首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytokine》2006,33(6):287-295
Tumor necrosis factor (TNF) has pleiotropic effects including on hepatic metabolism. Here we investigated the effect of high cholesterol diet (1.25%) in TNF deficient mice. TNFα/β deficient mice developed hepatomegaly and extensive steatosis in the absence of steatohepatitis as compared to wild type mice. Saturated and unsaturated, prominently mono- but also poly-unsaturated fatty acids (MUFA, PUFA) prevailed in steatotic livers. Down-regulation of the cholesterol scavenger receptor B1 and reduced insulin induced phosphorylation of protein kinase B in cholesterol fed TNFα/β deficient mice likely contributed to the development of hepatic steatosis, which was accompanied by increased body weight and bone length. Steatosis was only present in TNFα/β double deficient mice, however not in single TNF deficient mice suggesting a redundant role of TNFα and TNFβ. In conclusion, high cholesterol diet causes an abnormal metabolic phenotype in the simultaneous absence of both TNFα and β signals. The presence of either TNFα or β alone is sufficient to reconstitute the control of lipid homeostasis.  相似文献   

2.
Hepatic steatosis predisposes the liver to cold ischemia-warm reperfusion (CI/WR) injury by unclear mechanisms. Because hepatic steatosis has recently been associated with a lysosomal pathway of apoptosis, our aim was to determine whether this cell-death pathway contributes to CI/WR injury of steatotic livers. Wild-type and cathepsin B-knockout (Ctsb(-/-)) mice were fed the methionine/choline-deficient (MCD) diet for 2 wk to induce hepatic steatosis. Mouse livers were stored in the University of Wisconsin solution for 24 h at 4 degrees C and reperfused for 1 h at 37 degrees C in vitro. Immunofluorescence analysis of the lysosomal enzymes cathepsin B and D showed a punctated intracellular pattern consistent with lysosomal localization in wild-type mice fed a standard diet after CI/WR injury. In contrast, cathepsin B and D fluorescence became diffuse in livers from wild-type mice fed MCD diet after CI/WR, indicating that lysosomal permeabilization had occurred. Hepatocyte apoptosis was rare in both normal and steatotic livers in the absence of CI/WR injury but increased in wild-type mice fed an MCD diet and subjected to CI/WR injury. In contrast, hepatocyte apoptosis and liver damage were reduced in Ctsb(-/-) and cathepsin B inhibitor-treated mice fed the MCD diet following CI/WR injury. In conclusion, these findings support a prominent role for the lysosomal pathway of apoptosis in steatotic livers following CI/WR injury.  相似文献   

3.
Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic steatosis, serum cholesterol, and very low-density lipoprotein (VLDL) secretion were decreased in diet-induced obese RKO mice. Resistin deficiency exacerbated obesity in ob/ob mice, but hepatic steatosis was drastically attenuated. Moreover, the levels of triglycerides, cholesterol, insulin, and glucose were reduced in ob/ob-RKO mice. The antisteatotic effect of resistin deficiency was related to reductions in the expression of genes involved in hepatic lipogenesis and VLDL export. Together, these results demonstrate a crucial role of resistin in promoting hepatic steatosis and hyperlipidemia in obese mice.  相似文献   

4.
Hyperhomocysteinemia (HHCY) is a consequence of impaired methionine/cysteine metabolism and is caused by deficiency of vitamins and/or enzymes such as cystathionine beta-synthase (CBS). Although HHCY is an important and independent risk factor for cardiovascular diseases that are commonly associated with hepatic steatosis, the mechanism by which homocysteine promotes the development of fatty liver is poorly understood. CBS-deficient (CBS(-/-)) mice were previously generated by targeted deletion of the Cbs gene and exhibit pathological features similar to HHCY patients, including endothelial dysfunction and hepatic steatosis. Here we show abnormal lipid metabolism in CBS(-/-) mice. Triglyceride and nonesterified fatty acid levels were markedly elevated in CBS(-/-) mouse liver and serum. The activity of thiolase, a key enzyme in beta-oxidation of fatty acids, was significantly impaired in CBS(-/-) mouse liver. Hepatic apolipoprotein B100 levels were decreased, whereas serum apolipoprotein B100 and very low density lipoprotein levels were elevated in CBS(-/-) mice. Serum levels of cholesterol/phospholipid in high density lipoprotein fractions but not of total cholesterol/phospholipid were decreased, and the activity of lecithin-cholesterol acyltransferase was severely impaired in CBS(-/-) mice. Abnormal high density lipoprotein particles with higher mobility in polyacrylamide gel electrophoresis were observed in serum obtained from CBS(-/-) mice. Moreover, serum cholesterol/triglyceride distribution in lipoprotein fractions was altered in CBS(-/-) mice. These results suggest that hepatic steatosis in CBS(-/-) mice is caused by or associated with abnormal lipid metabolism.  相似文献   

