首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In RAW 264.7 macrophages lipopolysaccharide (LPS) stimulated the activation of p42 and p44 MAP kinases and their upstream activator mitogen-activated protein (MAP) kinase kinase (MAPKK), and induced the 69-kDa isoform of cyclo-oxygenase-2 (COX-2) and the 130-kDa isoform of nitric oxide synthase (iNOS). PD 098059, a specific inhibitor of the activation of MAPKK, prevented LPS-mediated activation of MAPKK (IC50 = 3.0 +/- 0.1 microM, n = 3) and p42/44 MAP kinases and substantially reduced the induction of COX-2 by approximately 40%-70%, but was without effect upon the induction of iNOS. In parallel, LPS also stimulated the activation of p38 MAP kinase and the MAPKAP kinase-2, a downstream target of p38 MAP kinase. SB 203580, a specific inhibitor of p38 MAP kinase prevented the activation of p38 MAP kinase (IC50 = 3.3 +/- 1.4 microM, n = 3) and MAPKAP kinase-2 by LPS and reduced the induction of COX-2 by approximately 50-90%, with no significant effect upon iNOS expression. These studies indicate the involvement of both the classical p42/44 MAP kinases and p38 MAP kinase in the regulation of COX-2 but not iNOS induction following exposure to LPS.  相似文献   

4.
We previously showed that prostaglandin D(2) (PGD(2)) stimulates activation of protein kinase C (PKC). We investigated whether PGD(2) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. PGD(2) increased the levels of HSP27 while having little effect on HSP70 levels. PGD(2) stimulated the accumulation of HSP27 dose dependently in the range between 10 nM and 10 microM. PGD(2) induced an increase in the levels of mRNA for HSP27. The PGD(2)-stimulated accumulation of HSP27 was reduced by staurosporine or calphostin C, inhibitors of PKC. PGD(2) induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by PGD(2) was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. Calphostin C suppressed the PGD(2)-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase. PD98059 or SB203580 suppressed the PGD(2)-increased levels of mRNA for HSP27. These results strongly suggest that PGD(2) stimulates HSP27 induction through p44/p42 MAP kinase activation and p38 MAP kinase activation in osteoblasts and that PKC acts at a point upstream from both the MAP kinases.  相似文献   

5.
We investigated whether transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. TGF-beta increased the level of HSP27 but had no effect on the HSP70 level. TGF-beta stimulated the accumulation of HSP27 dose-dependently, and induced an increase in the level of mRNA for HSP27. TGF-beta induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by TGF-beta was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. PD98059 and SB203580 suppressed the TGF-beta-stimulated increase in the level of mRNA for HSP27. Retinoic acid, a vitamin A (retinol) metabolite, which alone had little effect on the HSP27 level, markedly enhanced the HSP27 accumulation stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-induced increase of mRNA for HSP27. The amplification of TGF-beta-stimulated HSP27 accumulation by retinoic acid was reduced by PD98059 or SB203580. Retinoic acid failed to affect the TGF-beta-induced phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. These results strongly suggest that p44/p42 MAP kinase and p38 MAP kinase take part in the pathways of the TGF-beta-stimulated HSP27 induction in osteoblasts, and that retinoic acid upregulates the TGF-beta-stimulated HSP27 induction at a point downstream from p44/p42 MAP kinase and p38 MAP kinase.  相似文献   

