首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During bacterial growth an increased mRNA level is usually linked with higher rate of metabolism related to biodegradation of an unusual compound. In this study, quantitative gene expression data derived from mRNA level reveal the presence of pesticide degrading genes in 6 bacterial isolates showing biodegradation of cypermethrin (SG2, SG4), sulfosulfuron (SA2, Sulfo3), and fipronil (FA3, FA4). A correlation existed between the level of esterase coding mRNA and mineralization of cypermethrin in SG2 and SG4. Similarly the level of EST coding mRNA increased with biodegradation of fipronil and sulfosulfuron in FA3, FA4, SA2, and Sulfo3. Expression of est gene was observed in all the bacterial strains, but their level of expression was different. Bacterial strains SG4 and Sulfo3 showed higher level of est gene expression as compared to SG2, FA3, FA4, and SA2 and was in the range of approximately 30- to 60-fold, respectively, in comparison to control. Expression of genes for aldehyde dehydrogenase was observed in SG4 and Sulfo3. We report co expression of aldh (1000?bp) and est (~550?bp) genes at the same time of pesticide induction/biodegradation.  相似文献   

2.
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring duringhepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 110 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusions, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

3.
Human aldehyde dehydrogenase (EC 1.2.1.3) isozymes E1 and E2 were irreversibly inactivated by stoichiometric concentrations of the haloenol lactones 3-isopropyl-6(E)-bromomethylene tetrahydro-pyran-2-one and 3-phenyl-6(E)-bromomethylene tetrahydro-pyran-2-one. No inactivation occurred with the corresponding nonhalogenated enol lactones. Both the dehydrogenase and esterase activities were abolished. Activity was not regained on dialysis or treatment with 2-mercaptoethanol. The inactivation was subject to substrate protection: NAD afforded protection which increased in the presence of the aldehyde-substrate competitive inhibitor chloral. Saturation kinetics gave positivey-axis intercepts, allowing the determination of binding constants. Inactivation stiochiometry determined with14C-labeled 3-(1-naphthyl)-6(E)-iodomethylene tetrahydropyran-2-one was found to correspond to the active-site number. The nonhalogenated lactone, 3-(1-naphthyl)-6(E)-methylene tetrahydropyran-1-one was shown to be a substrate for aldehyde dehydrogenase via its esterase function. Inactivation and enzymatic hydrolysis occurred within a similar time frame. Opening of the lactone ring to form enzyme-acyl intermediate with active site cysteine appears to be a necessary prerequisite to inactivation, since halogen in the lactone ring is nonreactive. Thus, the inactivation of aldehyde dehydrogenase by haloenol lactones is mechanism-based. Inactivation by haloenol lactones occurs in a manner analogous to that of chymotrypsin with which aldehyde dehydrogenase shares esterase activity and binding of haloenol lactones at the active site.  相似文献   

4.
An enzyme fraction which oxidizes lactaldehyde to lactic acid has been purified from goat liver. This enzyme was found to be identical with the cytosolic aldehyde dehydrogenase. Lactaldehyde was found to be primarily oxidized by this enzyme. Almost 90% of the total lactaldehyde-oxidizing activity is located in the cytosol. Methylglyoxal and glyceraldehyde 3-phosphate were found to be strong competitive inhibitors of this enzyme. Aldehyde dehydrogenase from goat liver mitochondria has also been partially purified and found to be strongly inhibited by these metabolites. The inhibitory effects of these metabolites on both these enzymes are highly pH dependent. The inhibitory effects of both the metabolites have been found to be stronger for the cytosolic enzyme at pH values higher than the physiological pH. For the mitochondrial enzyme, the inhibition with methylglyoxal was more pronounced at higher pH values, whereas stronger inhibition was observed with glyceraldehyde 3-phosphate at physiological pH.  相似文献   

