首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R L Ornstein  R Rein 《Biopolymers》1979,18(11):2821-2847
The enthalpy ΔH for the intercalation of the ethidium cation (EC) into DNA minihelices can be decomposed into (1) an energy of conformational adjustment (i.e., the energy of minihelix extension and unwinding from the B-form to the intercalated form) and (2) EC minihelix intermolecular interactions. In the present study, we have focused our attention mainly on a decomposition of the energetic factors of the EC minihelix intermolecular interactions, while the essential features of the energy of conformational adjustment have been discussed in detail elsewhere by us. The structural features of the various resulting energy-minimized EC-intercalated complexes are compared with each other and the initial x-ray model structure. ΔH is estimated to be in the range of ?12.3 to ?24.0 kcal/mol. This theoretical estimate is qualitatively and quantitatively in agreement with a variety of available experimental data. The energy of conformational adjustment is an energetically unfavorable step, while the energetically favorable contribution of the EC minihelix intermolecular interactions is responsible for the overall favorable nature of the intercalation process involving the EC. On the other hand, the observed preference for intercalation into Pyr(3′–5′)Pur DNA sequences over their isomeric Pur(3′–5′)Pyr sequences is controlled by the energy of conformational adjustment and not by the EC minihelix intermolecular interaction contribution. No base-composition effect is expected at EC concentrations normally found at cellular conditions. Moreover, the structural features of the various EC-intercalated complexes are very similar regardless of minihelix base sequence or composition. These results compare favorably with available evidence. The nature of biologically preferred sites of EC binding with the minihelices is discussed.  相似文献   

2.
Synchrotron radiation diffraction data for phage T2 CsDNA fibres have been used to determine the co-ordinates of the caesium ions in crystalline B form DNA. The R value is 0.16 for an optimized structure. The caesium ions are distributed equally between the narrow and wide grooves of B DNA and are located close to the dyad axes lying between the planes of adjacent base-pairs. On the wide-groove side the cations are separated from the nearest phosphate atoms by a hydration layer one to two water molecules thick. In the narrow groove the cations are directly co-ordinated to the base atoms and, for six out of ten possible DNA stacking types, form chelation complexes: O-2(Pyr)-Cs+-O-2(Pyr), O-2(Pyr)-Cs+-N-3(Pur) or N-3(Pur)-Cs+-N-3(Pur), which stabilize the B conformation. The steric properties of such complexes as estimated for different base sequences and for different ions are consistent with the structural behaviour of double-helical polynucleotides with different base sequences, as experimentally observed.  相似文献   

3.
Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na+‐ions (dDMPs) have demonstrated that the main characteristics of Watson‐Crick (WC) right‐handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar‐phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar‐phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr‐Pur from Pur‐Pyr, and Pur‐Pyr from Pyr‐Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar‐phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z‐family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 640–650, 2014.  相似文献   

4.
R L Ornstein  R Rein 《Biopolymers》1979,18(5):1277-1291
An empirical partitioned-potential function with optimized parameters was employed to investigate the basis of intercalation specificity recently observed by experimental techniques. The nature of this specificity is discussed in terms of component interactions for all non-truncated complementary dinucleoside triphosphate mini- (or miniature) helices. Our calculations agree with available evidence indicating the preference of Pyr(3′-5′)Pur sequences over Pur(3′-5′)Pyr sequences to change from the B-DNA to the intercalated conformation. Base–base (stacking) and base–phosphate interactions control the specificity. The extent of net electrostatic charge on the phosphate groups play an important but limited role in establishing the observed specificity. These results should apply for the class of aromatic agents involved in nonspecific intercalation with nucleic acids but not necessarily for aromatic agents involved in specific reactions with a particular nucleotide base.  相似文献   

5.
Fluorescence-determined preferential binding of quinacrine to DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA.  相似文献   

