首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intermolecular energy transfer in the bioluminescent system of Aequorea   总被引:24,自引:0,他引:24  
  相似文献   

3.
4.
The complete amino acid sequence of the biotinyl subunit from the enzyme transcarboxylase of Propionibacterium shermanii has been determined from the structures of overlapping tryptic and cyanogen bromide peptides together with sequenator analysis on the whole subunit. The subunit contains 123 amino acid residues. Eleven of nineteen residues in the region of biotin attachment, when compared to pyruvate carboxylase from avian liver (Rylatt, D. B., Keech, D. B., and Wallace, J. C. (1977) Arch. Biochem. Biophys. 183, 113-122), were found to be in identical positions relative to biocytin. There was less homology with acetyl-CoA carboxylase from Escherichia coli (Sutton, M. R., Fall, R. R., Nervi, A. M., Alberts, A. W., Vagelos, P. R., and Bradshaw, R. A. (1977) J. Biol. Chem. 252, 3934-3940), but in all of these biotin enzymes there was an alanylmethionyl-biocytinyl-methionine sequence. The secondary structure of the biotinyl subunit has been estimated using the method of Chou and Fasman (Chou, P. Y., and Fasman, G. D. (1978) Adv. Enzymol. 47, 45-148) and considered in relationship to the role of the biotinyl subunit in the structure and function in transcarboxylase.  相似文献   

5.
Biotin enzymes in general catalyze the fixation of CO2 and in a few instances decarboxylations yielding CO2. Transcarboxylase is an exception; it catalyzes the transfer of a carboxyl group from one compound to another and CO2 is not involved. This enzyme plays an essential role in the formation of propionic acid by propionibacteria and its structure and catalytic mechanism have been extensively investigated including studies of the quaternary structure by electron microscopy. The structure is complex, consisting of three types of subunits: (1) a central hexameric subunit, (2) six dimeric outside subunits, and (3) twelve biotinyl subunits which bind the outside subunits to the central subunit. There are 12 substrate sites on the central subunit (2 per polypeptide) and 2 substrate sites on each of the dimeric outside subunits. The carboxyl is transferred between these sites via the biotin of the biotinyl subunit. The biotinyl subunit (approximately 123 residues) has been completely sequenced and it has been shown that the first 42 residues serve in binding the outside subunits to the central subunit and the remainder of the sequence is involved in placing the biotin between the subunits so that it may serve as the carboxyl carrier between the substrate sites on the central and outside subunits. It is proposed that the dual sites on the polypeptides of the central subunit have arisen as a consequence of gene duplication and fusion. An intriguing question is why such a complicated structure is required for catalysis of a rather simple reaction.  相似文献   

6.
Tritium is a potentially important environmental contaminant originating from the nuclear industry, and its behaviour in the environment is controlled by that of hydrogen. Animal food products represent a potentially important source of tritium in the human diet and a number of transfer coefficient values for tritium transfer to a limited number of animal products are available. In this paper we present an approach for the derivation of tritium transfer coefficients which is based on the metabolism of hydrogen in animals. The derived transfer coefficients separately account for transfer to and from free (i.e. water) and organically bound tritium. A novel aspect of the approach is that tritium transfer can be predicted for any animal product for which the required metabolic input parameters are available. The predicted transfer coefficients are compared to available independent data. Agreement is good (R 2=0.97) with the exception of the transfer coefficient for transfer from tritiated water to organically bound tritium in ruminants. This may be attributable to the particular characteristics of ruminant digestion. We show that tritium transfer coefficients will vary in response to the metabolic status of an animal (e.g. stage of lactation, diet digestibility etc.) and that the use of a single transfer coefficient from diet to animal product is inappropriate. It is possible to derive concentration ratio values from the estimated transfer coefficients which relate the concentration of tritiated water and organically bound tritium in an animal product to their respective concentrations in the animals diet. These concentration ratios are shown to be less subject to metabolic variation and may be more useful radioecological parameters than transfer coefficients. For tritiated water the concentration ratio shows little variation between animal products ranging from 0.59 to 0.82. In the case of organically bound tritium the concentration ratios vary between animal products from 0.15 (goat milk) to 0.67 (eggs). Received: 28 May 2001 / Accepted: 20 August 2001  相似文献   

7.
8.
The stereospecificity of hydrogen transfer in the synthesis of saccharopine from alpha-ketoglutarate and L-lysine catalyzed by saccharopine dehydrogenase (N5-(1,3-dicarboxypropyl)-L-lysine: NAD oxidoreductase (L-lysine-forming), EC 1.5.1.7) was examined by using [4A-3H]- and [4B-3H]NADH. The enzyme showed the A-stereospecificity. The NMR analysis of the saccharopine prepared with [4"A-2H]NADH revealed that the label was incorporated into the C-2 of the glutaryl moiety.  相似文献   

