the substrate and with a distance of the C4a carbon atom of the isoalloxazine ring to the C-11 carbon atom of the substrate of 4.8 Å. The structure suggested that a Tyr224-Arg373 pair might be involved in proton abstraction at the C-6 hydroxyl group, thereby increasing the nucleophilicity of the aromatic ring system and facilitating electrophilic attack by the perhydroxy-flavin intermediate. Replacement of Tyr224 by phenylalanine results in inactive enzyme, whereas mutants at position Arg373 retain catalytic activity close to wild-type level. These data establish an essential role of residue Tyr224 in catalysis, possibly in aligning the substrate in a position suitable for catalysis.  相似文献   

8.
Rat and human short/branched chain acyl-CoA dehydrogenases exhibit key differences in substrate specificity despite an overall amino acid identity of 85% between them. Rat short/branched chain acyl-CoA dehydrogenases (SBCAD) are more active toward substrates with longer carbon side chains than human SBCAD, whereas the human enzyme utilizes substrates with longer primary carbon chains. The mechanism underlying this difference in substrate specificity was investigated with a novel surface plasmon resonance assay combined with absorbance and circular dichroism spectroscopy, and kinetics analysis of wild type SBCADs and mutants with altered amino acid residues in the substrate binding pocket. Results show that a relatively few amino acid residues are critical for determining the difference in substrate specificity seen between the human and rat enzymes and that alteration of these residues influences different portions of the enzyme mechanism. Molecular modeling of the SBCAD structure suggests that position 104 at the bottom of the substrate binding pocket is important in determining the length of the primary carbon chain that can be accommodated. Conformational changes caused by alteration of residues at positions 105 and 177 directly affect the rate of electron transfer in the dehydrogenation reactions, and are likely transmitted from the bottom of the substrate binding pocket to beta-sheet 3. Differences between the rat and human enzyme at positions 383, 222, and 220 alter substrate specificity without affecting substrate binding. Modeling predicts that these residues combine to determine the distance between the flavin ring of FAD and the catalytic base, without changing the opening of the substrate binding pocket.  相似文献   

9.
Succinate dehydrogenase consists of two protein subunits and contains one FAD and three iron-sulfur clusters. The flavin is covalently bound to a histidine in the larger, Fp, subunit. The reduction oxidation midpoint potentials of the clusters designated S-1, S-2, and S-3 in Bacillus subtilis wild-type membrane-bound enzyme were determined as +80, -240, and -25 mV, respectively. Magnetic spin interactions between clusters S-1 and S-2 and between S-1 and S-3 were detected by using EPR spectroscopy. The point mutations of four B. subtilis mutants with defective Fp subunits were mapped. The gene of the mutant specifically lacking covalently bound flavin in the enzyme was cloned. The mutation was determined from the DNA sequence as a glycine to aspartate substitution at a conserved site seven residues downstream from the histidine that binds the flavin in wild-type enzyme. The redox midpoint potential of the iron-sulfur clusters and the magnetic spin interactions in mutated succinate dehydrogenases were indistinguishable from the those of the wild type. This shows that flavin has no role in the measured magnetic spin interactions or in the structure and stability of the iron-sulfur clusters. It is concluded from sequence and mutant studies that conserved amino acid residues around the histidyl-FAD are important for FAD binding; however, amino acids located more than 100 residues downstream from the histidyl in the Fp subunit can also effect flavinylation.  相似文献   

10.
31P NMR spectroscopy has been utilized in conjunction with site-directed mutagenesis and phospholipid analysis to determine structural aspects of the prosthetic flavins, FAD and FMN, of NADPH-cytochrome P450 reductase. Comparisons are made among detergent-solubilized and protease (steapsin)-solubilized preparations of porcine liver reductases, showing unequivocally that the 31P NMR signals at approximately 0.0 ppm in the detergent-solubilized, hydrophobic form are attributable to phospholipids. By extraction and TLC analysis, the phospholipid contents of detergent-solubilized rat liver reductase, both tissue-purified and Escherichia coli-expressed, have been determined to reflect the membranes from which the enzyme was extracted. In addition, the cloned, wild-type NADPH-cytochrome P450 reductase exhibits an additional pair of signals downfield of the normal FAD pyrophosphate resonances reported by Otvos et al. [(1986) Biochemistry 25, 7220-7228], but these signals are not observed with tissue-purified or mutant enzyme preparations. The Tyr140----Asp140 mutant, which exhibits only 20% of wild-type activity, displays no gross changes in 31P NMR spectra. However, the Tyr178----Asp178 mutant, which has no catalytic activity and does not bind FMN, exhibits no FMN 31P NMR signal and a normal, but low intensity, pair of signals for FAD. The latter experiments, taking advantage of mutations in residues putatively on either side of the FMN isoalloxazine ring, suggest subtle to severe changes in the binding of the flavin prosthetic groups and, perhaps, cooperative interactions of flavin binding to NADPH-cytochrome P450 reductase.  相似文献   