6.
The effect of the central non-Pur.Pyr sequences in oligo(dG.dC) inserts on determining the type of intramolecular DNA triplex isomers formed in negatively supercoiled plasmids was investigated. Different triplex types (H-r3, H-r5, and H-y3), revealed by a combination of chemical probing and Maxam-Gilbert sequencing reactions, were adopted by the oligo(dG.dC) tracts depending on the length and composition of the central non-Pur.Pyr sequences (0, 3, or 5 base pairs) and the kind of metal ions. The H-r3 triplex conformer, one isomer of a Pur.Pur.Pyr structure, was formed in the (C)20 and (C)10GCG(C)10 inserts in plasmids in the presence of certain metal ions. Interestingly, H-r5, the other isomer of the Pur.Pur-Pyr triplex which had not been detected previously, was formed in a (C)9GAATT(C)9 insert in the presence of either Mg2+ or Ca2+. Alternatively, H-y3, one isomer of a Pyr.Pur.Pyr triplex, was formed in the (C)9GAATT(C)9 insert in the absence of metal ions. Thus, central non-Pur.Pyr sequences and metal ions play a role as determinants of the types of intramolecular triplexes formed; they also reduce the requirement of longer Pur.Pyr repeat sequences to form intramolecular triplexes. Furthermore, the effects of MgCl2 concentration and pH on the formation of triplex isomers were examined. The Pur.Pur.Pyr conformations (H-r3 and H-r5) may be the favored conformations in the cellular milieu, since they are stable at physiological pH and metal ion concentration.  相似文献   

7.
M Shimizu  J C Hanvey  R D Wells 《Biochemistry》1990,29(19):4704-4713
A polypurine.polypyrimidine (Pur.Pyr) sequence with a central interruption in a plasmid can adopt multiple non-B-DNA conformations depending on the conditions as revealed by specific chemical probes (OsO4, diethyl pyrocarbonate, and dimethyl sulfate) and two-dimensional electrophoresis. The relatively long mirror repeat Pur.Pyr sequences (GAA)9TTC(GAA)8 and (GGA)9TCC(GGA)8 form single canonical intramolecular triplexes at pH 7.0-6.0 in negatively supercoiled plasmids as isolated from Escherichia coli. With a lowering of the pH and/or an increase in the degree of negative supercoiling, these sequences undergo a novel conformational change as revealed by diethyl pyrocarbonate hypermodification of adenines in the middle of the polypurine strand and OsO4 reaction with thymines in the center and the quarter points of the polypyrimidine strand. To evaluate this structure, a family of related Pur.Pyr sequences were cloned and studied. The non mirror repeat sequence (GGA)9TCC(GAA)8 forms a non-B conformation only under acidic pH conditions, but the structural properties are different from those of the mirror repeat sequences. Furthermore, when the central interruptions of a mirror repeat sequence were increased from 3 to 9 bp, two canonical triplexes formed independently at pH 5.0 [at the (GAA)9 and (GAA)8 regions in the sequence (GAA)9TTAATTCGC(GAA)8]. Thus, if an interruption is sufficiently long, the two halves of the Pur.Pyr sequence do not interact with each other. Novel types of folded DNA geometries which explain these results are described.  相似文献   

8.
A family of covalent complexes between oligonucleotides and derivatives of the intercalating agent 9-amino acridine has been synthesized (Asseline, U., Thuong, N.T. and Helene, C. (1983) C.R.Acad. Sci. (Paris) 297 (III), 369-372) and studied (Lancelot, G., Asseline, U., Thuong, N.T., and Helene, C. (1985) Biochemistry 24, 2521-2529; Lancelot, G., Asseline, U., Thuong, N.T., and Helene, C. (1985) J. Biomol. Str. Dyn. 3, 913-921) with a view to understand nucleic acid-nucleic acid recognition. In order to understand the nature of interactions between the intercalator and the oligonucleotides in such complexes and the sensitivity of such interactions to the polymorphic form of the DNA, we have carried out molecular mechanics simulations on duplex deoxyoligonucleotides d(A)6.d(T)6 (A and B forms) and d(TATC).d(GATA) (B form) covalently bound to 2-methoxy-6-chloro-9-aminoacridine through a pentamethylene linker chain. Structures in which the acridine derivative is end stacked (at the 3' and 5' ends) and in which the dye is intercalated between the terminal base pairs (at both the ends) and between second and third base pairs from the 3' end are all of reasonably low energy in both A and B forms of DNA. Our studies on 3' end complexes find that in the B form, intercalation of the dye between the second and third base pairs is preferred over the other two modes of binding, while in the A form, intercalation between the terminal base pairs is preferred. In the 5' end A and B form complexes, outside stacking and intercalation between the terminal base pairs are preferred, respectively. Our calculations suggest the possibility that the presence of the dye attached covalently to the DNA can induce conformational transitions in the DNA. For example, intercalation of the dye two base pairs from the end could induce an A----B transition.  相似文献   

