首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suicidal erythrocyte death following cellular K+ loss.   总被引:1,自引:0,他引:1  
Hallmarks of apoptosis include cell shrinkage, which is at least partially due to cellular K(+) loss. The decline of cellular K(+) concentration has been suggested to participate in the triggering of apoptosis. Suicidal erythrocyte death or eryptosis is triggered by increased cytosolic Ca(2+) activity leading to activation of Ca(2+)-sensitive K(+) channels with subsequent cellular K(+) loss and cell shrinkage, and to Ca(2+)-sensitive scambling of the cell membrane with subsequent phosphatidylserine (PS) exposure at the cell surface. Phosphatidylserine exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. The present study explored whether cellular loss of K(+) and/or cell shrinkage actively participate in the triggering of cell membrane phospholipid scrambling. Cellular K(+) loss was achieved by treatment of human erythrocytes with the K(+) ionophore valinomycin (1 nM) at different extracellular K(+) concentrations (5-125 mM) and osmolarities (300-550 m Osm). Cell volume was estimated from forward scatter and PS exposure from annexin V binding in FACS analysis. Treatment with 1 nM valinomycin indeed decreased forward scatter and increased annexin V binding. The effect was significantly blunted in the presence of staurosporine (1 microM). Increase of extracellular K(+) concentration gradually blunted the decrease of forward scatter but inhibited annexin V binding only at extracellular K(+) concentrations >or=75 mM. An increase of extracellular osmolarity (+150 mM or 250 mM sucrose) reversed the protective effect of 75 mM KCl during valinomycin treatment. A correlation between forward scatter and annexin binding at different osmolarities and K(+) concentrations suggests that the cellular K(+) content determines the rate of suicidal erythrocyte death primarily through its influence on cell volume.  相似文献   

2.
The effect of high potassium, 60 mM KCl, on the cellular action of arginine vasopressin (AVP) was studied in rat renal papillary collecting tubule cells in culture. In the presence of 0.5 mM 3-isobutyl-1-methylxanthine AVP-induced cAMP production was enhanced by pretreatment of the cells with 60 mM KCl. Such an enhancement was not found in cells pretreated with Ca(2+)-free medium containing 1 mM EGTA or in Na(+)-free medium, which rather reduced AVP-induced cAMP production. Similar results were obtained with the blockers of cellular Ca2+ uptake, 1 x 10(-4) M verapamil and 1 x 10(-5) M nifedipine. The 60 mM KCl elevated the cellular sodium concentration ([Na+]i) from 15.1 to 18.8 mM, cellular pH (pHi) from 7.18 to 7.32, and basal cellular free calcium concentration ([Ca2+]i). These results indicate that high potassium promptly augments AVP-induced cAMP production in renal papillary collecting tubule cells. This effect is based on the alkalinized pHi and the increased [Ca2+]i.  相似文献   

3.
Rat cerebral cortex synaptosomes were exposed in superfusion to various depolarizing stimuli and the release of somatostatin-like immunoreactivity (SRIF-LI) was measured by means of a radioimmunoassay procedure. High KCl (9-50 mM) concentration dependently evoked SRIF-LI release; the evoked overflow reached a plateau at 25 mM KCl and was completely abolished when Ca2+ ions were omitted from the superfusion medium, independently of the concentration of KCl used. The 15 mM K(+)-evoked release of SRIF-LI increased sharply as the Ca2+ concentration was raised to 0.8 mM, then leveled off and reached a plateau at 1.2 mM. The 15 mM K(+)-evoked overflow, but not the spontaneous outflow, was partially decreased (50%) by 1 microM tetrodotoxin. The presence in the superfusion fluid of a mixture of peptidase inhibitors did not improve the recovery of SRIF-LI both in the absence and in the presence of high K+. Exposure of synaptosomes to veratrine (1-50 microM) induced release of SRIF-LI in a concentration-dependent way. The effect of the alkaloid was strictly Ca2+ and tetrodotoxin sensitive. Replacement of extracellular Na+ by sucrose caused an acceleration of the spontaneous SRIF-LI outflow that was inversely correlated to the Na+ content in the superfusion medium. The release evoked by the sodium-deprived media did not exhibit any calcium dependence. HPLC analysis of the samples collected during superfusion showed that greater than 90% of the SRIF-LI released either during the spontaneous outflow or by 15 mM KCl was represented by SRIF-14 (SRIF-28(14-28]. These values reflected the ratio SRIF-14/SRIF-28 found in synaptosomes at the end of the experiments.  相似文献   

