共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding the large subunit of human RNA polymerase II is located on the short arm of chromosome 17. 总被引:3,自引:1,他引:2 下载免费PDF全文
L A Cannizzaro B S Emanuel K W Cho R Weinmann 《American journal of human genetics》1986,38(6):812-818
We have used chromosomal in situ hybridization and Southern blot analysis of DNA from somatic cell hybrids to determine the chromosomal localization of the subgenomic DNA fragment that encodes part of the large subunit of human RNA polymerase II. The results of our analysis demonstrate localization of the human RNA polymerase II large subunit gene to the short arm of chromosome 17. 相似文献
2.
Structure of the gene encoding the 14.5 kDa subunit of human RNA polymerase II. 总被引:4,自引:0,他引:4 下载免费PDF全文
The structure of the gene encoding the 14.5 kDa subunit of the human RNA polymerase II (or B) has been elucidated. The gene consists of six exons, ranging from 52 to over 101 bp, interspaced with five introns ranging from 84 to 246 bp. It is transcribed into three major RNA species, present at low abundance in exponentially growing HeLa cells. The corresponding messenger RNAs contain the same open reading frame encoding a 125 amino acid residue protein, with a calculated molecular weight of 14,523 Da. This protein (named hRPB14.5) shares strong homologies with the homologous polymerase subunits encoded by the Drosophila (RpII15) and yeast (RPB9) genes. Cysteines characteristic of two zinc fingers are conserved in all three corresponding sequences and, like the yeast protein, the hRPB14.5 subunit exhibits zinc-binding activity. 相似文献
3.
4.
A full-length cDNA encoding a human homolog of the 15-kDa subunit (p15) of RNA polymerase II elongation factor SIII was isolated and sequenced. Comparison of the open reading frames of the human p15 cDNA and the previously characterized rat p15 cDNA [Garrett et al., Proc. Natl. Acad. Sci. USA 91 (1994) 5237-5241] indicates that they encode identical proteins and are 93% conserved in nucleotide sequence. 相似文献
5.
6.
Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila 总被引:27,自引:0,他引:27
R. S. Jokerst J. R. Weeks W. A. Zehring A. L. Greenleaf 《Molecular & general genetics : MGG》1989,215(2):266-275
Summary We have characterized RpII215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster. DNA sequencing and nuclease S1 analyses provided the primary structure of this gene, its 7 kb RNA and 215 kDa protein products. The amino-terminal 80% of the subunit harbors regions with strong homology to the subunit of Escherichia coli RNA polymerase and to the largest subunits of other eukaryotic RNA polymerases. The carboxyl-terminal 20% of the subunit is composed of multiple repeats of a seven amino acid consensus sequence, Tyr-Ser-Pro-Thr-Ser-Pro-Ser. The homology domains, as well as the unique carboxyl-terminal structure, are considered in the light of current knowledge of RNA polymerase II and the properties of its largest subunit. Additionally, germline transformation demonstrated that a 9.4 kb genomic DNA segment containing the -amanitinresistant allele, RpII215
C4
, includes all sequences required to produce amanitin-resistant transformants. 相似文献
7.
Leishmaniasis is a geographically widespread severe disease which includes visceral leishmaniasis, cutaneous leishmaniasis (CL). There are 350 million people at risk in over 80 countries. In the Old World, CL is usually caused by Leishmania major, Leishmania tropica, and Leishmania aethiopica complex which 90 % of cases occurring in Afghanistan, Algeria, Iran, Iraq, Saudi Arabia, Syria, Brazil, and Peru. Recently, some reports showed that some strains of L. major have internal transcribed space (ITS-1) with differential size exhibiting homology with the related gene in a divergent genus of kinetoplastida, the Crithidia. This prompted us to analyze the mentioned gene in 100 isolates obtained from patients with suspected CL. After obtaining samples from 100 patients, DNA extraction was performed and ITS-1 was analyzed using PCR–RFLP. These samples were sequenced for verifying their homology. Then, RPOIILS gene was analyzed in the samples that their ITS-1 gene exhibiting homology with the related gene in Crithidia. Results showed that 10 % of the isolates have ITS-1 exhibiting different size with the routine ones. Sequencing of them showed their similarity to the one from Crithidia fasciculata. RPOIILS gene encoding RNA polymerase II largest subunit analysis showed genetic diversity. This study might also help in solving the problems concerning Leishmaniasis outbreak currently facing in Iran and some other endemic regions of the world. 相似文献
8.
9.
ten Asbroek AL Fluiter K van Groenigen M Nooij M Baas F 《Nucleic acids research》2000,28(5):1133-1138
The lack of specificity of cancer treatment causes damage to normal cells as well, which limits the therapeutic range. To circumvent this problem one would need to use an absolute difference between normal cells and cancer cells as therapeutic target. Such a difference exists in the genome of all individuals suffering from a tumor that is characterized by loss of genetic material [loss of heterozygosity (LOH)]. Due to LOH, the tumor is hemizygous for a number of genes, whereas the normal cells of the individual are heterozygous for these genes. Theoretically, polymorphic sites in these genes can be utilized to selectively target the cancer cells with an antisense oligonucleotide, provided that it can discriminate the alleles and inhibit gene expression. Furthermore, the targeted gene should be essential for cell survival, and 50% gene expression sufficient for the cell to survive. This will allow selective killing of cancer cells without concomitant toxicity to normal cells. As an initial step in the experimental test of this putative selective cancer cell therapy, we have developed a set of antisense phosphorothioate oligonucleotides which can discriminate the two alleles of a polymorphic site in the gene encoding the large subunit of RNA polymerase II. Our data show that the exact position of the antisense oligonucleotide on the mRNA is of essential importance for the oligonucleotide to be an effective inhibitor of gene expression. Shifting the oligonucleotide position only a few bases along the mRNA sequence will completely abolish the inhibitory activity of the antisense oligonucleotide. Reducing the length of the oligonucleotides to 16 bases increases the allele specificity. This study shows that it is possible to design oligonucleotides that selectively target the matched allele, whereas the expression level of the mismatched allele, that differs by one nucleotide, is only slightly affected. 相似文献
10.