9.
Di- or trivalent metal ions stabilize a supercoil-dependent transition in pGA37, which contains the (GA)37.(CT)37 insert, at neutral and basic pH. The structure formed is different from the well known protonated triplexes (H-DNA) adopted at low pH by polypurine.polypyrimidine (Pur.Pyr) inserts in plasmids. DNA samples must be preincubated in the presence of multivalent ions at 50 degrees C for the new transition to occur. At neutral pH in the presence of Co hexamine, both strands of the insert have modification maxima situated at one-third of the distance from both ends. We propose the formation of a new structure called nodule DNA which consists of both Pyr.Pur.Pyr and Pur.Pur.Pyr triplexes and does not contain continuous single-stranded regions. At basic pH (greater than 8.5) in the presence of magnesium ions, the modification pattern corresponds to Pur.Pur.Pyr triplex formation in the whole insert. At neutral pH in the presence of magnesium, both nodule DNA and the Pur.Pur.Pyr triplex can be formed in the insert. We also observed a magnesium-dependent transition at neutral pH in the other Pur.Pyr insert containing plasmids. These data demonstrate that Pur.Pyr sequences can adopt several non-B conformations at close to in vivo conditions.  相似文献   

10.
We report here the direct evidence for the formation of alternative DNA structures in a plasmid DNA, termed pTIR10, containing a 0.23-kb pyrimidine/purine-biased (Pyr/Pur) stretch isolated from the rat genome. Long Pyr/Pur sequences are abundant in eukaryotic genomes, and they may modulate the biological activity of genes and genomes via formation of various types of triplex-related structures. The plasmid DNA in sodium acetate buffer (pH 4.35) was deposited on APS-modified mica, and after drying it was imaged with an atomic force microscope in air. Various types of thick protrusions have been observed on pTIR10 DNA. Structural parameters (width and height) of DNA molecules suggest that the alternative structures observed here are variations on the theme of an intramolecular triplex. The biological relevance of the structural features within Pyr/Pur stretches is discussed.  相似文献   

11.
Molecular mechanical calculations were done on complexes of 4-nitroquinoline-N-oxide (NQO) with various dinucleoside phosphates [(ApT)2, (CpG)2, (GpC)2, and (TpA)2]. Models built using proflavine (uniform C3' endo sugar puckers) and acridine orange (mixed C3' endo (3'-5') C2' endo sugar puckers) dinucleoside phosphate X-ray structures were used in the calculations. Relative binding energies, complex geometries, and various intercalator orientations in the complexes were studied. The results suggest qualitatively different geometries for pyr-(3'-5')-pur and pur-(3'-5')-pyr sequences. Specifically, we find marked distortion in some of the complexes (i.e. there is not a parallel coplanar relationship between the base pairs and intercalator), distortion of the NQO nitro group from planarity in the complexes and mobility of NQO in the intercalation site. We suggest that experimental studies of NQO-dinucleoside phosphate complexes may reveal intercalation complexes which deviate substantially more from a nearly parallel coplanar arrangement of bases and intercalator than has been previously observed.  相似文献   

12.
Nucleic acid complexes with ethidium intercalated into different sites in a segment of HIV-1 TAR RNA with an unpaired A base, along with corresponding complexes with a normal RNA sequence without an unpaired base were studied by molecular mechanics energy minimization methods. Different intercalation geometries as well as different orientations of the ethidium molecule in the intercalation sites were tested. A general binding affinity enhancement for the ethidium binding to the bulge sequence compared with the normal RNA segment was obtained. With the unpaired adenosine base stacked in the duplex, the binding site adjacent to the 3' side of the bulge was found to be the most energetically favorable binding site, and the intercalation site 5' to the bulge in the same sequence is much less favorable. Unique correlated backbone conformational changes on binding of ethidium to the intercalation site 3' to the bulge were found to relieve backbone strains caused by the stacking of the unpaired base into the helix. These backbone conformational changes present a plausible molecular basis for the experimentally observed ethidium binding preference in this bulge RNA segment (L.S. Ratmeyer, R. Vinayak, G. Zon and W.D. Wilson, J. Med. Chem. 35, 966, 1992).  相似文献   

