首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小桐子(Jatropha curcas)种子含油率高,油脂组成适合于生产生物燃油,是制备航空生物燃油和生物柴油的理想原料。小桐子是一种雌雄同株植物,雌雄花着生于同一花序,其花序中雌花比例很低,可能是其种子产量低的主要原因之一。本文研究用不同浓度的赤霉素外源喷施处理小桐子花序芽对其花和种子发育的影响。结果表明:外源赤霉素处理能够诱导小桐子产生两性花,且处理浓度越高,两性花数量越多;随着两性花数量的增加,雌花数量相应越少,但雌花与两性花数量之和在各处理和对照之间差异不显著,这表明赤霉素诱导出的两性花可能来源于雌花。另外,高浓度(500~1500mg·L-1)的赤霉素处理会导致小桐子的种子不能正常发育, 表现为每个果实中的种子数量、大小、单粒种子重量、每个果序的种子重量以及种子的含油量都显著减少。这些结果有助于深入理解赤霉素在小桐子花器官形成及种子发育过程中所发挥的生理作用,为从分子水平上对小桐子进行遗传改良、提高其种子产量奠定基础。  相似文献   

2.
The physic nut (Jatropha curcas L.) is a multipurpose and oil‐producing shrub of Central and South American origin. Since the 15th century, this shrub has existed across tropical regions. Despite its presumed resistance to herbivores, reports show that arthropod herbivores infest it. However, no comprehensive account of arthropod herbivores, which consume the physic nut, exists. Here, we conducted a literature review that provides a comprehensive account of arthropod herbivores of the physic nut. Based on the co‐evolutionary hypothesis, we expected to find a higher herbivore of species richness and a larger proportion of native herbivores within the native range than elsewhere. As physic nut is a well‐defended plant chemically, we expected to find evidence for highest herbivory levels in plant parts that are the least defended. By the literatures review, we compiled 78 arthropod herbivores representing nine orders and from 31 families that feed on physic nut across the globe. As expected, the highest numbers of herbivores (34 species) were documented within the native range of the J. curcas and the lowest species number (21 species) in Africa. Of the 34 species in Central and South America, 94% were of native origin. Nine species were found feeding on J. curcas on more than one continent. Origins of 49% of species were from the native range of J. curcas. The highest percentage (54%) of species belonged to Hemiptera. With regard to feeding guilds, 59% of the herbivores belonged to sucking and 41% to chewing species. Forty‐one per cent of species were flower or fruit feeders, and 36% foliage feeders. We conclude that J. curcas is, despite its toxicity, vulnerable to herbivory, mainly to foliage, flower and fruit feeders.  相似文献   

3.
Seasonal changes in climate and plant diversity are known to affect the population dynamics of both pests and natural enemies within agroecosystems. In Brazil, spontaneous plants are usually tolerated in small-scale physic nut plantations over the year, which in turn may mediate interactions between pests and natural enemies within this agroecosystem. Here, we aimed to access the influence of seasonal variation of abiotic (temperature, relative humidity and rainfall) and biotic (diversity of spontaneous plants, overall richness and density of mites) factors on the communities of phytophagous and predatory mites found in a physic nut plantation and its associated spontaneous plants. Mite sampling was monthly conducted in dicotyledonous and monocotyledonous leaves of spontaneous plants as well as in physic nut shrubs over an entire year. In the dry season there was a higher abundance of phytophagous mites (Tenuipalpidae, Tarsonemidae and Tetranychidae) on spontaneous plants than on physic nut shrubs, while predatory mites (Phytoseiidae) showed the opposite pattern. The overall density of mites on spontaneous plants increased with relative humidity and diversity of spontaneous plants. Rainfall was the variable that most influenced the density of mites inhabiting physic nut shrubs. Agroecosystems comprising spontaneous plants associated with crops harbour a rich mite community including species of different trophic levels which potentially benefit natural pest control due to increased diversity and abundance of natural enemies.  相似文献   

4.
小桐子愈伤组织的诱导   总被引:1,自引:0,他引:1  
本文以小桐子的叶片、叶柄、茎段及下胚轴和子叶作为外植体,研究不同外植体类型对愈伤组织诱导的影响,结果表明叶柄的诱导率最高,其次为茎段的诱导率。同时以小桐子的下胚轴作为外植体,研究植物生长调节剂种类及浓度配比对愈伤组织诱导的影响,结果显示6-BA与2,4-D的组合更适宜小桐子愈伤组织的诱导,MS+6-BA0.5mg/L+2,4-D0.1mg/L为小桐子愈伤组织诱导的最佳培养基,其愈伤组织诱导率高达96.7%。本研究为小桐子愈伤组织的分化、植株再生及相关的遗传转化研究提供了参考。  相似文献   

5.
The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27 172 putative protein‐coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15 268 families were identified, of which 13 887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome‐inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae.  相似文献   