6.
Mechanical strain is necessary for normal lung growth and development. Individuals with respiratory failure are supported with mechanical ventilation, leading to altered lung growth and injury. Understanding signaling pathways initiated by mechanical strain in lung epithelial cells will help guide development of strategies aimed at optimizing strain-induced lung growth while mitigating ventilator-induced lung injury. To study strain-induced proliferative signaling, focusing on the role of reactive oxidant species (ROS) and p42/44 mitogen-activated protein (MAP) kinase, human pulmonary epithelial H441 and MLE15 cells were exposed to equibiaxial cyclic mechanical strain. ROS were increased within 15 min of strain. N-acetylcysteine inactivated strain-induced ROS and inhibited p42/44 MAP kinase phosphorylation and strain-induced proliferation. PD98059 and UO126, p42/44 MAP kinase inhibitors, blocked strain-induced proliferation. To verify the specificity of p42/44 MAP kinase inhibition, cells were transfected with dominant-negative mitogen-activated protein kinase kinase-1 plasmid DNA. Transfected cells did not proliferate in response to mechanical strain. To determine whether strain-induced tyrosine kinase activity is necessary for strain-induced ROS-p42/44 MAP kinase signaling, genistein, a tyrosine kinase inhibitor, was used. Genistein did not block strain-induced ROS production or p42/44 MAP kinase phosphorylation. Gadolinium, a mechanosensitive calcium channel blocker, blocked strain-induced ROS production and p42/44 MAP kinase phosphorylation but not strain-induced tyrosine phosphorylation. These data support ROS production and p42/44 MAP kinase phosphorylation being involved in a common strain-induced signaling pathway, necessary for strain-induced proliferation in pulmonary epithelial cells, with a parallel strain-induced tyrosine kinase pathway.  相似文献   

7.
In this study, we examined the mechanism by which CD38 cleavage is regulated through the mitogen-activated protein (MAP) kinases after stimulation by fMLP and interleukin-8 (IL-8) in neutrophils. Both fMLP and IL-8 increased chemotaxis and decreased CD38 protein in neutrophils, but did not change CD38 mRNA levels. Both fMLP and IL-8 increased CD38 in supernatants, which was inhibitable with PMSF. fMLP stimulation resulted in phosphorylation of p38 MAP kinase and p42/44 MAP kinase (ERK). SB20358, a p38 MAP kinase inhibitor, down-regulated neutrophil chemotaxis. Conversely, PD98059, an ERK inhibitor, did not influence chemotaxis to either agonist. The addition of SB20358 blocked the decrease of CD38 on neutrophils and the increase in supernatants induced by fMLP or IL-8, whereas PD98059 did not. These findings suggest that CD38-mediated chemotaxis to fMLP or IL-8 is characterized by proteolytic cleavage of CD38 and signaling through p38 MAP kinase. Activation of the protease for cleavage appears to be a postreceptor event that is dependent on p38 MAP kinase signaling.  相似文献   

8.
9.
In an aortic smooth muscle cell line, A10 cells, we investigated the effect of sphingosine 1-phosphate on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein. Sphingosine 1-phosphate significantly induced the accumulation of HSP27 in a pertussis toxin-sensitive manner. The effect was dose-dependent in the range between 0.1 and 30 microM. Sphingosine 1-phosphate stimulated an increase in the levels of mRNA for HSP27. Sphingosine 1-phosphate stimulated both p42/p44 mitogen-activated protein (MAP) kinase and p38 MAP kinase activation. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, did not affect sphingosine 1-phosphate-stimulated HSP27 induction. In contrast, SB203580, an inhibitor of p38 MAP kinase, reduced sphingosine 1-phosphate-induced HSP27 induction. SB203580 reduced the levels of mRNA for HSP27 induced by sphingosine 1-phosphate. These results indicate that sphingosine 1-phosphate stimulates the induction of HSP27 via p38 MAP kinase activation in aortic smooth muscle cells.  相似文献   

10.
Previously, we reported that the formation of focal adhesion accelerated by accumulation of extracellular matrices may inhibit the angiotensin II-stimulated proliferation of human mesangial cells (HMCs). The process is regulated by p44/42 MAP kinase activity through the mediation of paxillin and GTPase activating proteins. In this report, we investigated the effect of integrin molecules on the angiotensin II-induced p44/42 MAP kinase activation in non-adherent HMCs. The results demonstrated that incubation of cells with both antibody to integrin beta(1) chain (K20) and GRGDS peptide induced integrin clustering, paxillin aggregation, and marked suppression of angiotensin II-induced p44/42 MAP kinase activation. On the other hand, incubation of cells with K20 alone induced integrin clustering without paxillin aggregation and the suppressive effect on angiotensin II-stimulated p44/42 MAP kinase activity. Our results strongly suggest the pivotal role of integrins in the inhibitory effect of focal adhesion on p44/42 MAP kinase activity, the checking system against angiotensin II-induced MAP kinase overactivation.  相似文献   