13.
M Prabhakaran  S C Harvey 《Biopolymers》1988,27(8):1239-1248
The large-scale flexibility of DNA and the intercalation of actinomycin D have been studied by computer simulation using molecular dynamics. The stretching and unwinding of B and Z forms of DNA and intercalation in B-DNA were examined through molecular dynamics simulations, and the energetics of transitions were calculated by the conformational energy minimization method. The principal results of this research are as follows: (1) A dynamic conformational pathway is presented for longitudinal stretching and unwinding of the double helix to open an intercalation site. (2) Large-scale transitions are possible in both B and Z forms of DNA through a conformationally allowed kinetic pathway. (3) The stretching and untwisting of a 5′(CG)3′ step is energetically more favorable than for a GC step in B-DNA. (4) The formation of an adjacent second cavity in B-DNA requires larger energy than the formation of the first cavity, affirming the neighbor-exclusion principle of intercalation. (5) Docking an intercalated actinomycin D in the stretched structure is shown to be geometrically and energetically feasible.  相似文献   

14.
15.
Methylene blue (MB), an efficient singlet oxygen generating photoactive dye, binds to DNA and allows photosensitized reactions to be used for sequence-specific cleavage of the DNA backbone. Intercalation and groove binding are possible binding modes of the dye, depending on base sequences and environmental conditions. In a recent modeling study of methylene blue binding to a double stranded DNA decamer with an alternating GC sequence, six structural models for intercalation structures and for minor and major groove binding have been obtained. By estimating the binding energies (including electrostatic reaction field contributions of a salt-free aqueous solvent), symmetric intercalation at the 5'-CpG-3' and 5'-GpC-3' steps was found as the predominant binding mode, followed by a slightly weaker binding of the dye in the minor groove. In this study, the stability of the modeled structures has been analysed as a function of salt concentration. The results of finite difference numerical solutions of the non-linear Poisson-Boltzmann equation show that the stabilizing effect of salt is larger for free DNA than for the modeled MB-DNA complexes. Accordingly, the estimated binding energies decrease with increasing ionic strength. A slightly higher stabilization of the groove binding complexes results in comparable binding energies for symmetric intercalation and minor groove binding at high salt concentration. Both results are in qualitative agreement with experimental data.  相似文献   

16.
Ethidium forms a crystalline complex with the dinucleoside monophosphate, uridylyl (3'-5') adenosine (UpA). The complex crystallizes in the monoclinic space group P2l with unit cell dimensions, a = 13.704 A, b = 31.674 A, c = 15.131 A, beta = 113.9 degrees. This light atom structure has been solved to atomic resolution and refined by full matrix least squares to a residual of 0.12, using 3,034 observed reflections. The asymmetric unit consists of two ethidium molecules, two UpA molecules and 19 solvent molecules, a total of 145 non-hydrogen atoms. The two UpA molecules are hydrogen-bonded together by Watson-Crick type base pairing. Base-pairs in this duplex are separated by 6.7 A; this reflects intercalative binding by one of the ethidium molecules. The other ethidium molecule stacks on either side of the intercalated base-paired dinucleoside monophosphate, being related by a unit cell translation along the a axis. The conformation of the sugar-phosphate backbone accompanying intercalation has been accurately determined in this analysis, and contains the mixed sugar-puckering pattern: C3' endo (3'-5') C2' endo. This same structural feature has been observed in the ethidium-iodoUpA and ethidium-iodoCpG complexes, and exists in two additional structures containing ethidium-CpG. Taken together, these studies confirm our earlier sugar-puckering assignments and demonstrate that iodine covalently bound to the C5 position on uridine or cytosine does not alter the basic sugar-phosphate geometry or the mode of ethidium intercalation in these model studies. We have proposed this stereochemistry to explain the intercalation of ethidium (as well as other simple intercalators) into both DNA and into double-helical RNA, and discuss this aspect of our work further in this paper and in the accompanying papers.  相似文献   

17.
An intercalation model of a complex between DNA and a bleomycin fragment (BLMF), consisting of the bithiazole core and an amide and a protonated amino substituent, is presented. The model, which shows a preference for BLMF with the protonated amine in the minor groove and the acetyl terminal inserted into either the minor and major grooves, respectively, agrees with recently obtained nmr data. The selection of sites I and II, which have the smallest unwinding of the three theoretical intercalation sites, is consistent with the experimental unwinding angle of 12°. The bithiazole moiety stacks between two base pairs of the double helix, while the protonated substituent interacts ionically with the negatively charged regions of the backbone in the minor groove of the DNA. The protonated amine also forms an intramolecular hydrogen bond with the carbonyl oxygen of the amide group on the same substituent. Analysis of drug complexes with different base-pair sequences reveal four energetically defined groups. The relative energy of the dimer duplex complexes of BLMF correlates with bleomycin's observed base-sequence specificity upon cleavage. The most stable intercalation complexes form adjacent to the bases cleaved most readily. This correlation suggests a primary connection between intercalation and cleavage. A model cleavage site based on these preliminary theoretical calculations and the experimental observations is proposed. It consists of an intercalation site in a trimer duplex. Pyrimidine(p)purine sequences are the predominant sites for intercalation, and the base adjacent to the site at the (3′) end is cleaved.  相似文献   

