首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discovery and optimization of various of indane amides as mutant IDH1 inhibitors via structure-based rational design were reported. The optimal compounds demonstrated both potent inhibition in IDH1R132H enzymatic activity and 2HG production in IDH1 mutant HT1080 cell line, favorable PK properties and great selectivity against IDH1wt and IDH2R140Q.  相似文献   

2.
Mutations in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) are commonly found in gliomas. AGI-5198, a potent and selective inhibitor of the mutant IDH1 enzyme, was radiolabeled with radioiodine and fluorine-18. These radiotracers were evaluated as potential probes for imaging mutant IDH1 expression in tumors with positron emission tomography (PET). Radioiodination of AGI-5198 was achieved using a tin precursor in 79?±?6% yield (n?=?9), and 18F-labeling was accomplished by the Ugi reaction in a decay-corrected radiochemical yield of 2.6?±?1.6% (n?=?5). The inhibitory potency of the analogous nonradioactive compounds against mutant IDH1 (IDH1-R132H) was determined in enzymatic assays. Cell uptake studies using radiolabeled AGI-5198 analogues revealed somewhat higher uptake in IDH1-mutated cells than that in wild-type IDH1 cells. The radiolabeled compounds displayed favorable tissue distribution characteristics in vivo, and good initial uptake in IDH1-mutated tumor xenografts; however, tumor uptake decreased with time. Radioiodinated AGI-5198 exhibited higher tumor-to-background ratios compared with 18F-labeled AGI-5198; unfortunately, similar results were observed in wild-type IDH1 tumor xenografts as well, indicating lack of selectivity for mutant IDH1 for this tracer. These results suggest that AGI-5198 analogues are not a promising platform for radiotracer development. Nonetheless, insights gained from this study may help in design and optimization of novel chemical scaffolds for developing radiotracers for imaging the mutant IDH1 enzyme.  相似文献   

3.
Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg2+. A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors'' selectivity for the mutant enzyme.  相似文献   

4.
BackgroundMutations in isocitrate dehydrogenase (IDH) 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS)–detectable changes in the cellular metabolome.MethodsTwo genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA)-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.ResultsPrincipal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.ConclusionThe IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.  相似文献   

5.
The purpose of our study was to explore the effect and intrinsic mechanism of wild-type IDH1 and its substrate α-KG on renal cell carcinoma (RCC). IDH1 was observed lower expression in RCC cell lines. Phenotype experiment was carried out in the wild-type IDH1 and mutant IDH1R132H plasmid treated cell line. The results showed that the wild-type IDH1 could significantly inhibit the proliferation, migration and promote the apoptosis of RCC cell lines, which were consistent with the IDH1''s substrate α-KG. The mutant IDH1R132H was found to lose this biological function of IDH1. Moreover, we verified the proliferation inhibition of IDH1 in vivo. In addition, we verified the correlation between IDH1 and hypoxia signal-related proteins in vitro and in vivo, specifically, IDH1 overexpression could significantly reduce the expression of HIF-1α and HIF-2α proteins and its downstream proteins (VEGF, TGF-α). Furthermore, we preliminarily verified the possibility of α-KG in the RCC''s treatment by injecting α-KG into the xenograft model. α-KG significantly reduced tumor size and weight in tumor-bearing mice. This study provided a new therapeutic target and small molecule for the study of the treatment and mechanism of RCC.  相似文献   

6.
7.

Background

Over 70% of low-grade gliomas carry a heterozygous R132H mutation in the gene coding for isocitrate dehydrogenase 1 (IDH1). This confers the enzyme with the novel ability to convert α-ketoglutarate to 2-hydroxyglutarate, ultimately leading to tumorigenesis. The major source of 2-hydroxyglutarate production is glutamine, which, in cancer, is also a source for tricarboxylic acid cycle (TCA) anaplerosis. An alternate source of anaplerosis is pyruvate flux via pyruvate carboxylase (PC), which is a common pathway in normal astrocytes. The goal of this study was to determine whether PC serves as a source of TCA anaplerosis in IDH1 mutant cells wherein glutamine is used for 2-hydroxyglutarate production.