11.
Statins, specific inhibitors of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, are now widely used for treatment of patients with hypercholesterolemia. In addition to the reduction of cholesterol biosynthesis, accumulating evidence indicates that statins have several pleiotropic effects especially on cardiovascular system. However, the exact role of statin in cardiac myocytes remains unclear. In the present study, we investigated whether atorvastatin induces vascular endothelial growth factor (VEGF) release in cardiac myocytes, and the underlying mechanism. We observed that atorvastatin significantly stimulated VEGF release in a dose-dependent manner. It induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase but not SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The atorvastatin-induced VEGF release was enhanced by PD98059, which is a specific inhibitor of the upstream kinase that activates p44/p42 MAP kinase (MEK). Further, it was significantly reduced by SB203580, a specific inhibitor of p38 MAP kinase. Furthermore, the atorvastatin-induced phosphorylation of p38 MAP kinase was attenuated by SB203580, whereas it was enhanced by PD98059. Taken together, these results suggest that the atorvastatin-induced VEGF release in cardiac myocytes is positively regulated by p38 MAP kinase and negatively regulated byp44/p42 MAP kinase and that the atorvastatin-induced phosphorylation of p38 MAP kinase is regulated by p44/p42 MAP kinase in these cells.  相似文献   

12.
In mouse embryo NIH 3T3 fibroblasts, ethanol (60-80 mM) was found to enhance the stimulatory effects of sphingosine 1-phosphate (S1P) on both DNA synthesis and cell proliferation. Well-detectable potentiating effects of ethanol on S1P-induced mitogenesis required the presence of calcium (>1 mM) and zinc (20-40 microM) in the incubation medium. The amphibian tetrapeptide bombesin, which is known to mobilize intracellular calcium in fibroblasts, had no effect alone, but it approximately doubled the combined stimulatory effects of ethanol and S1P on DNA synthesis. The synergistic mitogenic effects of ethanol and S1P were also slightly enhanced, rather than inhibited, by the alcohol dehydrogenase inhibitor 4-methylpyrazole (5 mM). Of the various growth regulatory enzymes examined, ethanol detectably enhanced the stimulatory effects of S1P on the phosphosphorylation (activation) of p42/p44 mitogen-activated protein (MAP) kinases, but not of p38 MAP kinase. Cotreatment of fibroblasts with ethanol for 10 min also enhanced the stimulatory effects of S1P on the activities of c-Raf-1 kinase and p70 S6 kinase, but neither S1P nor ethanol had effects on phosphatidylinositol 3'-kinase and Akt/PKB kinase activities. Ethanol-plus-S1P-induced DNA synthesis was partially inhibited by both PD 98059 (50 microM) and rapamycin (10 nM), inhibitors of p42/p44 MAP kinase kinase and mTOR/p70 S6 kinases, respectively. The results indicate that in NIH 3T3 fibroblasts, ethanol can enhance the mitogenic effects of S1P by a zinc- and calcium-dependent mechanism involving both the rapamycin-sensitive p70 S6 kinase-dependent and the c-Raf-1/MAP kinase-dependent growth regulatory pathways.  相似文献   

13.
We previously reported that prostaglandin D(2) (PGD(2)) stimulates the induction of heat shock protein 27 (HSP27) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether PGD(2) stimulates the phosphorylation of HSP27 in MC3T3-E1 cells exposed to heat shock. In the cultured MC3T3-E1 cells, PGD(2) markedly stimulated the phosphorylation of HSP27 at Ser-15 and Ser-85 in a time-dependent manner. Among the mitogen-activated protein (MAP) kinase superfamily, p44/p42 MAP kinase and p38 MAP kinase were phosphorylated by PGD(2) which had little effect on the phosphorylation of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). The PGD(2)-induced phosphorylation of HSP27 was attenuated by PD169316, an inhibitor of p38 MAP kinase or PD98059, a MEK inhibitor. SP600125, a SAPK/JNK inhibitor did not affect the HSP27 phosphorylation. In addition, PD169316 suppressed the PGD(2)-induced phosphorylation of MAPKAP kinase 2. These results strongly suggest that PGD(2) stimulates HSP27 phosphorylation via p44/p42 MAP kinase and p38 MAP kinase but not SAPK/JNK in osteoblasts.  相似文献   