4.
To determine effect of nitric oxide (NO) on cellular glutathione peroxidase (GPX) level in living cells, we measured the activity, protein and mRNA of GPX in rat kidney (KNRK) cells under a high NO condition. Combined treatment of lipopolysaccharide (LPS, 1 microgram/ml) and tumor necrosis factor-alpha (TNF-alpha, 50 ng/ml) synergistically enhanced (23-folds) nitrite production from KNRK cells. This was suppressed by an inducible NO synthase (iNOS) inhibitor (aminoguanidine, N-nitro-L-arginine methylester hydrochloride) and arginase. iNOS expression was detected by RT-PCR in the treated cells. GPX was inactivated irreversibly when the cells had been homogenized before exposure to a NO donor, S-nitroso-N-acetylpenicillamine (SNAP). In living KNRK cells, SNAP and LPS + TNF-alpha exerted a transient effect on the GPX activity. The treatment with SNAP (200 microM) or sodium nitroprusside (200 microM) enhanced GPX gene expression, which was blocked by a NO scavenger, 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide. GPX mRNA was markedly increased by the treatment with LPS + TNF-alpha, and aminoguanidine blocked the effect. In cells metabolically labeled with 75Se, LPS + TNF-alpha accelerated the incorporation of radioactivity into GPX molecule by 2.1-fold. These results suggest that inactivation of GPX by NO triggers a signal for inducing GPX gene expression in KNRK cells, thereby restoring the intracellular level of this indispensable enzyme.  相似文献   

5.
Depolarization by a high K(+) concentration is a widely used experimental tool to stimulate insulin secretion. The effects occurring after the initial rise in secretion were investigated here. After the initial peak a fast decline occurred, which was followed by a slowly progressive decrease in secretion when a strong K(+) depolarization was used. At 40 mM KCl, but not at lower concentrations, the decrease continued when the glucose concentration was raised from 5 to 10 mM, suggesting an inhibitory effect of the K(+) depolarization. When tolbutamide was added instead of the glucose concentration being raised, a complete inhibition down to prestimulatory values was observed. Equimolar reduction of the NaCl concentration to preserve isoosmolarity enabled an increase in secretion in response to glucose. Unexpectedly, the same was true when the Na(+)-reduced media were made hyperosmolar by choline chloride or mannitol. The insulinotropic effect of tolbutamide was not rescued by the compensatory reduction of NaCl, suggesting a requirement for activated energy metabolism. These inhibitory effects could not be explained by a lack of depolarizing strength or by a diminished free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Rather, the complexation of extracellular Ca(2+) concomitant with the K(+) depolarization markedly diminished [Ca(2+)](i) and attenuated the inhibitory action of 40 mM KCl. This suggests that a strong but not a moderate depolarization by K(+) induces a [Ca(2+)](i)-dependent, slowly progressive desensitization of the secretory machinery. In contrast, the decline immediately following the initial peak of secretion may result from the inactivation of voltage-dependent Ca(2+) channels.  相似文献   