9.
10.
11.
We have measured the kinetics of electron transfer (ET) from the primary quinone (Q(A)) to the special pair (P) of the reaction center (RC) complex from Rhodobacter sphaeroides as a function of temperature (5-300 K), illumination protocol (cooled in the dark and under illumination from 110, 160, 180, and 280 K), and warming rate (1.3 and 13 mK/s). The nonexponential kinetics are interpreted with a quantum-mechanical ET model (Fermi's golden rule and the spin-boson model), in which heterogeneity of the protein ensemble, relaxations, and fluctuations are cast into a single coordinate that relaxes monotonically and is sensitive to all types of relaxations caused by ET. Our analysis shows that the structural changes that occur in response to ET decrease the free energy gap between donor and acceptor states by 120 meV and decrease the electronic coupling between donor and acceptor states from 2.7 x 10(-4) cm(-1) to 1.8 x 10(-4) cm(-1). At cryogenic temperatures, conformational changes can be slowed or completely arrested, allowing us to monitor relaxations on the annealing time scale (approximately 10(3)-10(4) s) as well as the time scale of ET (approximately 100 ms). The relaxations occur within four broad tiers of conformational substates with average apparent Arrhenius activation enthalpies of 17, 50, 78, and 110 kJ/mol and preexponential factors of 10(13), 10(15), 10(21), and 10(25) s(-1), respectively. The parameterization provides a prediction of the time course of relaxations at all temperatures. At 300 K, relaxations are expected to occur from 1 ps to 1 ms, whereas at lower temperatures, even broader distributions of relaxation times are expected. The weak dependence of the ET rate on both temperature and protein conformation, together with the possibility of modeling heterogeneity and dynamics with a single conformational coordinate, make RC a useful model system for probing the dynamics of conformational changes in proteins.  相似文献   

12.
13.
delta-Aminolevulinic acid (ALA), the universal biosynthetic precursor of tetrapyrrole pigments, is synthesized from glutamate in plants, algae, and many bacteria via a three-step process that begins with activation by ligation of glutamate to tRNA(Glu), followed by reduction to glutamate-1-semialdehyde (GSA) and conversion of GSA to ALA. The GSA aminotransferase step requires no substrate other than GSA. A previous study examined whether the aminotransferase reaction proceeds via intramolecular or intermolecular N transfer and concluded that the reaction catalyzed by Chlamydomonas extracts occurs via intermolecular N transfer (Y.-H.L. Mau and W.-Y. Wang [1988] Plant Physiol 86: 793-797). However, in that study the possibility was not excluded that the result was a consequence of N exchange among product ALA molecules during the incubation, rather than intermolecular N transfer during the conversion of GSA to ALA. Therefore, this question was reexamined in another species and with additional controls. A gel-filtered extract of Chlorella vulgaris cells was incubated with ATP, Mg2+, NADPH, tRNA, and a mixture of L-glutamate molecules, one-half of which were labeled with 15N and the other half with 13C at C-1. The ALA product was purified, derivatized, and analyzed by gas chromatography-mass spectrometry. A significant fraction of the ALA molecules was heavy by two mass units, indicating incorporation of both 15N and 13C. These results show that the N and C atoms of each ALA molecule were derived from different glutamate molecules. Control experiments indicated that the results could not be attributed to exchange of N atoms between glutamate or ALA molecules during the incubation. These results confirm the earlier conclusion that GSA is converted to ALA via intermolecular N transfer and extend the results to another species. The labeling results, combined with the results of kinetic and inhibitor studies, support a model for the GSA aminotransferase reaction in which a single molecule of GSA is converted to ALA via an enzyme-bound 4,5-diaminovaleric acid intermediate.  相似文献   

14.
Biotin is added to biotin-containing enzymes as a post-translational modification catalyzed by holoenzyme synthetase. This reaction is fairly general in that synthetase from one organism will modify enzymes from heterologous sources. This suggests that the polypeptides share some structural characteristic(s) that define(s) them as biotin enzymes. We have reported previously that when the gene coding for the 1.3 S biotinyl subunit of transcarboxylase is expressed in Escherichia coli, the polypeptide produced is biotinated by the cellular synthetase. Using in vitro mutagenesis of this gene, we have begun to define the primary structure involved in the enzymatic addition of biotin to a lysine residue. We show here that the carboxyl terminus of the 1.3 S subunit is critical in biotination. Mutations affecting the COOH-terminal residue do not influence the modification, but elimination of the hydrophobic side chain of the penultimate residue abolishes biotin addition.  相似文献   

15.
Peptide acceptors in the arginine transfer reaction   总被引:2,自引:0,他引:2  
  相似文献   

16.
The intermolecular transglycosylating reaction of cyclodextrin glucanotransferase ([EC 2.4.1.19]; CGTase) immobilized on a capillary membrane was investigated using low molecular weight substrates such as cyclodextrin (CD), maltooligosaccharide (MOS), and a CD-MOS mixture. The immobilized CGTase catalyzed the conversion reaction of α-CD to β-CD and MOS or β-CD to α-CD and MOS within a short residence time. The conversion ratio increased as the amount of immobilized CGTase increased. The addition of glucose, maltose, and sucrose as acceptors in the substrate solution containing CD resulted in the acceleration of CD degradation compared with only CD substrate. Furthermore, the MOS substrate (degree of polymerization =2–6) was disproportionated with a conversion ratio exceeding 70% by the immobilized CGTase. These data demonstrate that immobilized CGTase can catalyze intermolecular transglycosylation between low molecular substrates in a few minutes by regulating the amount of immobilized enzyme and the residence time. This might contribute to our comprehension of CGTase-immobilized bioreactors for CD production as well as to the development of new glycosides through its excellent transglycosylation ability.  相似文献   