11.
The enzyme responsible for iodide salvage in the thyroid, iodotyrosine deiodinase, was solubilized from porcine thyroid microsomes by limited proteolysis with trypsin. The resulting protein retained deiodinase activity and was purified using anion exchange, dye, and hydrophobic chromatography successively. Peptide sequencing of the final isolate identified the gene responsible for the deiodinase. The amino acid sequence of the porcine enzyme is highly homologous to corresponding genes in a variety of mammals including humans, and the mouse gene was expressed in human embryonic kidney 293 cells to confirm its identity. The amino acid sequence of the deiodinase suggests the presence of three domains. The N-terminal domain provides a membrane anchor. The intermediate domain contains the highest sequence variability and lacks homology to structural motifs available in the common databases. The C-terminal domain is highly conserved and resembles bacterial enzymes of the NADH oxidase/flavin reductase superfamily. A three-dimensional model of the deiodinase based on the coordinates of the minor nitroreductase of Escherichia coli indicates that a Cys common to all of the mammal sequences is located adjacent to bound FMN. However, the deiodinase is not structurally related to other known flavoproteins containing redox-active cysteines or the iodothyronine deiodinases containing an active site selenocysteine.  相似文献   

12.
Monoamine oxidase (MAO), an important enzyme for the degradation of amine neurotransmitters, has been implicated in neuropsychiatric illness. The amino acid sequence for one form of the enzyme, MAO-A, has been deduced from human cDNA clones and verified against proteolytic peptides. The covalent binding site for the flavin adenine dinucleotide (FAD) cofactor is near the C-terminal region. The presence of features characteristic of the ADP-binding fold suggests that the N-terminal region is also involved in the binding of FAD. These cDNAs should facilitate the study of the structure, function, and intracellular targeting of MAO, as well as the analysis of its expression in normal and pathological states.  相似文献   

13.
Acyl-CoA oxidase (ACO) catalyzes the first and rate-determining step of the peroxisomal beta-oxidation of fatty acids. The crystal structure of ACO-II, which is one of two forms of rat liver ACO (ACO-I and ACO-II), has been solved and refined to an R-factor of 20.6% at 2.2-A resolution. The enzyme is a homodimer, and the polypeptide chain of the subunit is folded into the N-terminal alpha-domain, beta-domain, and C-terminal alpha-domain. The X-ray analysis showed that the overall folding of ACO-II less C-terminal 221 residues is similar to that of medium-chain acyl-CoA dehydrogenase (MCAD). However, the N-terminal alpha- and beta-domains rotate by 13 with respect to the C-terminal alpha-domain compared with those in MCAD to give a long and large crevice that accommodates the cofactor FAD and the substrate acyl-CoA. FAD is bound to the crevice between the beta- and C-terminal domains with its adenosine diphosphate portion interacting extensively with the other subunit of the molecule. The flavin ring of FAD resides at the active site with its si-face attached to the beta-domain, and is surrounded by active-site residues in a mode similar to that found in MCAD. However, the residues have weak interactions with the flavin ring due to the loss of some of the important hydrogen bonds with the flavin ring found in MCAD. The catalytic residue Glu421 in the C-terminal alpha-domain seems to be too far away from the flavin ring to abstract the alpha-proton of the substrate acyl-CoA, suggesting that the C-terminal domain moves to close the active site upon substrate binding. The pyrimidine moiety of flavin is exposed to the solvent and can readily be attacked by molecular oxygen, while that in MCAD is protected from the solvent. The crevice for binding the fatty acyl chain is 28 A long and 6 A wide, large enough to accommodate the C23 acyl chain.  相似文献   