6.
7.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

8.
9.
Magnesium deficiency has been shown to increase nitric oxide (NO) levels in plasma and to aggravate endotoxin lethality. The present study was performed to examine the effects of magnesium (Mg(2+))-deficient culture medium, with and without endotoxin (LPS), on NO release and inducible NOS (iNOS) mRNA levels in alveolar macrophages isolated from rats. Decreasing the Mg(2+) concentration in the culture medium from 0.39 mM (normal-Mg(2+) medium) to 0.021 mM (Mg(2+)-deficient medium) increased NO release from alveolar macrophages for 2 h. However, LPS stimulation in Mg(2+)-deficient medium had little effect on NO release. The increased NO release in Mg(2+)-deficient medium was suppressed completely by L-NAME and aminoguanidine. Dexamethasone, pyrrolidine dithiocarbamate and curcumin strongly inhibited NO release. Verapamil, U73122, TMB-8 and W-7 had no significant effect on NO release induced by Mg(2+) deficiency. Preculture of macrophages with Mg(2+)-deficient medium for 22 h markedly increased NO release and iNOS mRNA levels for a further 2 h; these increments were suppressed completely by curcumin. These results suggest that Mg(2+) deficiency enhances NO production via iNOS by alveolar macrophages. In this experimental condition, we can not suggest that NO production from alveolar macrophage plays an essential role in the pathogenesis of enhanced endotoxin lethality in Mg-deficient rats.  相似文献   

10.
The aim of this study was to investigate the in vitro effects and regulatory mechanism of CGRP (calcitonin gene-related peptide) on NO (nitric oxide) production in osteoblasts. MOB (primary human mandibular osteoblasts) and osteoblast-like cells (MG-63) were either cultured with CGRP or co-incubated with inhibitors targeting eNOS (endothelial nitric oxide synthase), iNOS (inducible nitric oxide synthase), nNOS (neuronal nitric oxide synthase) and [Ca2+]i (intracellular Ca2+). The NO concentration in cell culture supernatants was measured during the first 24 h using the Griess test; cellular NO was marked with the fluorescent marker DAF-FM, DA (3-amino, 4-aminomethyl-2',7'-difluorescein; diacetate) and measured by fluorescence microscopy from 1 to 4 h after treatment. eNOS and iNOS mRNA expression levels were measured by quantitative RT-PCR during the first 24 h after treatment. CGRP-induced NO production in the supernatants was high between 1 to 12 h, while cellular NO was highest between 1 to 2 h after treatment and returned to basal levels by 3 h. Both in MG-63 cells and MOBs, the most effective CGRP concentration was 10 nM with a peak time of 1 h. CGRP-induced NO production decreased when eNOS activity was inhibited or when voltage-dependent L-type Ca2+ channels were blocked at 4 h. CGRP was not able to induce changes in iNOS or eNOS mRNA levels and had no effect on the cytokine-induced increase of iNOS expression. Our results suggest that CGRP transiently induces NO production in osteoblasts by elevating intracellular Ca2+ to stimulate the activity of eNOS in vitro.  相似文献   

11.
12.
To determine effect of nitric oxide (NO) on cellular glutathione peroxidase (GPX) level in living cells, we measured the activity, protein and mRNA of GPX in rat kidney (KNRK) cells under a high NO condition. Combined treatment of lipopolysaccharide (LPS, 1 μg/ml) and tumor necrosis factor-α (TNF-α, 50 ng/ml) synergistically enhanced (23-folds) nitrite production from KNRK cells. This was suppressed by an inducible NO synthase (iNOS) inhibitor (aminoguanidine, N-nitro-L-arginine methylester hydrochloride) and arginase. iNOS expression was detected by RT-PCR in the treated cells. GPX was inactivated irreversibly when the cells had been homogenized before exposure to a NO donor, S-nitroso-N-acetylpenicillamine (SNAP). In living KNRK cells, SNAP and LPS + TNF-α exerted a transient effect on the GPX activity. The treatment with SNAP (200 μM) or sodium nitroprusside (200 μM) enhanced GPX gene expression, which was blocked by a NO scavenger, 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide. GPX mRNA was markedly increased by the treatment with LPS + TNF-α, and aminoguanidine blocked the effect. In cells metabolically labeled with 75Se, LPS + TNF-α accelerated the incorporation of radioactivity into GPX molecule by 2.1-fold. These results suggest that inactivation of GPX by NO triggers a signal for inducing GPX gene expression in KNRK cells, thereby restoring the intracellular level of this indispensable enzyme.  相似文献   