5.
The aldehyde dehydrogenase activity of the sulfate-reducing bacterium Desulfovibrio simplex strain DSM 4141 was characterized in cell-free extracts. Oxygen-sensitive, constitutive aldehyde dehydrogenase activity was found in cells grown on l(+)-lactate, hydrogen, or vanillin with sulfate as the electron acceptor. A 1.83- to 2.6-fold higher specific activity was obtained in cells grown in media supplemented with 1 μM WO4 2–. The aldehyde dehydrogenase in cell-free extracts catalyzed the oxidation of aliphatic (K m < 20 μM) and aromatic aldehydes (K m < 0.32 mM) using methyl viologen as the electron acceptor. Flavins (FMN and FAD) were also active and are proposed to be the natural cofactors, while no activity was obtained with NAD+ or NADP+. 185WO4 2– was incorporated in vivo into D. simplex; it was found exclusively in the soluble fraction (≥ 98%). Anionic-exchange chromatography demonstrated coelution of 185W with two distinct peaks, the first one containing hydrogenase and formate dehydrogenase activities, and the second one aldehyde dehydrogenase activity. Received: 7 February 1997 / Accepted: 6 June 1997  相似文献   

6.
Abstract: NAD-dependent aldehyde dehydrogenases (EC 1.2.1.3) were isolated from various subcellular organelles as well as from different regions of rat brain. The mitochondrial, microsomal, and cytosolic fractions were found to contain 40%, 28%, and 12%, respectively, of the total aldehyde dehydrogenase (5.28 ± 0.44 nmol NADH/min/g tissue) found in rat brain homogenate when assayed with 70 μ. M propionaldehyde at pH 7.5. The total activity increased to 17.3 ± 2.7 nmol NADH/min/g tissue when assayed with 5 m M propionaldehyde. Under these conditions the three organelles contained 49%, 23%, and 9%, respectively, of the activity. The enzyme isolated from cytosol possessed the lowest K m. The molecular weight of the enzyme isolated from all three subcellular organelles was ∼100,000. Four activity bands were found by electrophoresis of crude homogenates, isolated mitochondria, or microsomes on cellulose acetate strips. Cytosol possessed just two of the forms. The total activity was essentially the same in homogenates obtained from cortex, subcortex, pons-medulla, or cerebellum. Further, the enzyme had the same molecular distribution and total activity in each of these four brain regions. Disulfiram was found to be an in vivo and in vitro inhibitor of the enzymes obtained from these brain regions. Mercaptoethanol, required for the stability of the enzyme, reversed the inhibition produced by disulfiram. The effect was greater for enzyme isolated from cytosol than from mitochondria. Calculations led to the prediction that aldehydes such as acetaldehyde are oxidized in cytosol.  相似文献   

7.
双功能乙醛/乙醇脱氢酶AdhE具有乙醛脱氢酶和乙醇脱氢酶的催化活性,是细菌乙醇厌氧发酵途径中的关键酶之一。近年,有关细菌与宿主相互作用的研究表明,AdhE在细菌适应宿主内环境变化和发挥毒力时具有重要的调控作用。本文对AdhE参与调控细菌感染宿主的致病机制和参与细菌对宿主免疫功能调节的作用机制进行综述,以期为AdhE的功能研究提供新的思路。  相似文献   

8.
Aldehyde dehydrogenases (ALDHs) are a diverse family of enzymes that catalyze the NAD(P)+-dependent detoxification of toxic aldehyde compounds. ALDHs are also involved in non-enzymatic ligand binding to endobiotics and xenobiotics. Here, the enzyme crucial non-canonical and non-catalytic interaction with kolaflavanone, a component of kolaviron, and a major bioflavonoid isolated from Garcinia kola (Bitter kola) was characterized by various spectroscopic and in silico approaches under simulated physiological condition. Kolaflavanone quenched the intrinsic fluorescence of ALDH in a concentration dependent manner with an effective quenching constant (Ksv) of 1.14 × 103 L.mol−1 at 25 °C. The enzyme has one binding site for kolaflavanone with a binding constant (Ka) of 2.57 × 104 L.mol−1 and effective Forster resonance energy transfer (FRET) of 4.87 nm. The bonding process was enthalpically driven. The reaction was not spontaneous and was predominantly characterized by Van der Waals forces and hydrogen bond. The flavonoid bonding slightly perturbed the secondary and tertiary structures of ALDH that was ‘tryptophan-gated’. The interaction was regulated by both diffusion and ionic strength. Molecular docking showed the binding of kolaflavanone was at the active site of ALDH and the participation of some amino acid residues in the complex formation with −9.6 kcal mol−1 binding energy. The profiles of atomic fluctuations indicated the rigidity of the ligand-binding site during the simulation. With these, ALDH as a subtle nano-particle determinant of kolaviron bioavailability and efficacy is hereby proposed.  相似文献   