5.
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver disease. Mechanisms that underlie this progression remain poorly understood, partly due to lack of good animal models that resemble human NASH. We previously showed that several metabolic syndrome features that develop in LDL receptor-deficient (LDLR-/-) mice fed a diabetogenic diet are worsened by dietary cholesterol. To test whether dietary cholesterol can alter the hepatic phenotype in the metabolic syndrome, we fed LDLR-/- mice a high-fat, high-carbohydrate diabetogenic diet (DD) without or with added cholesterol (DDC). Both groups of mice developed obesity and insulin resistance. Hyperinsulinemia, dyslipidemia, hepatic triglyceride, and alanine aminotransferase (ALT) elevations were greater with DDC. Livers of DD-fed mice showed histological changes resembling NAFLD, including steatosis and modest fibrotic changes; however, DDC-fed animals developed micro- and macrovesicular steatosis, inflammatory cell foci, and fibrosis resembling human NASH. Dietary cholesterol also exacerbated hepatic macrophage infiltration, apoptosis, and oxidative stress. Thus, LDLR-/- mice fed diabetogenic diets may be useful models for studying human NASH. Dietary cholesterol appears to confer a second "hit" that results in a distinct hepatic phenotype characterized by increased inflammation and oxidative stress.  相似文献   

6.
Inflammation critically contributes to the development of various metabolic diseases. However, the effects of inhibiting inflammatory signaling on hepatic steatosis and insulin resistance, as well as the underlying mechanisms remain obscure. In the current study, male C57BL/6J mice were fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD-fed mice were respectively treated with p65 siRNA, non-silence control siRNA or vehicle every 4th day for the last 4 weeks. Vehicle-treated (HF) and non-silence siRNA-treated (HFNS) mice displayed overt inflammation, hepatic steatosis and insulin resistance compared with chow-diet-fed (NC) mice. Upon treatment with NF-κB p65 siRNA, HFD-fed (HFPS) mice were protected from hepatic steatosis and insulin resistance. Furthermore, Atg7 and Beclin1 expressions and p-AMPK were increased while p-mTOR was decreased in livers of HFPS mice in relative to HF and HFNS mice. These results suggest a crosslink between NF-κB signaling pathway and liver AMPK/mTOR/autophagy axis in the context of hepatic steatosis and insulin resistance.  相似文献   

7.
Excessive lipid accumulation within hepatocytes, or hepatic steatosis, is the pathognominic feature of nonalcoholic fatty liver disease (NAFLD), a disease associated with insulin resistance and obesity. Low-carbohydrate diets (LCD) improve these conditions and were implemented in this study to potentially attenuate hepatic steatosis in hypercholesterolemic guinea pigs. Male guinea pigs (n = 10 per group) were randomly assigned to consume high cholesterol (0.25 g/100 g) in either a LCD or a high-carbohydrate diet (HCD) for 12 wk. As compared with HCD, plasma LDL cholesterol was lower and plasma triglycerides were higher in animals fed the LCD diet, with no differences in plasma free fatty acids or glucose. The most prominent finding was a 40% increase in liver weight in guinea pigs fed the LCD diet despite no differences in hepatic cholesterol or triglycerides between the LCD and the HCD groups. Regardless of diet, all livers had severe hepatic steatosis on histologic examination. Regression analysis suggested that liver weight was independent of body weight and liver mass was independent of hepatic lipid content. LCD livers had more proliferating hepatocytes than did HCD livers, suggesting that in the context of cholesterol-induced hepatic steatosis, dietary carbohydrate restriction enhances liver cell proliferation.  相似文献   

