首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By separating formic acid hydrolysates with high pressure chromatography on an Aminex-10 column, we determined the ratio of 5-methyl cytosine to cytosine and other bases of DNA from sea urchin sperm and nuclei of embryos from early cleavage through pluteus stages. Contrary to several previous reports, we could not find any measurable changes in the methylation levels of embryonic nuclear DNAs at different stages of development. We also found no consistent differences between the methylation levels of sea urchin sperm and embryonic nuclei or the 5-methyl cytosine content of fish (Mugilcephalus) sperm and liver nuclei. While these measurements would not have detected subtle variations associated with differentiation, they would have indicated the gross changes previously reported for embryos or between sperm and somatic nuclei had those changes been present.  相似文献   

3.
The content of 5-methyl cytosine (5-MC) in the DNA preparations from organs and tissues of healthy and tumour-bearing (sarcoma 45) rats and the effect of an alkylating cancerolytic agent on DNA methylation in vivo were studied. The 5-MC content in the DNA preparations from liver, spleen and testicles of tumour-bearing rats and tumour cells was increased, the maximal increase being observed in liver and spleen DNAs (1,71 and 1,70 mol.%, respectively) and in sarcoma DNA (1,93 mol.%) on the 8th post-inoculation day. On the 8th and 15th day following daily injections of the cancerolytic agent the 5-MC content in the DNAs from liver and spleen of the control animals was decreased in a number of cases almost down to normal level (1,00 mol.%). Tumour DNA did not differ from normal tissue DNA with respect to Tmelt and GC content; however, its differential melting curve revealed an additional "shoulder" within the temperature range of 56--60 degrees, which was partly removed after addition of the cancerolytic agent. It was assumed that the changes in the methylation level and secondary structure of DNA can be due to the cancerolytic activity of the preparation.  相似文献   

4.
5.
6.
The distribution of 5-methyl cytosine (5-MeC) residues in a highly repetitive sequence, mouse major satellite, was examined in germinal versus somatic DNAs by digestion with the methylation sensitive isoschizomers Msp I and Hpa II and Southern blot analysis, using a cloned satellite probe. DNA from liver, brain, and a mouse fibroblast cell line, C3H 10T1/2, yielded a multimeric hybridization pattern after digestion with Msp I (and control Eco RI) but were resistant to digestion with Hpa II, reflecting a high level of methylation of the satellite sequences. In contrast, DNA from mature sperm was undermethylated at these same sequences as indicated by the ability of Hpa II to generate a multimeric pattern. DNAs from purified populations of testis cells in different stages of spermatogenesis were examined to determine when during germ cell differentiation the undermethylation was established. As early as in primitive type A, type A, and type B spermatogonia, an undermethylation of satellite sequences was observed. This suggest that this highly specific undermethylation of germ cell satellite DNA occurs very early in the germ cell lineage, prior to entry into meiosis.  相似文献   

7.
The effect of estrogen on methylation of DNA from the uteri of young (20 weeks) and old (96 weeks) female Wistar rats has been examined by isoschizomeric restriction enzymes and HPLC analysis. In vitro methylation of DNA is significantly higher in the uteri of young rats as compared to old ones. This is reduced by estrogen to greater extent in young than in old age. Furthermore, the digestion of DNA with EcoRI+Msp I shows a distinct 1.2 kb band only in young control. Such band is absent in old control and estrogen-treated sets of both age groups. The HPLC data further reveal that the level of 5-methyl cytosine is high in young and decreases by nearly 18% in old. Estrogen lowers the level of 5-methyl cytosine by 8% in young but shows no effect in the old. Such age-dependent changes in the methylation of DNA brought by estrogen in the rat uterus attribute to alterations in gene expression during aging.  相似文献   

8.
Effect of prolactin on DNA methylation in the liver and kidney of rat   总被引:2,自引:0,他引:2  
Prolactin is an important growth modulatory hormone in fetal and adult tissues. It stimulates DNA synthesis and enzymatic markers of the G1 phase of cell cycle in rat liver and other tissues. In this study the effects of prolactin on 5-methyl cytosine content in liver and kidney of rats was studied using HPLC. Prolactin treatment caused hypomethylation of DNA in the liver and kidney of immature rats at 48 h after treatment and the effect remained even at 72 h. Prolactin also caused hypomethylation of DNA in the kidney and liver of adult rats at 48 h after treatment. These results indicate that prolactin probably regulates DNA methylation in the liver and kidney of immature and adult rats.  相似文献   

9.
The antibiotic, streptozotocin, has carcinostatic, carcinogenic, and diabetogenic properties. Moreover, it is capable of inducing the enzyme tyrosine aminotransferase in a permanent line of rat liver cells. In the present publication, the effects of streptozotocin upon the induction of tyrosine aminotransferase, NAD synthesis, and methylation of DNA in different organs were analyzed in vivo. If administered alone, streptozotocin slightly induced tyrosine aminotransferase. The induction of tyrosine aminotransferase caused by tryptophan or nicotinamide was inhibited by streptozotocin. Streptozotocin reduced the NAD content of the liver. NAD synthesis induced by tryptophan was reduced by streptozotocin, while that induced by nicotinamide was enhanced. DNA methylation in the form of 5-methyl cytosine was not influenced by streptozotocin.  相似文献   