14.
Maize polyamine oxidase (MPAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyses the oxidation of spermine and spermidine at the secondary amino groups. The structure of MPAO indicates a 30-A long U-shaped tunnel that forms the catalytic site, with residues Glu62 and Glu170 located close to the enzyme-bound FAD and residue Tyr298 in close proximity to Lys300, which in turn is hydrogen-bonded to the flavin N(5) atom via a water molecule (HOH309). To provide insight into the role of these residues in the catalytic mechanism of FAD reduction, we have performed steady-state and stopped-flow studies with wild-type, Glu62Gln, Glu170Gln, Tyr298Phe, and Lys300Met MPAO enzymes. We show that the steady-state enzyme activity is governed by an ionisable group with a macroscopic pK(a) of approximately 5.8. Kinetic analysis of the Glu62Gln, Glu170Gln, and Tyr298Phe MPAO enzymes have indicated (i) only small perturbations in catalytic activity as a result of mutation and (ii) steady-state pH profiles essentially unaltered when compared to the wild-type enzyme, suggesting that these residues do not play a critical role in the reaction mechanism. These kinetic observations are consistent with computational calculations that suggest that Glu62 and Glu170 are protonated over the pH range accessible to kinetic studies. Substitution of Lys300 with Met in MPAO resulted in a 1400-fold decrease in the rate of flavin reduction and a 160-fold decrease in the equilibrium dissociation constant for the Lys300Met-spermidine complex, consistent with a major role for this residue in the mechanism of substrate oxidation. A sizable solvent isotope effect (SIE = 5) accompanies FAD reduction in the wild-type enzyme and steady-state turnover (SIE = 2.3) of MPAO, consistent with the reductive half-reaction of MPAO making a major contribution to rate limitation in steady-state turnover. Studies using the enzyme-monitored turnover method indicate that oxidized FAD is the prominent form during steady-state turnover, consistent with the reductive half-reaction being rate-limiting. Our studies indicate the importance of Lys300 and probable importance of HOH309 to the mechanism of flavin reduction in MPAO. Possible roles for Lys300 and water in the mechanism of flavin reduction are discussed.  相似文献   

15.
Uridine diphosphogalactofuranose (UDP-Galf ) is the precursor of the d-galactofuranose (Galf ) residues found in bacterial and parasitic cell walls, including those of many pathogens, such as Mycobacterium tuberculosis and Trypanosoma cruzi. UDP-Galf is made from UDP-galactopyranose (UDP-Galp) by the enzyme UDP-galactopyranose mutase (mutase). The mutase enzyme is essential for the viability of mycobacteria and is not found in humans, making it a viable therapeutic target. The mechanism by which mutase achieves the unprecedented ring contraction of a nonreducing sugar is unclear. We have solved the crystal structure of Escherichia coli mutase to 2.4 A resolution. The novel structure shows that the flavin nucleotide is located in a cleft lined with conserved residues. Site-directed mutagenesis studies indicate that this cleft contains the active site, with the sugar ring of the substrate UDP-galactose adjacent to the exposed isoalloxazine ring of FAD. Assay results establish that the enzyme is active only when flavin is reduced. We conclude that mutase most likely functions by transient reduction of substrate.  相似文献   

16.
Xu D  Ballou DP  Massey V 《Biochemistry》2001,40(41):12369-12378
Three residues in the active site of the flavoprotein phenol hydroxylase (PHHY) were independently changed by site-directed mutagenesis. One of the mutant forms of PHHY, Tyr289Phe, is reduced by NADPH much slower than is the wild-type enzyme, although it has a slightly higher redox potential than the wild-type enzyme. In the structure of the wild-type enzyme, residue Tyr289 is hydrogen-bonded with the FAD when the latter is at the "out" position but has no direct contact with the flavin when it is "in". The oxidative half-reaction of PHHY is not significantly affected by this mutation, contrary to the concept that Tyr289 is a critical residue in the hydroxylation reaction [Enroth, C., Neujahr, H., Schneider, G., and Lindqvist, Y. (1998) Structure 6, 605-617; Ridder, L., Mullholland, A. J., Rietjens, I. M. C. M., and Vervoort, J. (2000) J. Am. Chem. Soc. 122, 8728-8738]. Tyr289 may help stabilize the FAD in the out conformation where it can be reduced by NADPH. For the Asp54Asn mutant form of PHHY, the initial step of the oxidative half-reaction is significantly slower than for the wild-type enzyme. Asp54Asn utilizes less than 20% of the reduced flavin for hydroxylating the substrate with the remainder forming H(2)O(2). Similar changes are observed when Arg281, a residue between Asp54 and the solvent, is mutated to Met. These two residues are suggested to be part of the active site environment the enzyme provides for the flavin cofactor to function optimally in the oxidative half-reaction. In the construction of the mutant forms of PHHY, it was determined that 11 of the previously reported amino acid residues in the sequence of PHHY were incorrect.  相似文献   