8.
The present study addresses the insulin sensitivity in mice deficient in LXRβ (LXRβ−/−) as well as in wild type (wt) mice assessed by hyperinsulinemic euglycemic clamp. Wt and LXRβ−/− mice were fed either a normal chow diet or a high fat and high cholesterol diet (HFCD), and insulin sensitivity was assessed by hyperinsulinemic euglycemic clamps. We show that LXRβ−/− mice have reduced insulin clearance during hyperinsulinemic clamps upon feeding both HFCD and a regular chow diet. Moreover we also observed reduced hepatic inflammation in LXRβ−/− mice compared to wt mice upon feeding an HFCD, despite equal levels of hepatic steatosis. In summary, our results indicate that LXRβ−/− mice have reduced insulin clearance during hyperinsulinemic euglycemic clamps and also reduced hepatic inflammation upon feeding an HFCD for 26 weeks.  相似文献   

9.
Liver fatty acid binding protein (L-FABP) is highly expressed in both enterocytes and hepatocytes and binds multiple ligands, including saturated (SFA), unsaturated fatty acids (PUFA), and cholesterol. L-fabp ?/? mice were protected against obesity and hepatic steatosis on a high saturated fat (SF), high cholesterol “Western” diet and manifested a similar phenotype when fed with a high SF, low cholesterol diet. There were no significant differences in fecal fat content or food consumption between the genotypes, and fatty acid (FA) oxidation was reduced, rather than increased, in SF-fed L-fabp ?/? mice as evidenced by decreased heat production and serum ketones. In contrast to mice fed with a SF diet, L-fabp ?/? mice fed with a high PUFA diet were not protected against obesity and hepatic steatosis. These observations together suggest that L-fabp ?/? mice exhibit a specific defect in the metabolism of SFA, possibly reflecting altered kinetics of FA utilization. In support of this possibility, microarray analysis of muscle from Western diet-fed mice revealed alterations in genes regulating glucose uptake and FA synthesis. In addition, intestinal cholesterol absorption was decreased in L-fabp ?/? mice. On the other hand, and in striking contrast to other reports, female L-fabp ?/? mice fed with low fat, high cholesterol diets gained slightly less weight than control mice, with minor reductions in hepatic triglyceride content. Together these data indicate a role for L-FABP in intestinal trafficking of both SFA and cholesterol.  相似文献   

10.
We have previously shown that hepatitis B virus (HBV) replication is inhibited noncytopathically in the livers of transgenic mice following injection of HBV-specific cytotoxic T lymphocytes (CTLs) or infection with unrelated hepatotropic viruses, including lymphocytic choriomeningitis virus (LCMV) and adenovirus. These effects are mediated by gamma interferon (IFNgamma), tumor necrosis factor alpha (TNFalpha), and IFNalpha/beta. In the present study, we crossed HBV transgenic mice with mice genetically deficient for IFNgamma (IFNgammaKO), the TNFalpha receptor (TNFalphaRKO), or the IFNalpha/beta receptor (IFNalpha/betaRKO) in order to determine the relative contribution of each cytokine to the antiviral effects observed in each of these systems. Interestingly, we showed that HBV replicates in unmanipulated IFNgammaKO and IFNalpha/betaRKO mice at levels higher than those observed in control mice, implying that baseline levels of these cytokines control HBV replication in the absence of inflammation. We also showed that IFNgamma mediates most of the antiviral effect of the CTLs while IFNalpha/beta is primarily responsible for the early inhibitory effect of LCMV and adenovirus on HBV replication. In addition, we showed that the hepatic induction of IFNalpha/beta observed after injection of poly(I. C) is sufficient to inhibit HBV replication and that a similar antiviral effect is achieved by systemic administration of very high doses of IFNalpha. We also compared the relative sensitivity of LCMV and adenovirus to control by IFNgamma, TNFalpha, or IFNalpha/beta in these animals. Importantly, IFNalpha/betaRKO mice, and to a lesser extent IFNgammaKO mice, showed higher hepatic levels of LCMV RNA and adenovirus DNA and RNA than control mice, underscoring the importance of both interferons in controlling these other viral infections as well.  相似文献   