13.
The agonists carbachol (CCh) and bradykinin (BK) and 54 mM KCl (high K+) were among the most potent stimulants of cyclic AMP (cAMP) production in cultured rat sympathetic neurons, measured with the use of a high-fidelity assay developed for small samples. The rise in cAMP evoked by CCh (through muscarinic receptors), BK, and high K+ was inhibited in Ca2(+)-depleted medium (1.3 mM Ca2+ and 2 mM BAPTA or EGTA), which also prevented the sustained rise in [Ca2+]i evoked by each of these stimuli, showing that elevation of cAMP requires extracellular Ca2+ and, possibly, Ca2+ influx. Preliminary results obtained with the novel calmodulin inhibitor CGS 9343B, which blocked the elevation of cAMP, and with the cyclogenase inhibitor indomethacin, which partially blocked the actions of the agonists but not those of high K+, suggest that calmodulin and arachidonate metabolites may be two components of the signaling pathway. In addition to their effects on cAMP metabolism, CCh, muscarine, and BK, but not nicotine, caused a 30-40% decrease in ATP levels. This effect was much greater than that evoked by high K+ and was largely inhibited by CGS 9343B but slightly enhanced in the Ca(+)-depleted medium, showing that agonists are still active in the absence of [Ca2+]o. Thus, agonists that activate phosphoinositide metabolism can also increase cAMP production and substantially deplete cells of ATP. These novel actions may have to be taken into account when the mechanisms by which such agonists regulate cell function are being considered.  相似文献   

14.
15.
Elucidation of the functions of astrocytes is important for understanding of the pathogenic mechanism of various neurodegenerative diseases. Theophylline is a common drug for bronchial asthma and occasionally develops side-effects, such as acute encephalopathy; although the pathogenic mechanism of the side-effects is unknown. The lipopolysaccharide (LPS)-induced nitric oxide (NO) production is generally used for an index of the activation of astrocyte in vitro. In this study, in order to elucidate the effect of theophylline on the astrocytic functions, we examined the LPS-induced NO production and the expression of iNOS in cultured rat cortex astrocytes. Theophylline alone could not induce the NO production; however, NO production induced by LPS was enhanced by theophylline in a dose-dependent manner; and by isobutylmethylxanthine, a phosphodiesterase inhibitor. The theophylline enhancement of LPS-induced NO production was further increased by dibutyryl cyclic AMP, a membrane-permeable cAMP analog; and by forskolin, an adenylate cyclase activator. When the cells were preincubated with Rp-8-Br-cAMP, an inhibitor of protein kinase A, the theophylline enhancement of LPS-induced NO production was decreased. The extent of iNOS protein expression induced by LPS was also enhanced by theophylline. It is likely that phosphodiesterase inhibition is a major action mechanism for the theophylline enhancement of LPS-induced NO production in astrocytes. Theophylline-induced acute encephalopathy might be due to the hyper-activation of astrocytes via cAMP signaling to produce excess amount of NO.  相似文献   

16.
Inducible nitric oxide (NO) synthase (iNOS) is a stress response protein upregulated in inflammatory conditions, and NO may suppress cellular proliferation. We hypothesized that preventing L-arginine (L-arg) uptake in endothelial cells would prevent lipopolysaccharide/tumor necrosis factor-α (LPS/TNF)-induced, NO-mediated suppression of cellular proliferation. Bovine pulmonary arterial endothelial cells (bPAEC) were treated with LPS/TNF or vehicle (control), and either 10 mM L-leucine [L-leu; a competitive inhibitor of L-arg uptake by the cationic amino acid transporter (CAT)] or its vehicle. In parallel experiments, iNOS or arginase II were overexpressed in bPAEC using an adenoviral vector (AdiNOS or AdArgII, respectively). LPS/TNF treatment increased the expression of iNOS, arginase II, CAT-1, and CAT-2 mRNA in bPAEC, resulting in greater NO and urea production than in control bPAEC, which was prevented by L-leu. LPS/TNF treatment resulted in fewer viable cells than in controls, and LPS/TNF-stimulated bPAEC treated with L-leu had more viable cells than LPS/TNF treatment alone. LPS/TNF treatment resulted in cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase expression, which was attenuated by L-leu. AdiNOS reduced viable cell number, and treatment of AdiNOS transfected bPAEC with L-leu preserved cell number. AdArgII increased viable cell number, and treatment of AdArgII transfected bPAEC with L-leu prevented the increase in cell number. These data demonstrate that iNOS expression in pulmonary endothelial cells leads to decreased cellular proliferation, which can be attenuated by preventing cellular L-arg uptake. We speculate that CAT activity may represent a novel therapeutic target in inflammatory lung diseases characterized by NO overproduction.  相似文献   