17.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens, was replaced by 6-hydroxy-FAD (an extra hydroxyl group on the carbon at position 6 of the isoalloxazine ring of FAD). The catalytic cycle of this modified enzyme was analyzed and compared to the function of native (FAD) enzyme. Transient state kinetic analyses of the multiple changes in the chemical state of the flavin were the principal methods used to probe the mechanism. Four known substrates of the native enzyme were used to probe the reaction. With the natural substrate, p-hydroxybenzoate, the 6-hydroxy-FAD enzyme activity was 12-15% of native enzyme, due to a slower release of product from the enzyme, and less than one product molecule was formed per NADPH oxidized, due to an increased rate of nonproductive decomposition of the transient peroxyflavin essential to the catalytic pathway. More extensive changes in mechanism were observed with the substrates, 2,4-dihydroxybenzoate and p-aminobenzoate. The results suggest that, during catalysis, when the reduced state of FAD is ready for oxygen reaction, the substrate is located below and close to the C-4a/N-5 edge of the isoalloxazine ring. The nature of the high extinction, transient state of flavin, formed upon transfer of oxygen to substrate is discussed. It is not a flavin cation, and is unlikely to be an oxygen-substituted analogue of N-3/C-4 dihydroflavin.  相似文献   

18.
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP(+) has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the re-face of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP(+) lies against the FAD isoalloxazine ring with a tilt of approximately 30 degrees between the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding and pi-pi interactions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis.  相似文献   

19.
Flavin mononucleotide adenylyltransferase (FMNAT) catalyzes the formation of the essential flavocoenzyme flavin adenine dinucleotide (FAD) and plays an important role in flavocoenzyme homeostasis regulation. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different sets of active-site residues to accomplish the same chemistry. Here we report the first structural characterization of a eukaryotic FMNAT from the pathogenic yeast Candida glabrata. Four crystal structures of C. glabrata FMNAT in different complexed forms were determined at 1.20-1.95 Å resolutions, capturing the enzyme active-site states prior to and after catalysis. These structures reveal a novel flavin-binding mode and a unique enzyme-bound FAD conformation. Comparison of the bacterial and eukaryotic FMNATs provides a structural basis for understanding the convergent evolution of the same FMNAT activity from different protein ancestors. Structure-based investigation of the kinetic properties of FMNAT should offer insights into the regulatory mechanisms of FAD homeostasis by FMNAT in eukaryotic organisms.  相似文献   

20.
The crystal structure of glucooligosaccharide oxidase from Acremonium strictum was demonstrated to contain a bicovalent flavinylation, with the 6- and 8alpha-positions of the flavin isoalloxazine ring cross-linked to Cys(130) and His(70), respectively. The H70A and C130A single mutants still retain the covalent FAD, indicating that flavinylation at these two residues is independent. Both mutants exhibit a decreased midpoint potential of approximately +69 and +61 mV, respectively, compared with +126 mV for the wild type, and possess lower activities with k(cat) values reduced to approximately 2 and 5%, and the flavin reduction rate reduced to 0.6 and 14%. This indicates that both covalent linkages increase the flavin redox potential and alter the redox properties to promote catalytic efficiency. In addition, the isolated H70A/C130A double mutant does not contain FAD, and addition of exogenous FAD was not able to restore any detectable activity. This demonstrates that the covalent attachment is essential for the binding of the oxidized cofactor. Furthermore, the crystal structure of the C130A mutant displays conformational changes in several cofactor and substrate-interacting residues and hence provides direct evidence for novel functions of flavinylation in assistance of cofactor and substrate binding. Finally, the wild-type enzyme is more heat and guanidine HCl-resistant than the mutants. Therefore, the bicovalent flavin linkage not only tunes the redox potential and contributes to cofactor and substrate binding but also increases structural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号