9.
Antisera against metal(Mo)-containing dye-linked dehydrogenases from sulphate-reducing bacteria were used to screen for immunological similarities with NAD+-linked dehydrogenases detected in aerobic methanol-utilizing bacterial isolates. Out of eleven strains tested, the strains #5, 8, 9 and 11 were shown to have specific formate and aldehyde dehydrogenases displaying antibody cross-reaction against highly purified Mo-containing dye-linked dehydrogenases. The apparent molecular mass of the identified proteins observed during the antibody reaction correlated with the molecular mass of the dehydrogenases obtained after native PAGE electrophoresis. The strains #8 and 11 exhibited one formate dehydrogenase apparently of identical molecular mass 140–145 kDa, whereas strains #5, 9 and 11 synthesized aldehyde dehydrogenases with apparent molecular masses of about 110, 120 and 155 kDa (two forms) and 120 kDa, respectively. All these aerobic enzymes shared antigenic properties with the anaerobic metalloproteins, indicating the existence of structural similarities between those enzymes in spite of having different cofactor moieties.  相似文献   

10.
Methylglyoxal was demonstrated to be a substrate for the isozymes E1, E2 and E3 of human aldehyde dehydrogenase. Pyruvate was the product from the oxidation of methylglyoxal by the three isozymes. At pH 7.4 and 25oC, the major and minor components of the E3 isozyme catalyzed the reaction with Vmax of 1.1 and 0.8 μmol NADH min−1 mg−1 protein, respectively, compared to 0.067 and 0.060 μmol NADH min−1 mg−1 protein for the E1 and E2 isozymes, respectively. The E2 isozyme had a Km for methylglyoxal of 8.6 μM, the lowest compared to 46 μM for E1 and 586 and 552 μM for the major and minor components of the E3 isozyme, respectively. Both components of the E3 isozyme showed substrate inhibition by methylglyoxal, with Ki values of 2.0 mM for the major component and 12 mM for the minor component at pH 9.0. Substrate inhibition by methylglyoxal was not observed with the E1 and E2 isozymes. Methylglyoxal strongly inhibited the glycolaldehyde activity of the E1 and E2 isozymes. Mixed-type models of inhibition were employed as an approach to calculate the inhibition constants, 44 and 10.6 μM for E1 and E2 isozymes, respectively.  相似文献   

11.
Production of the compatible solute glycine betaine from its precursors choline or glycine betaine aldehyde confers a considerable level of tolerance against high osmolarity stress to the soil bacterium Bacillus subtilis. The glycine betaine aldehyde dehydrogenase GbsA is an integral part of the osmoregulatory glycine betaine synthesis pathway. We strongly overproduced this enzyme in an Escherichia coli strain that expressed a plasmid-encoded gbsA gene under T7φ10 control. The recombinant GbsA protein was purified 23-fold to apparent homogeneity by fractionated ammonium sulfate precipitation, ion-exchange chromatography on Q-Sepharose, and subsequent hydrophobic interaction chromatography on phenyl-Sepharose. Molecular sieving through Superose 12 and sedimentation centrifugation through a glycerol gradient suggested that the native enzyme is a homodimer with 53.7-kDa subunits. The enzyme was specific for glycine betaine aldehyde and could use both NAD+ and NADP+ as cofactors, but NAD+ was strongly preferred. A kinetic analysis of the GbsA-mediated oxidation of glycine betaine aldehyde to glycine betaine revealed K m values of 125 μM and 143 μM for its substrates glycine betaine aldehyde and NAD+, respectively. Low concentrations of salts stimulated the GbsA activity, and the enzyme was highly tolerant of high ionic conditions. Even in the presence of 2.4 M KCl, 88% of the initial enzymatic activity was maintained. B. subtilis synthesizes high levels of proline when grown at high osmolarity, and the presence of this amino acid strongly stimulated the GbsA activity in vitro. The enzyme was stimulated by moderate concentrations of glycine betaine, and its activity was highly tolerant against molar concentrations of this osmolyte. The high salt tolerance and its resistance to its own reaction product are essential features of the GbsA enzyme and ensure that B. subtilis can produce high levels of the compatible solute glycine betaine under conditions of high osmolarity stress. Received: 2 May 1997 / Accepted: 2 July 1997  相似文献   