14.
We previously reported that transforming growth factor-beta (TGF-beta) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c- Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-beta-induced VEGF synthesis in these cells. TGF-beta markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-beta-induced VEGF synthesis. SP600125 suppressed TGF-beta-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-beta-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-beta-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-beta activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-beta-induced VEGF synthesis.  相似文献   

15.
It is recognized that heat shock protein 27 (HSP27) is highly expressed in heart. In the present study, we investigated whether platelet-derived growth factor (PDGF) phosphorylates HSP27 in mouse myocytes, and the mechanism underlying the HSP27 phosphorylation. Administration of PDGF-BB induced the phosphorylation of HSP27 at Ser-15 and -85 in mouse cardiac muscle in vivo. In primary cultured myocytes, PDGF-BB time dependently phosphorylated HSP27 at Ser-15 and -85. PDGF-BB stimulated the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) among the MAP kinase superfamily. SB203580, a specific inhibitor of p38 MAP kinase, reduced the PDGF-BB-stimulated phosphorylation of HSP27 at both Ser-15 and -85, and phosphorylation of p38 MAP kinase. However, PD98059, a specific inhibitor of MEK, or SP600125, a specific inhibitor of SAPK/JNK, failed to affect the HSP27 phosphorylation. These results strongly suggest that PDGF-BB phosphorylates HSP27 at Ser-15 and -85 via p38 MAP kinase in cardiac myocytes.  相似文献   

16.
We previously showed that sphingosine 1-phosphate phosphorylates p42/p44 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of sphingosine 1-phosphate on phospholipase C-catalyzing phosphoinositide hydrolysis induced by prostaglandin F2alpha (PGF2 alpha) in these cells. Sphingosine 1-phosphate significantly amplified the inositol phosphates formation by PGF2 alpha. Sphingosine 1-phosphate did not enhance the formation induced by NaF, a direct activator of heterotrimeric GTP-binding proteins. PD98059, an inhibitor of the kinase that activates p42/p44 MAP kinase, had little effect on the amplification by sphingosine 1-phosphate. SB203580, an inhibitor of p38 MAP kinase, reduced the effect of sphingosine 1-phosphate on the formation of inositol phosphates by PGF2 alpha. The phosphorylation of p42/p44 MAP kinase by PGF alpha was attenuated by PD98059. SB203580 suppressed the phosphorylation of p38 MAP kinase by PGF2 alpha. Tumor necrosis factor-alpha enhanced the PGF2 alpha-stimulated formation of inositol phosphates. These results strongly suggest that sphingosine 1-phosphate amplifies PGF2 alpha-induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in osteoblasts.  相似文献   

17.
OBJECTIVE: To investigate regulation of angiotensin converting enzyme (ACE) by tumour necrosis factor alpha (TNF-alpha) in differentiating human peripheral blood monocytes (PBM). METHODS: Human PBM were allowed to differentiate to macrophages for 0-7 days and ACE amount was measured during differentiation. Experiments with TNF-alpha were performed after 2 days of differentiation. Cell cultures were incubated with TNF-alpha (0.5-10ng/ml) without or with SB 202190 (5microM), or PD 98059 (40microM). ACE amounts were measured by an inhibitor binding assay (IBA) and ACE mRNA levels by RNase protection assay (RPA). Activated p44/42 and p38 MAP kinases were measured by Western Blot analysis using phospho-p44/42 and -p38 MAPK antibodies. RESULTS: ACE amount increased by 40-fold along with macrophage differentiation. TNF-alpha caused dose dependent suppression of the amount of ACE and decreased levels of ACE mRNA. TNF-alpha activated p44/42 and p38 MAP kinases, which was inhibited by the specific inhibitors of these kinases, PD98059 or SB202190, respectively. Pretreatment of the cells with SB 202190, or PD 98059 both partly reversed TNF-alpha induced ACE suppression. CONCLUSIONS: TNF-alpha downregulated ACE, which effect was probably mediated by both p44/42 and p38 MAPK pathways. Local downregulation of ACE by TNF-alpha may be a counterbalancing mechanism in inflammatory processes.  相似文献   