10.
The sequence specificity of vertebrate DNA methylation.   总被引:8,自引:6,他引:2       下载免费PDF全文
The relative quantity of 5-methyl cytosine in vertebrate nuclear DNA shows species and tissue variation. To determine whether this is due to the action of species or cell specific DNA methylases the sequence specificity of the 5-methyl cytosine distribution in the DNA of a range of cells has been partially characterised. The pattern of methylation was found to be remarkably constant and indicates stringent evolutionary conservation of the characteristics of vertebrate DNA methylation.  相似文献   

11.

Background  

Establishment of chromosomal cytosine methylation and histone methylation patterns are critical epigenetic modifications required for heterochromatin formation in the mammalian genome. However, the nature of the primary signal(s) targeting DNA methylation at specific genomic regions is not clear. Notably, whether histone methylation and/or chromatin remodeling proteins play a role in the establishment of DNA methylation during gametogenesis is not known. The chromosomes of mouse neonatal spermatogonia display a unique pattern of 5-methyl cytosine staining whereby centromeric heterochromatin is hypo-methylated whereas chromatids are strongly methylated. Thus, in order to gain some insight into the relationship between global DNA and histone methylation in the germ line we have used neonatal spermatogonia as a model to determine whether these unique chromosomal DNA methylation patterns are also reflected by concomitant changes in histone methylation.  相似文献   

12.
DNA methylation and the regulation of aldolase B gene expression   总被引:4,自引:0,他引:4  
DNA methylation was studied as a potential factor for the regulation of tissue-specific and developmentally specific expression of the rat aldolase B gene. We examined cytosine methylation in the HpaII and HhaI recognition sequences in the aldolase B gene in aldolase expressing and nonexpressing tissues and cells. Out of the 15 methyl-sensitive restriction sites examined, the sites in the 3'-half and 3'-flanking regions were found to be heavily methylated in all the tissues or cells, regardless of the level of aldolase B gene expression. However, the methylation pattern in the region immediately upstream and in the 5'-half of the gene exhibited tissue-specificity: the site located about 0.13 kb upstream of the cap site (just next to the CCAAT box), and the sites in the first intron (intron 1) were heavily methylated in nonexpressing cells and tissues (ascites hepatoma AH130 and brain), whereas those in an expressing tissue (liver) were considerably less methylated. These results suggest that cytosine methylation at the specific sites in the 5'-flanking and 5'-half regions of the gene is associated with repression of the gene activity. However, the gene is still substantially methylated in the fetal liver on day 16 of gestation, when it is in a committed state for rapid activation in the period immediately afterwards (Numazaki et al. (1984) Eur. J. Biochem. 152, 165-170). This suggests that demethylation of the methylated cytosine residues in the specific gene region is not necessarily required before activation of the gene during development, but it may occur along with or after the activation.  相似文献   

13.
Rat fetuses of 20 days gestational age were treated in utero with the inhibitor of DNA methylation, 5-azacytidine. The liver enzyme tyrosine aminotransferase, normally expressed at very low levels until several hours after birth, was increased by the drug in the fetal livers after a lag period of about 9 hours, reaching a level 70-fold above control levels 18 hours after treatment. The high levels attained after 5-azacytidine treatment are comparable to those of glucocorticoid-treated adult livers, and were not further increased by administration of hydrocortisone to dams carrying treated fetuses. Cytidine and two other analogs, cytosine arabinoside and 6-azacytidine, were essentially without effect.  相似文献   

14.
Variable methylation of the ribosomal RNA genes of the rat.   总被引:11,自引:5,他引:11       下载免费PDF全文
Both the pattern and level of rRNA gene methylation vary in the rat. This variation reflects stages in the maturation process and perhaps the level of gene expression in different tissues. We studied methylation at a common site, the inner cytosine of the sequence CCGG, by hybridizing 32P-rRNA to DNA digests obtained with endonuclease Msp I (which cleaves CCGG and CMCGG) and its isochizomer, HpaII (which cleaves only CCGG). In the liver, the changing pattern of rRNA gene methylation reflected the late stages of development: the rRNA genes were mostly unmethylated at 14 days gestation; by 18 days gestation, about 30% of them were methylated, and this level persisted into adulthood. In 18-day DNA, the methylation was uniform, but in adult DNA, the methylation pattern was discontinuous, because otherwise methylated genes contained a demethylated region. Similar developmental changes were observed in brain DNA. In a tissue culture cell line, the change from the continuous to the discontinuous pattern of the methylation could be induced by transformation with Kirsten sarcoma virus. And, in adult tissues, the lowest level of rRNA gene methylation was found in rapidly growing jejunal epithelium, and the highest level, in non-growing spermatozoa.  相似文献   