12.
Human liver cytosolic (ALDH1) and mitochondrial (ALDH2) aldehyde dehydrogenases are both encoded in the nucleus and synthesized in the cytosol. ALDH1 must fold in the cytosol, but ALDH2 is first synthesized as a precursor and must remain unfolded during import into mitochondria. The two mature forms share high identity (68%) at the protein sequence level except for the first 21 residues (14%); their tertiary structures were found to be essentially identical. ALDH1 folded faster in vitro than ALDH2 and could assemble to tetramers while ALDH2 remained as monomers. Import assay was used as a tool to study the folding status of ALDH1 and ALDH2. pALDH1 was made by fusing the presequence of precursor ALDH2 to the N-terminal end of ALDH1. Its import was reduced about 10-fold compared to the precursor ALDH2. The exchange of the N-terminal 21 residues from the mature portion altered import, folding, and assembly of precursor ALDH1 and precursor ALDH2. More of chimeric ALDH1 precursor was imported into mitochondria compared to its parent precursor ALDH1. The import of chimeric ALDH2 precursor, the counterpart of chimeric ALDH1 precursor, was reduced compared to its parent precursor ALDH2. Mature ALDH1 proved to be more stable against urea denaturation than ALDH2. Urea unfolding improved the import of precursor ALDH1 and the chimeric precursors but not precursor ALDH2, consistent with ALDH1 and the chimeric ALDHs being more stable than ALDH2. The N-terminal segment of the mature protein, and not the presequence, makes a major contribution to the folding, assembly, and stability of the precursor and may play a role in folding and hence the translocation of the precursor into mitochondria.  相似文献   

13.
Procedures for the purification of an aldehyde dehydrogenase from extracts of the obligate methylotroph, Methylomonas methylovora are described. The purified enzyme is homogeneous as judged from polyacrylamide gel electrophoresis. In the presence of an artificial electron acceptor (phenazine methosulfate), the purified enzyme catalyzes the oxidation of straight chain aldehydes (C1-C10 tested), aromatic aldehydes (benzaldehyde, salicylaldehyde), glyoxylate, and glyceraldehyde. Biological electron acceptors such as NAD+, NADP+, FAD, FMN, pyridoxal phosphate, and cytochrome c cannot act as electron carriers. The activity of the enzyme is inhibited by sulfhydryl agents [p-chloromercuribenzoate, N-ethylmaleimide and 5,5-dithiobis (2-nitrobenzoic acid)], cuprous chloride, and ferrour nitrate. The molecular weight of the enzyme as estimated by gel filtration is approximately 45000 and the subunit size determined by sodium dodecyl sulfate-gel electrophoresis is approximately 23000. The purified enzyme is light brown and has an absorption peak at 410 nm. Reduction of enzyme with sodium dithionite or aldehyde substrate resulted in the appearance of peaks at 523 nm and 552 nm. These results suggest that the enzyme is a hemoprotein. There was no evidence that flavins were present as prosthetic group. The amino acid composition of the enzyme is also presented.Non-Standard Abbreviations PMS phenazine methosulfate - DCPIP 2,6-dichlorophenol indophenol - DEAE diethylaminoethyl  相似文献   