18.
X-linked spinal and bulbar muscular atrophy is a degenerative disease affecting motor neurons that is caused by polyglutamine (polyQ) expansion within the androgen receptor (AR). The polyQ-expanded form of AR is cytotoxic to cells, and proteolytic cleavage enhances cell death. The intracellular signaling pathways activated and/or required for cell death induced by the expanded form of AR (AR112) are unknown. We found that AR regulates mitogen-activated protein kinase (MAP kinase) pathways and, therefore, hypothesized that these pathway(s) may be required for AR112-induced cell death. The polyQ expansion in AR activates three MAP kinase pathways, causing increasing levels of phosphorylation of p44/42, p38, and SAPK/JNK MAP kinase. Inhibitors of either the JNK or p38 pathways had no effect on AR112-induced cell death, suggesting they are not required for polyQ-induced cell death. Strikingly, the MEK1/2 inhibitor, U0126, which selectively inhibits the p44/42 MAP kinase pathway, reduces AR112-stimulated cell death. The inhibition of the MEK1/2 pathway correlates directly with a change in phosphorylation state of the androgen receptor. Mutation of the MAP kinase consensus phosphorylation site in AR at serine 514 blocked AR-induced cell death and the generation of caspase-3-derived cleavage products. We propose a mechanism by which phosphorylation at serine 514 of AR enhances the ability of caspase-3 to cleave AR and generate cytotoxic polyQ fragments.  相似文献   

19.
We have reported that prostaglandin F2(alpha) (PGF2(alpha)) activates p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells, and that p44/p42 MAP kinase plays a role in the PGF2(alpha)-induced heat shock protein 27 (HSP27). In the present study, we investigated the involvement of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), a member of the MAP kinase superfamily, in PGF2(alpha)-induced HSP27 in MC3T3-E1 cells. PGF2(alpha) time dependently induced the phosphorylation of SAPK/JNK. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced the PGF2(alpha)-stimulated HSP27 accumulation. The inhibitory effect of SP600125 was dose dependent in the range between 0.1 and 30 microM. SP600125 reduced the PGF2(alpha)-increased level of HSP27 mRNA. SP600125 suppressed the phosphorylation of SAPK/JNK induced by PGF2(alpha), but did not affect the PGF2(alpha)-induced phosphorylation of p44/p42 MAP kinase. On the other hand, PD98059, a specific inhibitor of the upstream kinase of p44/p42 MAP kinase, which reduced the phosphorylation of p44/p42 MAP kinase stimulated by PGF2(alpha), had little effect on the PGF2(alpha)-induced phosphorylation of SAPK/JNK. These results strongly suggest that SAPK/JNK plays a part in PGF2(alpha)-induced HSP27 in addition to p44/p42 MAP kinase in osteoblasts.  相似文献   

20.
We previously reported that endothelin-1 (ET-1) activates both p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that not p44/p42 MAP kinase but p38 MAP kinase participates in the ET-1-induced vascular endothelial growth factor (VEGF) synthesis. In the present study, we investigated the involvement of stress-activated protein kinase/c-Jun N-terminal kinase (JNK) in ET-1-induced VEGF synthesis in these cells. ET-1 significantly induced the phosphorylation of JNK in a dose-dependent manner in the range between 0.1 and 100 nM. SP600125, an inhibitor of JNK, markedly reduced the ET-1-induced VEGF synthesis. A combination of SP600125 and SB203580 additively reduced the ET-1-stimulated VEGF synthesis. SP600125 suppressed the ET-1-induced phosphorylation of JNK, while having no effect on the phosphorylation of p38 MAP kinase elicited by ET-1. SB203580, an inhibitor of p38 MAP kinase, hardly affected the ET-1-induced phosphorylation of JNK. These results strongly suggest that JNK plays a role in ET-1-induced VEGF synthesis in addition to p38 MAP kinase in osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号