Methods

Immortalized normal human astrocytes engineered to express heterozygous mutant IDH1 or wild-type IDH1 were investigated. Flux of pyruvate via PC and via pyruvate dehydrogenase (PDH) was determined by using magnetic resonance spectroscopy to probe the labeling of [2-13C]glucose-derived 13C-labeled glutamate and glutamine. Activity assays, RT-PCR and western blotting were used to probe the expression and activity of relevant enzymes. The Cancer Genome Atlas (TCGA) data was analyzed to assess the expression of enzymes in human glioma samples.

Results

Compared to wild-type cells, mutant IDH1 cells significantly increased fractional flux through PC. This was associated with a significant increase in PC activity and expression. Concurrently, PDH activity significantly decreased, likely mediated by significantly increased inhibitory PDH phosphorylation by PDH kinase 3. Consistent with the observation in cells, analysis of TCGA data indicated a significant increase in PC expression in mutant IDH-expressing human glioma samples compared to wild-type IDH.

Conclusions

Our findings suggest that changes in PC and PDH may be an important part of cellular adaptation to the IDH1 mutation and may serve as potential therapeutic targets.  相似文献   

8.
9.
IDH1 (isocitrate dehydrogenase 1) mutations have been identified as early and frequent genetic alterations in astrocytomas, oligodendrogliomas, and oligoastrocytomas as well as secondary glioblastomas. In contrast, primary glioblastomas very rarely contain IDH1 mutations, although primary and secondary glioblastomas are histologically indistinguishable. The IDH1 mutations are remarkably specific to a single codon in the conserved and functionally important Arg132 in IDH1. In gliomas, the most frequent IDH1 mutations (>90%) were G395A (R132H). In this study, we immunized mice with R132H-containing IDH1 (IDH1R132H) peptide. After cell fusion using Sendai virus envelope, the monoclonal antibodies (mAbs), which specifically reacted with IDH1R132H, were screened in ELISA. One of the mAbs, IMab-1 reacted with the IDH1R132H peptide, but not with wild type IDH1 (IDH1wt) peptide in ELISA. In Western-blot analysis, IMab-1 reacted with only the IDH1R132H protein, not IDH1wt protein or the other IDH1 mutants, indicating that IMab-1 is IDH1R132H-specific. Furthermore, IMab-1 specifically stained the IDH1R132H-expressing cells in astrocytomas in immunohistochemistry, whereas it did not react with IDH1R132H-negative primary glioblastoma sections. In conclusion, we established an anti-IDH1R132H-specific monoclonal antibody IMab-1, which should be significantly useful for diagnosis and biological evaluation of mutation-bearing gliomas.  相似文献   

10.
11.
12.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   

13.
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP+ to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which “survivalogenic” effects should be retained.  相似文献   

14.
Mutations in the genes for isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) have been recently identified in glioblastoma. In the present study, we investigated IDH1 and IDH2 mutations in follicular thyroid cancer (FTC) and anaplastic thyroid cancer (ATC), with the latter, like glioblastoma, having a rapidly aggressive and lethal clinical course. By direct genomic DNA sequencing, we analyzed exon 4 of the IDH1 and IDH2 genes that harbored the mutation hot spots codon 132 and 172 of the two genes in glioblastoma, respectively, in 12 thyroid cancer cell lines, 20 FTC, and 18 ATC tumor samples. A novel homozygous G367A IDH1 mutation, resulting in a G123R amino acid change in codon 123, was identified in a case of ATC. A previously described IDH1 V71I mutation was found in a case of FTC and a case of ATC and no mutations were found in the cell lines. The overall prevalence of mutations was thus 1/20 (5%) in FTC and 2/18 (11%) in ATC. We did not find mutation in the IDH2 gene in these thyroid cancer cell lines and tumor samples. Sequence alignment analysis of 16 species revealed that the novel IDH1 G123R mutation was located in a highly conserved region, raising the possibility of a serious functional consequence as could also be predicted by the occurrence of a positively charged amino acid from this mutation. To test this, we created a G123R mutant by site-directed mutagenesis and demonstrated a decreased enzymatic activity of IDH1, similar to the expected reduction in the enzymatic activity of the previously described R132H IDH1 mutant measured as a control. Thus, functionally relevant IDH1 mutations can also occur in thyroid cancer, particularly ATC, suggesting a potential tumorigenic role of the IDH1 system that could represent a new therapeutic target for thyroid cancer.  相似文献   