11.
Localization of an alpha-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II. 总被引:13,自引:7,他引:13 下载免费PDF全文
RNA polymerase II is inhibited by the mushroom toxin alpha-amanitin. A mouse BALB/c 3T3 cell line was selected for resistance to alpha-amanitin and characterized in detail. This cell line, designated A21, was heterozygous, possessing both amanitin-sensitive and -resistant forms of RNA polymerase II; the mutant form was 500 times more resistant to alpha-amanitin than the sensitive form. By using the wild-type mouse RNA polymerase II largest subunit (RPII215) gene (J.A. Ahearn, M.S. Bartolomei, M. L. West, and J. L. Corden, submitted for publication) as the probe, RPII215 genes were isolated from an A21 genomic DNA library. The mutant allele was identified by its ability to transfer amanitin resistance in a transfection assay. Genomic reconstructions between mutant and wild-type alleles localized the mutation to a 450-base-pair fragment that included parts of exons 14 and 15. This fragment was sequenced and compared with the wild-type sequence; a single AT-to-GC transition was detected at nucleotide 6819, corresponding to an asparagine-to-aspartate substitution at amino acid 793 of the predicted protein sequence. Knowledge of the position of the A21 mutation should facilitate the study of the mechanism of alpha-amanitin resistance. Furthermore, the A21 gene will be useful for studying the phenotype of site-directed mutations in the RPII215 gene. 相似文献
12.
13.
14.
《Gene》1997,187(2):165-170
By means of the yeast two-hybrid system using the 40-kDa subunit of mouse RNA polymerase I, mRPA40, as the bait, we isolated a mouse cDNA which encoded a protein with significant homology in amino acid sequence to the 12.5-kDa subunit of Saccharomyces cerevisiae RNA polymerase II, B12.5 (RPB11). Specific antibody raised against the recombinant protein that was derived from the cDNA reacted with a 14-kDa polypeptide in highly purified mammalian RNA polymerase II and did not react with any subunit of RNA polymerase I or III. Moreover, the antibody co-immunoprecipitated the largest subunit of mouse RNA polymerase II. These results provide biochemical evidence that the cDNA isolated, named mRPB14, encodes a specific subunit of RNA polymerase II, and indicate that the subunit organization of the enzyme is conserved between yeast and mouse. A possible role of the α-motif [Dequard-Chablat, M., Riva, M., Carles, C. and Sentenac, A., J. Biol. Chem. 266 (1991) 15300–15307] in the protein-protein interaction between mRPA40 and mRPB14 is also discussed. 相似文献
15.
16.
Cloning and sequence determination of the Schizosaccharomyces pombe rpb1 gene encoding the largest subunit of RNA polymerase II. 下载免费PDF全文
The gene, rpb1, encoding the largest subunit of RNA polymerase II has been cloned from Schizosaccharomyces pombe using the corresponding gene, RPB1, of Saccharomyces cerevisiae as a cross-hybridization probe. We have determined the complete sequence of this gene, and parts of PCR-amplified rpb1 cDNA. The predicted coding sequence, interrupted by six introns, encodes a polypeptide of 1,752 amino acid residues in length with a molecular weight of 194 kilodaltons. This polypeptide contains eight conserved structural domains characteristic of the largest subunit of RNA polymerases from other eukaryotes and, in addition, 29 repetitions of the C-terminal heptapeptide found in all the eukaryotic RNA polymerase II largest subunits so far examined. 相似文献
17.
H Voss U Wirkner R Jakobi N A Hewitt C Schwager J Zimmermann W Ansorge W Pyerin 《The Journal of biological chemistry》1991,266(21):13706-13711
18.
19.
20.
We have cloned and sequenced the gene encoding the largest subunit of RNA polymerase II (RPB1) from Arabidopsis thaliana and partially sequenced genes from soybean (Glycine max). We have also determined the nucleotide sequence for a number of cDNA clones which encode the carboxyl terminal domains (CTDs) of RNA polymerase II from both soybean and Arabidopsis. The Arabidopsis RPB1 gene encodes a polypeptide of approximately 205 kDa, consists of 12 exons, and encompasses more than 8 kb. Predicted amino acid sequence shows eight regions of similarity with the largest subunit of other prokaryotic and eukaryotic RNA polymerases, as well as a highly conserved CTD unique to RNA polymerase II.The CTDs in plants, like those in most other eukaryotes, consist of tandem heptapeptide repeats with the consensus amino acid sequence PTSPSYS. The portion of RPB1 which encodes the CTD in plants differs from that of RPB1 of animals and lower eukaryotes. All the plant genes examined contain 2–3 introns within the CTD encoding regions, and at least two plant genes contain an alternatively spliced intron in the 3 untranslated region. Several clustered amino acid substitutions in the CTD are conserved in the two plant species examined, but are not found in other eukaryotes. RPB1 is encoded by a multigene family in soybean, but a single gene encodes this subunit in Arabidopsis and most other eukaryotes. 相似文献