17.
The positive effects of high glucose on the cellular productivity of nitric oxide (NO), and the mechanisms of the enhancement, were investigated. Macrophages were shifted from normal-glucose medium (5.5 mM) to high-glucose medium (25 mM) and immediately treated with lipopolysaccharide (LPS). Inducible nitric oxide synthase (iNOS) expression was expressed significantly more quickly, and NO production also increased. High-glucose conditions reduced cell viability at 48 h. Pretreatment with oxidized adenosine triphosphate (o-ATP), the selective purinergic receptor antagonist, strongly reduced LPS-induced iNOS expression, NO production and cell death in cells exposed to high levels of glucose. Apyrase, an ATP-hydrolyzing enzyme, also reduced the effects of high-glucose content. High-glucose content promoted the LPS-induced release of endogenous ATP from RAW 264.7 cells, as measured by luciferin-luciferase assay. In summary, the results revealed that purinergic receptor is important in responding to LPS challenge, increasing LPS-induced NO production and cell death under high-glucose conditions, and promoting the release of ATP from macrophages in high-glucose medium.  相似文献   

18.
19.
We have shown that immunostimulated astrocytes produce excess nitric oxide (NO) and eventually peroxynitrite (ONOO(-)) that was closely associated with the glucose deprivation-potentiated death of astrocytes. The present study shows that activated p38 MAPK regulates ONOO(-) generation from lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma)-stimulated astrocytes. LPS+IFN-gamma-induced p38 MAPK activation and ONOO(-) generation were attenuated by SB203580 or SKF-86002, specific inhibitors of p38 MAPK. ONOO(-) generation was blocked by NADPH oxidase inhibitor, diphenyleneiodonium chloride, and nitric oxide synthase (NOS) inhibitor, N omega-nitro-L-arginine methyl ester, suggesting both enzymes are involved in ONOO(-) generation. Inhibition of p38 MAPK suppressed LPS+IFN-gamma-induced NO production through down-regulating inducible form of NOS expression. It also suppressed LPS+IFN-gamma-induced NADPH oxidase activation and eventually, the inducible form of superoxide production. Transfection with dominant negative vector of p38 alpha reduced LPS+IFN-gamma-induced ONOO(-) generation through blocking both iNOS-derived NO production and NADPH oxidase-derived O2(-) production. Our results suggest that activated p38 MAPK may serve as a potential signaling molecule in ONOO(-) generation through dual regulatory mechanisms, involving iNOS induction and NADPH oxidase activation.  相似文献   

20.
通过RNA印迹分析和亚硝酸盐含量测定检查TNF-α、IL-1β和LPS对大鼠血管平滑肌细胞(VSMC)诱导型一氧化氮合酶(iNOS)基因表达及NO生成的影响.结果表明,TNF-α、IL-1β和LPS均能显著诱导VSMCiNOS基因表达和促进NO生成,其作用强度与浓度和作用时间有关;双因素(TNF-α+LPS,LPS+IL-1β)对诱导iNOS基因表达及NO生成产生协同作用.PolymyxinB和地塞米松可部分抑制TNF-α对iNOS基因表达的诱导作用及NO生成  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号