14.
The physiological role of mitochondrial aldehyde dehydrogenase (ALD5) was investigated by analysis of the ald5 mutant (AKD321) in Saccharomyces cerevisiae. K(+)-activated ALDH activity of the ald5 mutant was about 80% of the wild-type in the mitochondrial fraction, while the respiratory activity of the ald5 mutant was greatly reduced. Cytochrome content was also reduced in the ald5 mutant. Enzymatic analysis revealed that the alcohol dehydrogenase activity of the ald5 mutant was higher than that of the wild-type, while glycerol 3-phosphate dehydrogenase activity was the same in the two strains. Ethanol as a carbon source or addition of 1 M NaCl with glucose as the carbon source in the growth medium increased beta-galactosidase activity from an ALD5-lacZ fusion. Overexpression of another mitochondrial ALDH gene (ALD7) had no effect on increasing respiratory function of the ald5 mutant, but showed improved growth on ethanol. These observations show that mitochondrial ALD5 plays a role in regulation or biosynthesis of electron transport chain components.  相似文献   

15.
Aldehyde dehydrogenase has been purified to homogeneity from mitochondria of potato tubers and pea epicotyls. Although the enzyme had a high affinity for glycolaldehyde it also had a high affinity for a number of other aliphatic and arylaldehydes. It is proposed that the codification glycolaldehyde dehydrogenase (EC 1.2.1.22) should be abandoned in favour of mitochondrial aldehyde dehydrogenase (EC 1.2.1.3). The purified enzyme showed esterase activity and had properties similar to those reported for the mammalian mitochondrial aldehyde dehydrogenase. Although the natural substrate(s) for the enzyme is not known, the kinetic properties of the enzyme are consistent with it playing a role in the oxidation of acetaldehyde, glycolaldehyde and indoleacetaldehyde.  相似文献   

16.
Aldehyde dehydrogenases (ALDHs) are members of NAD(P)(+)-dependent protein superfamily that catalyze the oxidation of a wide range of endogenous and exogenous highly reactive aliphatic and aromatic aldehyde molecules to their corresponding non toxic carboxylic acids. Research evidence has shown that ALDHs represent a promising class of genes to improve growth development, seed storage and environmental stress adaptation in higher plants. The recently completed genome sequences of several plant species have resulted in the identification of a large number of ALDH genes, most of which still need to be functionally characterized. In this paper, we identify members of the ALDH gene superfamily in soybean genome, and provide a unified nomenclature for the entire soybean ALDH gene families. The soybean genome contains 18 unique ALDH sequences encoding members of five ALDH families involved in a wide range of metabolic and molecular detoxification pathways. In addition, we describe the biochemical requirements and cellular metabolic pathways of selected members of ALDHs in soybean responses to environmental stress conditions.  相似文献   

17.
The biochemical and quantitative cytochemical assays of the activity of uridine diphosphoglucose dehydrogenase (UDPG-D) have produced perplexing results. It is now shown that the perplexity may be due to the possibility that the coenzyme (NAD) required for UDPG-D activity, may be acting as a substrate for a second dehydrogenase, namely xanthine dehydrogenase, which may utilize NAD as its substrate. The activity of UDPG-D can be distinguished selectively by the pH of its optimal activity and by decreasing the concentration of the coenzyme used in the assay.  相似文献   

18.
Substrate specificity of human mitochondrial low Km aldehyde dehydrogenase (EC 1.2.1.3) E2 isozyme has been investigated employing p-nitrophenyl esters of acyl groups of two to six carbon atoms and comparing with that of aldehydes of one to eight carbon atoms. The esterase reaction was studied under three conditions: in the absence of coenzyme, in the presence of NAD (1 mM), and in the presence of NADH (160 microM). The maximal velocity of the esterase reaction with p-nitrophenyl acetate and propionate as substrates in the presence of NAD was 3.9-4.7 times faster than that of the dehydrogenase reaction. Under all other conditions the velocities of dehydrogenase and esterase reactions were similar; the lowest kcat was for p-nitrophenyl butyrate in the presence of NAD. Stimulation of esterase activity by coenzymes was confined to esters of short acyl chain length; with longer acyl chain lengths or increased bulkiness (p-nitrophenyl guanidinobenzoate) no effect or even inhibition was observed. Comparison of kinetic constants for esters demonstrates that p-nitrophenyl butyrate is the worst substrate of all esters tested, suggesting that the active site topography is uniquely unfavorable for p-nitrophenyl butyrate. This fact is, however, not reflected in kinetic constants for butyraldehyde, which is a good substrate. The substrate specificity profile as determined by comparison of kcat/Km ratios was found to be quite different for aldehydes and esters. For aldehydes kcat/Km ratios increased with the increase of chain length; with esters under all three conditions, a V-shaped curve was produced with a minimum at p-nitrophenyl butyrate.  相似文献   