11.
The etiology of progression from steatosis to steatohepatitis (SH) remains unknown. Using nutritional and genetic models of hepatic steatosis, we show that free cholesterol (FC) loading, but not free fatty acids or triglycerides, sensitizes to TNF- and Fas-induced SH. FC distribution in endoplasmic reticulum (ER) and plasma membrane did not cause ER stress or alter TNF signaling. Rather, mitochondrial FC loading accounted for the hepatocellular sensitivity to TNF due to mitochondrial glutathione (mGSH) depletion. Selective mGSH depletion in primary hepatocytes recapitulated the susceptibility to TNF and Fas seen in FC-loaded hepatocytes; its repletion rescued FC-loaded livers from TNF-mediated SH. Moreover, hepatocytes from mice lacking NPC1, a late endosomal cholesterol trafficking protein, or from obese ob/ob mice, exhibited mitochondrial FC accumulation, mGSH depletion, and susceptibility to TNF. Thus, we propose a critical role for mitochondrial FC loading in precipitating SH, by sensitizing hepatocytes to TNF and Fas through mGSH depletion.  相似文献   

12.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   

13.
14.
Liver fatty acid (FA)-binding protein (L-Fabp), a cytoplasmic protein expressed in liver and small intestine, regulates FA trafficking in vitro and plays an important role in diet-induced obesity. We observed that L-Fabp(-/-) mice are protected against Western diet-induced obesity and hepatic steatosis. These findings are in conflict, however, with another report of exaggerated obesity and increased hepatic steatosis in female L-Fabp(-/-) mice fed a cholesterol-supplemented diet. To resolve this apparent paradox, we fed female L-Fabp(-/-) mice two different cholesterol-supplemented low-fat diets and discovered (on both diets) lower body weight in L-Fabp(-/-) mice than in congenic wild-type C57BL/6J controls and similar or reduced hepatic triglyceride content. We extended these comparisons to mice fed low-cholesterol, high-fat diets. Female L-Fabp(-/-) mice fed a high-saturated fat (SF) diet were dramatically protected against obesity and hepatic steatosis, whereas weight gain and hepatic lipid content were indistinguishable between mice fed a high-polyunsaturated FA (PUFA) diet and control mice. These findings demonstrate that L-Fabp functions as a metabolic sensor with a distinct hierarchy of FA sensitivity. We further conclude that cholesterol supplementation does not induce an obesity phenotype in L-Fabp(-/-) mice, nor does it play a significant role in the protection against Western diet-induced obesity in this background.  相似文献   

15.

Background

Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated.

Methodology/Principal Findings

We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non-EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic steatosis and whole-animal insulin resistance. C57B6 mice were fed with a high-fat diet, and hyperinsulinemic ob/ob mice were fed with a high-fat or high-sucrose diet. The high-KAA diet improved hepatic steatosis with decreased de novo lipogensis (DNL) fluxes as well as reduced expressions of lipogenic genes. In C57B6 mice, the high-KAA diet lowered postprandial insulin secretion and improved glucose tolerance, in association with restored expression of muscle insulin signaling proteins repressed by the high-fat diet. Lipotoxic metabolites and their synthetic fluxes were also evaluated with reference to insulin resistance. The high-KAA diet lowered muscle and liver ceramides, both by reducing dietary lipid incorporation into muscular ceramides and preventing incorporation of DNL-derived fatty acids into hepatic ceramides.