15.
Isocitrate dehydrogenase (IDH) is one of the key enzymes in the tricarboxylic acid cycle, and IDH mutations have been associated with many cancers, including glioblastoma, sarcoma, acute myeloid leukemia, etc. Three natural steroids 13 from Ganoderma sinense, a unique and rare edible-medicinal fungi in China, were found as potential IDH1 inhibitors by virtual ligand screening method. Among the three compounds, 3 showed the highest binding affinity to IDH1 with significant calculated binding free energy. Enzymatic kinetics demonstrated that 3 inhibited mutant enzyme in a noncompetitive manner. The half effective concentration of 3 for reducing the concentration of D-2HG in HT1080 cells was 35.97 μM. The levels of histone H3K9me3 methylation in HT1080 cells were reduced by treating with 3. Furthermore, knockdown of mutant IDH1 in HT1080 cells decreased the anti-proliferative sensitivity to 3. In short, our findings highlight that compound 3 may have clinical potential in tumor therapies as an effective inhibitor of mutant IDH1.  相似文献   

16.
Isocitrate dehydrogenase 1 and 2 (IDH1/2) are enzymes recurrently mutated in various types of cancer, including glioma, cholangiocarcinoma, chondrosarcoma, and acute myeloid leukemia. Mutant IDH1/2 induce a block in differentiation and thereby contribute to the stemness and oncogenesis of their cells of origin. Recently, small-molecule inhibitors of mutant IDH1/2 have been Food and Drug Administration–approved for the treatment of IDH1/2-mutated acute myeloid leukemia. These inhibitors decrease the stemness of the targeted IDH1/2-mutated cancer cells and induce their differentiation to more mature cells. In this review, we elucidate the mechanisms by which mutant IDH1/2 induce a block in differentiation and the biological and clinical effects of the release into differentiation by mutant-IDH1/2 inhibitors. (J Histochem Cytochem 70:83–97, 2022)  相似文献   

17.
《Epigenetics》2013,8(11):1454-1460
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   

18.
Isocitrate dehydrogenase 1 (IDH1), one member of the IDH family can convert isocitrate to α-ketoglutarate (α-KG) via oxidative decarboxylation. IDH1 and IDH2 mutations have been identified in multiple tumor types and the mutations confer neomorphic activity in the mutant protein, resulting in the conversion of α-KG to the oncometabolite, D-2-hydroxyglutarate (2-HG). The subsequent accumulation of 2-HG results in epigenetic dysregulation via inhibition of α-KG-dependent histone and DNA demethylase. And the glutamate levels are reduced in IDH mutant cells compared to wild-type. We have known that diffuse gliomas contain a high frequency of mutations in the IDH1 gene. However, the expression of IDH1 and its roles in Intracranial hemorrhage (ICH) remain largely unknown. We observed increased expression of IDH1 in neurons after intracerebral hemorrhage. Up-regulation of IDH1 was found to be accompanied by the increased expression of active caspase-3 and pro-apoptotic Bcl-2-associated X protein and decreased expression of anti-apoptotic protein B cell lymphoma-2 in vivo and vitro studies. So we hypothesized that IDH1 was involved in the regulation of neuronal apoptosis. The present research for the first time detected the expression and variation of IDH1 surrounding the hematoma, and all data proved the involvement of IDH1 in neuronal apoptosis following ICH.  相似文献   