19.
Zhang Y  Li Y  Du C  Liu M  Cao Z 《Metabolic engineering》2006,8(6):578-586
Production of 1,3-propanediol (1,3-PD) from glycerol by Klebsiella pneumoniae is restrained by ethanol formation. The first step in the formation of ethanol from acetyl-CoA is catalyzed by aldehyde dehydrogenase (ALDH), an enzyme that competes with 1,3-PD oxidoreductase for the cofactor NADH. This study aimed to improve the production of 1,3-PD by engineering the ethanol formation pathway. An inactivation mutation of the aldA gene encoding ALDH in K. pneumoniae YMU2 was generated by insertion of a tetracycline resistance marker. Inactivation of ALDH resulted in a nearly abolished ethanol formation but a significantly improved 1,3-PD production. Metabolic flux analysis revealed that a pronounced redistribution of intracellular metabolic flux occurred. The final titer, the productivity of 1,3-PD and the yield of 1,3-PD relative to glycerol of the mutant strain reached 927.6 mmol L(-1), 14.05 mmol L(-1)h(-1) and 0.699 mol mol(-1), respectively, which were much higher than those of the parent strain. In addition, the specific 1,3-PD-producing capability (1,3-PD produced per gram of cells) of the mutant strain was 2-fold that of the parent strain due to a lower growth yield of the mutant. By increasing NADH availability, this study demonstrates an important metabolic engineering approach to improve the efficiency of oxidoreduction-coupled bioprocesses.  相似文献   

20.
Aldehyde dehydrogenase 2 plays a pivotal role in detoxifying aldehydes, and our previous study revealed that aldehyde dehydrogenase 2 could alleviate diabetic retinopathy-associated damage. We aimed to characterize the potential role of aldehyde dehydrogenase 2 in diabetic keratopathy. Twenty-four rats with streptozotocin-induced (60 mg/kg, single intraperitoneal injection) type 1 diabetes mellitus (T1DM) were divided the T1DM group and the T1DM + Alda1 (an activator of aldehyde dehydrogenase 2) group (5 mg/kg/d, intraperitoneal injection, 1/2/3 months), while an additional 12 healthy rats served as the control group. Corneal morphology was examined in vivo and in vitro at one, two, and three months after T1DM induction. Additionally, serum inflammatory factors were measured by ELISA, and the expression of corneal vascular endothelial growth factor A (VEGF-A) and aldehyde dehydrogenase 2 was measured by immunofluorescence staining. Corneal cell death was evaluated by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining. Slit lamp analysis showed that the area of corneal epithelial cell injury in the T1DM + Alda1 group was significantly smaller than that in the T1DM group at one and two months after T1DM induction (all P <0.05). OCT analysis and HE staining showed that the central corneal thickness (indication of corneal edema) and the epithelial keratinization level in the T1DM + Alda1 group was evidently decreased compared with those in the T1DM group (all P <0.05). The serum inflammatory factors interleukin-1 and interleukin-6 were significantly upregulated in the T1DM group compared with the T1DM + Alda1 group at three months after T1DM induction (all P <0.05), while there were no differences in SOD or TNF-α levels among all groups. Furthermore, corneal VEGF-A expression and corneal cell death in the T1DM + Alda1 group were dramatically reduced compared to those in the T1DM group (all P <0.05). In conclusion, the aldehyde dehydrogenase 2 agonist Alda1 attenuated rat corneal dysfunction induced by T1DM by alleviating corneal edema, decreasing corneal cell death, and downregulating corneal VEGF-A expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号