Conclusion

Our results indicate that dietary KAA intake improves hepatic steatosis and insulin resistance by modulating lipid synthetic pathways.  相似文献   

16.
17.
We have previously reported that essential fatty acid deficiency (EFAD) during suckling in mice resulted in an adult lean phenotype and a resistance to diet-induced obesity. We now hypothesized that postnatal EFAD would cause long-term effects on lipid metabolism. C57BL/6 mice were fed an EFAD or a control diet from the 16th day of gestation and throughout lactation. The pups were weaned to standard diet (STD) and at 15 weeks of age given either high fat diet (HFD) or STD. Lipoprotein profiles, hepatic lipids, fatty acids and mRNA expression were analyzed in 3-week-old and 25-week-old offspring. At weaning, the EFAD pups had higher cholesterol levels in both plasma and liver and 6-fold higher concentrations of hepatic cholesterol esters than control pups. Adult EFAD offspring had higher levels of hepatic cholesterol and linoleic acid, but lower levels of dihomo-γ-linolenic acid and Pparg mRNA expression in the liver. In addition, HFD fed EFAD offspring had lower plasma total cholesterol, lower hepatic triglycerides and lower liver weight compared to controls fed HFD. In conclusion, early postnatal EFAD resulted in short-term alterations with increased hepatic cholesterol accumulation and long-term protection against diet-induced liver steatosis and hypercholesterolemia.  相似文献   

18.
摘要 目的:探究Nrf2激动剂CDDO-Im对高脂饮食诱导的肥胖小鼠肝脏脂肪变性的作用。方法:33只雄性C57BL/6J小鼠随机分为两组:一组16只饲喂普通饲料,另一组17只饲喂高脂饲料建立肥胖模型。造模成功后将小鼠随机分成四组:普通饲料溶剂对照组(Control ND组)、普通饲料Nrf2激动剂组(Nrf2(+) ND组)、高脂饲料溶剂对照组(Control HFD组)和高脂饲料Nrf2激动剂组(Nrf2(+) HFD组)。分别给予Nrf2激动剂CDDO-Im和等体积溶剂灌胃干预6周后,检测各组小鼠血清甘油三酯(TG)、总胆固醇(T-CHO)和低密度脂蛋白-胆固醇(LDL-C)。苏木素-伊红(HE)染色观察肝脏组织形态学变化。RT-qPCR检测肝脏Nrf2下游抗氧化基因Nqo1、Ho1和Gclc的mRNA表达水平,Western Blot检测肝脏NQO1、HO-1和GCLC的蛋白表达水平。结果:与正常小鼠相比,肥胖小鼠的体重、TG和LDL-C升高(P<0.05),肝脏脂肪变性增加,GCLC的蛋白表达水平降低(P<0.05)。在肥胖小鼠中,与溶剂对照组相比,Nrf2激动剂组小鼠的体重、血清TG降低(P<0.05),肝脏脂肪变性减轻,Nqo1和Gclc的mRNA表达水平升高(P<0.05),NQO1和GCLC的蛋白表达水平升高(P<0.05)。结论:Nrf2激动剂CDDO-Im可改善高脂饮食诱导的肥胖小鼠肝脏脂肪变性,可能与Nrf2激动剂CDDO-Im激活抗氧化基因的表达来减轻肝细胞氧化应激有关。  相似文献   

19.
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.  相似文献   

20.
Fetal programming is linked to adulthood metabolic and chronic diseases. We hypothesized that early fish oil (FO) intake would revert the programming responses in adult offspring. Pregnant mice were fed either standard chow (SC) or a low-protein diet (LP) throughout pregnancy/lactation. At weaning, the following groups were formed: SC and SC-FO, LP and LP-FO, which were fed SC or SC+FO, respectively. The LP offspring are predisposed to becoming fat, hypercholesterolemic and hyperglycemic. In addition, during adulthood, they become hypertensive with hepatic steatosis and have a high level of sterol regulatory element binding protein (SREBP-1). However, LP offspring that were fed an FO-enriched diet have decreased body mass (BM) gain and lower final BM. In addition, with this diet, these mice have improved lipid metabolism with a decrease in total cholesterol (TC) and triacylglyceride (TG) levels, reduced fat pad masses and reduced adipocyte size. Furthermore, these LP offspring show reduced liver structural damage of alanine aminotransferase (ALT), liver steatosis with low SREBP-1 protein expression and high peroxisome proliferator activity receptor-alpha expression, and improvement of blood pressure (BP) and tumor necrosis factor (TNF)-alpha level. Early fish oil intake has beneficial effects on the programming responses that control body fat pad, glucose and lipid metabolism, and liver and adipose tissue structure in adult programmed offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号