15.
Li VS  Reed M  Zheng Y  Kohn H  Tang M 《Biochemistry》2000,39(10):2612-2618
We have established that UvrABC nuclease is equally efficient in cutting mitomycin C (MC)-DNA monoadducts formed at different sequences and that the degree of UvrABC cutting represents the extent of drug-DNA bonding. Using this method we determined the effect of C5 cytosine methylation on the DNA monoalkylation by MC and the related analogues N-methyl-7-methoxyaziridinomitosene (MS-NMA) and 10-decarbamoylmitomycin C (DC-MC). We have found that C5 cytosine methylation at CpG sites greatly enhances MC and MS-NMA DNA adduct formation at those sites while reducing adduct formation at non-CpG sequences. In contrast, although DC-MC DNA bonding at CpG sites is greatly enhanced by CpG methylation, its bonding at non-CpG sequences is not appreciably affected. These cumulative results suggest that C5 cytosine methylation at CpG sites enhances sequence selectivity of drug-DNA bonding. We propose that the methylation pattern and status (hypo- or hypermethylation) of genomic DNA may determine the cells' susceptibility to MC and its analogues, and these effects may, in turn, play a crucial role in the antitumor activities of the drugs.  相似文献   

16.
R Sager  C Grabowy  H Sano 《Cell》1981,24(1):41-47
The inheritance of chloroplast genes in Chlamydomonas is regulated by methylation of chloroplast DNA during gametogenesis. The wild-type pattern of maternal inheritance results from the methylation of chloroplast DNA in female (mt+) but not in male (mt-) gametes, leading to preferential degradation of chloroplast DNA of male origin in zygotes. This paper describes the distribution of 5-methyl cytosine residues in restriction fragments of chloroplast DNA sampled during gametogenesis by two methods: ethidium bromide staining of agarose gels, and binding of antibody directed against 5-methyl cytosine onto restriction fragments blotted to nitro-cellulose paper. Methylated cytosines are located in most if not all Eco RI and Msp I fragments, but the extent of methylation is not proportional to fragment size. The mat-1 mutation carried by males converts maternal inheritance. Chloroplast DNA of male gametes carrying the mat-1 mutation becomes methylated during gametogenesis. This methylation protects against restriction enzyme-promoted degradation in zygotes, as shown by physical data demonstrating the transmission to progeny of chloroplast genes carried on chloroplast DNA of the mat-1 male parent. Thus the mat-1 gene, which is linked to the mating-type locus, determines whether or not methylation of chloroplast DNA will occur in males during gametogenesis.  相似文献   

17.
Reasons for the different levels of 5-methyl cytosine encountered in the DNA of two baby hamsters kidney fibroblast lines, BHK-21/C13 and BHK-21/PyY have been investigated. From enzymic studies it does not seem that there are large numbers of potentially methylatable cytosine residues in the C13 line DNA which contains a lower level of 5-methyl cytosine. Rather it is possible that the difference may be due to the reiteration in the PyY strain of certain sequences containing 5-methyl cytosine which simply occur less frequently in the other line.  相似文献   

18.
Here we present MethylQuant, a novel method that allows accurate quantification of the methylation level of a specific cytosine within a complex genome. This method relies on the well-established treatment of genomic DNA with sodium bisulfite, which converts cytosine into uracil without modifying 5-methyl cytosine. The region of interest is then PCR-amplified and quantification of the methylation status of a specific cytosine is performed by methylation-specific real-time PCR with SYBR Green I using one of the primers whose 3′ end discriminates between the methylation states of this cytosine. The presence of a locked nucleic acid at the 3′ end of the discriminative primer provides the specificity necessary for accurate and sensitive quantification, even when one of the methylation states is present at a level as low as 1% of the overall population. We demonstrate that accurate quantification of the methylation status of specific cytosines can be achieved in biological samples. The method is high-throughput, cost-effective, relatively simple and does not require any specific equipment other than a real-time PCR instrument.  相似文献   

19.
20.
The DNA 5-methylcytosine content has been analyzed in the human melanoma cell line M21 at several time points after induction of differentiation by a variety of inducers. 5-Aza-2'-deoxycytidine reduces DNA methylation to about 50% of the control level and this demethylation occurs prior to the establishment of the differentiated phenotype. The DNA synthesis inhibitors cytosine arabinoside, aphidicolin, and hydroxyurea exert different effects on DNA methylation in these cells. Cytosine arabinoside induces an early DNA hypermethylation, which is however reversible and drops to the original level after 24 h. Hydroxyurea induces DNA hypermethylation after a lag period of more than 48 h and the DNA polymerase alpha inhibitor aphidicolin has no effect on the DNA methylation level. Treatment of cells with phorbol 12-myristate 13-acetate, another potent inducer of melanoma cell differentiation, does not result in a change of total DNA methylation over a period of 96 h. These results indicate that differentiation of human melanoma cells can be accompanied by variable changes of the DNA methylation pattern. These changes can be neither generally related to the differentiation process itself nor related to the effects of DNA synthesis inhibition on DNA methylation, but may more likely reflect a direct or indirect particular effect of the inducer on the DNA methylation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号