18.
We have used a DNA crosslinking assay to measure intercalation of the psoralen derivative HMT (4'-hydroxymethyl-4,5',8-trimethylpsoralen) into barley (Hordeum vulgare) plastid chromosomal DNA during chloroplast and etioplast development. Intercalation into DNA in intact plastids in vivo and in plastid lysates in vitro shows that chromosomal DNA in the most mature chloroplasts intercalates HMT less efficiently than DNA in younger chloroplasts. In contrast, there is no change in HMT intercalation during etioplast differentiation in the dark. Our results also show that DNA in higher plant plastid chromosomes is under superhelical tension in vivo. The lower susceptibility to HMT intercalation of DNA in the most mature chloroplasts indicates that late during chloroplast development the superhelical tension or the binding of proteins to the DNA or both change.  相似文献   

19.
Eukaryotic type 1B topoisomerases act by forming covalent enzyme-DNA intermediates that transiently nick DNA and thereby release DNA supercoils. Here we present a study of the topoisomerase encoded by the pathogenic poxvirus molluscum contagiosum. Our studies of DNA sites favored for catalysis reveal a larger recognition site than the 5'-(T/C)CCTT-3' sequence previously identified for poxvirus topoisomerases. Separate assays of initial DNA binding and covalent complex formation revealed that different DNA sequences were important for each reaction step. The location of the protein-DNA contacts was mapped by analyzing mutant sites and inosine-substituted DNAs. Some of the bases flanking the 5'-(T/C)CCTT-3' sequence were selectively important for covalent complex formation but not initial DNA binding. Interactions important for catalysis were probed with 5'-bridging phosphorothiolates at the site of strand cleavage, which permitted covalent complex formation but prevented subsequent religation. Kinetic studies revealed that the flanking sequences that promoted recovery of covalent complexes increased initial cleavage instead of inhibiting resealing of the nicked intermediate. These data 1) indicate that previously unidentified DNA contacts can accelerate a step between initial binding and covalent complex formation and 2) help specify models for conformational changes promoting catalysis.  相似文献   

20.
Abstract In order to target the major groove of DNA, we have designed novel peptide derivatives of 7-H pyridocarbazole, which is the chromophoric ring of ditercalinium, a potent antitumor bisin- tercalator. We will present here the results obtained with a compound that has a D-Asn tethered to the pyridinium nitrogen of the ring by a protonated β-alanyl-ethyl chain. We have investigated two alternative means of intercalation of the chromophore: first, into the (pur-pur) sequences, d(CpG)(2) and d(CpA)·d(TpG); second, into the (pur-pyr) sequences, d(GpC)(2)and d(GpT)·d(ApC). For the first intercalative mode, the best bound triplet sequences are d(ACG)·d(CGT) and d(ACA) d(TGT), namely with an adenine immediately upstream from the intercalation site. In these complexes, the chromophore has its concave side in the major groove, its long axis nearly colinear with the mean long axis of the two base pairs of the intercalation site, and a bidentate H-bonded configuration occurs which involves the C=0 and NH groups of the D-Asn side chain and HN(6) and N(7) (resp.) of the adenine base upstream. One alkylammonium proton is H-bonded to N(7) of the guanine of the intercalation site, on the strand opposite to the one bearing the adenine. In the second intercalative mode, the chromophore's concave site now faces one DNA strand, and both alkylammonium protons are involved in H-bonds with N(7) and O(6) of the 3' guanine on the same strand. The peptide's complexes with sequences having A, G, or C upstream of this guanine were computed to be energetically competitive with those with the best (pyr-pur) triplets. This provides a rare example of energetically favourable drug intercalation in-between (pur-pyr) sequences as compared to the standard (pyr-pur) ones. The synthesis of this compound was performed, and a series of footprinting experiments undertaken on a total of approximately 300 nucleotides. These experiments were consistent with the inferences from the theoretical computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号