19.
Somatic mutations in isocitrate dehydrogenase (IDH)-1 and -2 have recently been described in glioma. This mutation leads to a neomorphic enzymatic activity as the conversion of isocitrate to alpha ketoglutarate (αKG) is replaced by the conversion of αKG to D-2-hydroxyglutarate (D-2HG) with NADPH oxidation. It has been suggested that this oncometabolite D-2HG via inhibition of αKG-dioxygenases is involved in multiple functions such as epigenetic modifications or hypoxia responses. The present study is aimed at deciphering how the mutant IDH can affect cancer pathogenesis, in particular with respect to its associated oncometabolite D-2HG. We show that the overexpression of mutant IDH in glioma cells or treatment with D-2HG triggered an increase in cell proliferation. However, although mutant IDH reduced cell sensitivity to the apoptotic inducer etoposide, D-2HG exhibited no effect on apoptosis. Instead, we found that the apoptotic effect was mediated through the mitochondrial NADH pool reduction and could be inhibited by oxamate. These data show that besides D-2HG production, mutant IDH affects other crucial metabolite pools. These observations lead to a better understanding of the biology of IDH mutations in gliomas and their response to therapy.Gliomas are the most common type of human brain tumors and can be classified based on clinical and pathological criteria in four grades. The grade IV glioma, commonly known as glioblastoma multiforme (GBM), is the most invasive form and has a dismal prognosis with <5% patient survival at 5 years. These GBM can develop de novo (primary GBM) or through the progression from low-grade tumors (secondary GBM). Although these two types of GBM are histologically similar, primary and secondary GBM exhibit distinct genetic patterns. A recent integrated genome analysis of human GBM shows that 12% of these tumors have a mutation in the gene encoding isocitrate dehydrogenase 1 (IDH1) and to a lesser extent in IDH2 gene.1 This mutation is present in >90% secondary GBMs, whereas it is present in <5% primary GBMs.2 Mutations in IDH1 and IDH2 have also been identified in acute myeloid leukemia (AML)3 and chondrosarcomas.4 The occurrence of IDH mutations predicts a significantly longer survival for patients affected by GBM or grade III gliomas.1, 2 Whether this difference is driven by IDH mutations or reflects other fundamental biological differences between primary and secondary GBM is, as yet, unclear. For example, the prognostic significance of IDH mutations may be secondary to their prevalence among younger patients, as age is a well-known prognostic factor in gliomas.5 In AML, the prognostic significance of IDH mutations is more ambiguous. Several studies have reported that IDH mutations do not affect the prognosis in AML, whereas other studies have found that IDH mutations are associated with an increased or decreased risk of relapse when compared with IDH wild-type patients.6, 7The human genome has five IDH genes coding for three different IDH isoforms, the activities of which depend on either nicotinamide adenine dinucleotide (NAD+) for IDH3 or nicotinamide adenine dinucleotide phosphate (NADP+) for IDH1 and IDH2. Both IDH2 and IDH3 are located in the mitochondria where they participate in the TCA cycle, whereas IDH1 is mostly cytosolic.8 To date, all reported mutations are located in the IDH1 and IDH2 genes and result in an amino-acid substitution at residues located in the enzymatic active site, respectively, R132 for IDH1 and R140 or R172 for IDH2. This mutation disrupts the normal enzymatic function of IDH, that is, the conversion of isocitrate to alpha ketoglutarate (αKG) with the concomitant production of NADPH. Instead, mutant IDH displays a neomorphic activity converting αKG into D-2-hydroxyglutarate (D-2HG), although reducing NADPH.9 As a result, mutant IDH may alter the redox state of cells, modulate the activity of metabolic and epigenetic tumor suppressor enzymes that use αKG as a co-substrate.10 Loss of IDH function may also alter normal mitochondrial function and promote a metabolic switch in cancer cells to glycolysis.11, 12Mutant IDH is widely believed to have the ability to transform cells by modulating αKG-dependent enzymes. D-2HG and αKG are structurally similar suggesting that D-2HG may act as a competitive inhibitor of αKG-dioxygenases including prolyl hydroxylase involved in HIF-1α stability, histone demethylases and the Ten-Eleven Translocation (TET) family of 5-methylcytosine hydroxylases involved in epigenetic modifications of DNA.13, 14 In fact, IDH mutations lead to numerous metabolic abnormalities besides D-2HG production. Deciphering the relative importance of either D-2HG production, αKG or NADPH reduction in cancer pathogenesis remains to be determined. In this paper, we show that mutant IDH increases cell proliferation and reduces etoposide (ETO)-induced cell death through different metabolic pathways. Although cell proliferation changes are mediated through D-2HG, alteration in the mitochondrial NADH pool is involved in the response to apoptosis.  相似文献   

20.
A series of novel 2-arylbenzimidazoles have been designed, synthesized and evaluated for their inhibitory activity against IDH2 R140Q mutant. The preliminary results indicated that four compounds 7b, 7c, 7m and 7r displayed the potent inhibitory activity against IDH2 R140Q mutant. Among them, compound 7c showed the highest inhibitory activity, with the IC50 value of 0.26 μM, which was more active than positive control enasidenib. The exquisite selectivity of 7c for IDH2 R140Q mutant isoform was demonstrated by the poor activity against the IDH1 R132C mutant, IDH1 R132H mutant, wild-type IDH1, IDH2 R172K mutant and the wild-type IDH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号