17.
In the absence of crystallographic data, the mechanism of nitrogen transfer from glutamine in asparagine synthetase (AS) remains under active investigation. Surprisingly, the glutamine-dependent AS from Escherichia coli (AsnB) appears to lack a conserved histidine residue, necessary for nitrogen transfer if the reaction proceeds by the accepted pathway in other glutamine amidotransferases, but retains the ability to synthesize asparagine. We propose an alternative mechanism for nitrogen transfer in AsnB which obviates the requirement for participation of histidine in this step. Our hypothesis may also be more generally applicable to other glutamine-dependent amidotransferases.  相似文献   

18.
Intermolecular homologous recombination in plants.   总被引:16,自引:6,他引:10       下载免费PDF全文
To study DNA topological requirements for homologous recombination in plants, we have constructed pairs of plasmids that contain nonoverlapping deletions in the neomycin phosphotransferase gene [APH(3')II], which, when intact, confers kanamycin resistance to plant cells. Protoplasts isolated from Nicotiana tabacum were cotransformed with complementary pairs of plasmids containing these truncated gene constructs. Homologous recombination or gene conversion within the homologous sequences (6 to 405 base pairs) of the protein-coding region of the truncated genes led to the restoration of the functional APH(3')II gene, rendering these cells resistant to kanamycin. Circular plasmid DNAs recombined very inefficiently, independent of the length of the homologous region. A double-strand break in one molecule only slightly increased the recombination frequency. The most favorable substrates for recombination were linear molecules. In this case, the recombination frequency was positively correlated with the length of the homologous regions. The recombination frequency of plasmids linearized at sites proximal to the deletion-homology junction was significantly higher than when linearization was distal to the homologous region. Vector homology within cotransformed plasmid sequences also increased the recombination frequency.  相似文献   

19.
Y F Cheung  C H Fung  C Walsh 《Biochemistry》1975,14(13):2981-2986
The stereochemistry of the two half-reactions catalyzed by the biotin-containing enzyme, transcarboxy-lase from Propionobacteria shermanii, has been determined. The pro-R hydrogen at C-2 of propionyl-coenzyme A is replaced by CO2 in formation of the S isomer of methylmalonyl-CoA, defining the process as retention of configuration. This C-2 hydrogen is abstracted at a rate identical with product formation. For the other half-reaction, pyruvate to oxalacetate, the chiral methyl group methodology of Rose (I. A. Rose (1970), J. Biol. Chem. 245, 6052) was employed. First, it was determined with [3-2-He]pyruvate that a kinetic deuterium isotope effect of 2.1 occurs at Vmax in this carboxyl transfer, indicating that the necessary requirement for discrimination against heavy isotopes of hydrogen existed. Then, 3(S)-[3-2-H,3-H]pyruvate, generated from 3(S)-]E-2-H,3-H]phosphoglycerate, was carboxylated and the oxalacetate trapped as [3030H]malate using malate dehydrogenase. Exhaustive incubation of the tritiated malate (3-H/14-C = 1.95) with fumarase to labilize the pro-R hydrogen at C-3 resulted in release of 65% of the tritium into water. Reisolation of the malate after fumarase action yielded a 30H/14-C ration of 0.67, indicating 34% retention as expected. The theoretical enantiotopic distribution for the observed k1H/k2H of 2.1 is 68:32. Selective enrichment of tritium in the pro-R position at C-3 of malate indicates enzymatic carboxylation of pyruvate with retention of configuration in this half-reaction also.  相似文献   

20.
We report the activities of HIV integrase protein on a novel DNA substrate, consisting of a pair of gapped duplex molecules. Integrase catalyzed an intermolecular disintegration reaction that requires positioning of a pair of the gapped duplexes in a configuration that resembles the intgration intermediate. However, the major reaction resulted from an intramolecular reaction involving a single gapped duplex, giving rise to a hairpin. Surprisingly, a deletion mutant of integrase that lacks both the amino and carboxyl terminal regions still catalyzed the intermolecular disintegration reaction, but supported only a very low level of the intramolecular reaction. The central core region of integrase is therefore sufficient to both bind the gapped duplex DNA and juxtapose a pair of such molecules through protein-protein interactions. We suggest that the branched DNA structures of the previously reported disintegration substrate, and the intermolecular disintegration substrate described here, assist in stabilizing protein-protein interactions that otherwise require the amino and carboxy terminal regions of integrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号