6.
Evaluation of damage to physic nut (Jatropha curcas) by true bugs   总被引:4,自引:0,他引:4  
The type of injury and amount of damage to the fruits and seeds of physic nut (Jatropha curcas L., Euphorbiaceae) caused by two species of fruit feeding true bugs, Pachycoris klugii Burmeister (Heteroptera: Scutelleridae) and Leptoglossus zonatus (Dallas) (Heteroptera: Coreidae), and the flower feeding true bug, Hypselonotus intermedius Distant (Heteroptera: Coreidae), were assessed using field cages. The parameters analysed were infructescence, fruit, seed and seed kernel weight, seed length, fruit and seed abortion, seed malformation and oil and protein content of the seed kernels. All three species reduced overall yield. The two members of the fruit feeding guild led to premature fruit abortion and malformed seeds. Reduction of fruit, seed and seed kernel weight as well as seed length could be expressed as linear regressions of adult population densities. The oil content of the seeds was slightly reduced by the bugs, but protein content remained unchanged. Damage increased with the developmental stage of the larvae. Whereas adult L. zonatus of both sexes produced more damage than the nymphs, female P. klugii caused less damage than nymphs, and male P. klugii no significant damage at all. H. intermedius is a pollinator of this entomogamous plant. At high densities, however, it reduced the number of fruits maturing.  相似文献   

7.
8.
Wild or commercially grown, native and exotic fruit were collected in 30 localities in the Tucumán province (NW Argentina) from January 1990 to December 1995 to determine their status as hosts of Anastrepha fraterculus (Wiedemann) and/or Ceratitis capitata (Wiedemann), the only two fruit fly species of economic and quarantine importance in Argentina. A total of 84,094 fruit (3,466.1 kg) representing 33 species (7 native and 26 exotic) in 15 plant families were sampled. We determined the following 17 host plant associations: Annona cherimola Miller (Annonaceae), Citrus paradisi Macfadyn (Rutaceae), Diospyros kaki L. (Ebenaceae), Eugenia uniflora L., Psidium guajava L., Myrcianthes pungens (Berg) Legrand (Myrtaceae), Ficus carica L. (Moraceae), Juglans australis Grisebach (Juglandaceae), Mangifera indica L. (Anacardiaceae), Eriobotrya japonica (Thunb.) Lindl., Prunus armeniaca L., P. domestica L., and P. persica (L.) Batsch (Rosaceae) were infested by both A. fraterculus and C. capitata. Citrus aurantium L., Citrus reticulata Blanco, Citrus sinensis (L.) Osbeck (Rutaceae), and Passiflora caerulea L. (Passifloraceae) were only infested by Ceratitis capitata. Out of a total of 99,627 adults that emerged from pupae, 69,180 (approximately 69.5%) were Anastrepha fraterculus, 30,138 (approximately 30.2%) were C. capitata, and 309 (approximately 0.3%) were an unidentified Anastrepha species. Anastrepha fraterculus predominated in native plant species while C. capitata did so in introduced species. Infestation rates (number of larvae/kg of fruit) varied sharply from year to year and between host plant species (overall there was a significant negative correlation between fruit size and infestation level). We provide information on fruiting phenology of all the reported hosts and discuss our findings in light of their practical (e.g., management of A. fraterculus and C. capitata in citrus groves) implications.  相似文献   

9.
Field trials were conducted in 2005 and 2006 to evaluate the use of reusable wire nuts and nonreusable gelatin capsules for hand-infesting cornstalks with European corn borer, Ostrinia nubilalis (Hübner), (Lepidoptera: Crambidae) larvae. The reusable technique, which consists of a modified WingGard plastic wire connector (i.e., wire nut) as a containment device for larvae, was compared over three plant growth stages to a gelatin capsule technique. In 2005 and 2006, the wire nut technique resulted in significantly higher number of wire nuts still intact (i.e., undamaged, with or without a larva) on the stalk at 72 h after infestation compared with the gelatin capsule technique. In addition, the wire nut technique resulted in significantly higher number of tunnels per stalk compared with the gelatin capsule technique at all three corn growth stages during both years. In 2005, the mean +/- SEM number of tunnels per stalk was 0.53 +/- 0.03 in the wire nut technique compared with 0.13 +/- 0.03 tunnels per stalk in the gelatin capsule technique. In 2006, the mean number of tunnels per stalk was 0.45 +/- 0.03 in the wire nut technique compared with 0.08 +/- 0.02 tunnels per stalk in the gelatin capsule technique. In addition, the relative net precision in the wire-nut technique was approximately 2 times higher compared with the gelatin capsule technique.  相似文献   

10.
11.
Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.  相似文献   

12.
The moth Lymantria xylina Swinhoe (1903) (Lepidoptera: Lymantriidae) is a major defoliator of hardwood and fruit trees in Taiwan. Although the plants identified as host plants of L. xylina usually refer to plants used as food or as shelter, most of the host plant identifications have not considered the role of these hosts on larval development. This study investigated various instars feeding on different plants to assess the developmental diet breath of L. xylina. Forty-seven plant species, belonging to 25 families were used in feeding trials. Various bioassays, including first instar survival and long-term feeding trials, indicated the most suitable host plants for the different developmental stages. Results of the first instar survival trial indicated that first instars could survive only on 13 of the tested plant species. In addition, first instars could only successfully grow to pupa on seven of these 13 test plants species. To assess the developmental diet breath shifts of this moth, 38 plant species (excluding those nine plant species that the first instars did not feed upon) were fed to third and fifth instars in long-term feeding trials. Survival to pupa was noted on 12 and 13 test plant species for the third and fifth instars, respectively. In short, we found that the larvae performed differently when fed on various host plants and that the host plant range increased with the larval stage. Therefore, it is necessary to adjust the host plant range of this moth and to consider host plant breadth together with the developmental stages of caterpillars.  相似文献   

13.
The adult body size of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), varies in natural conditions. Body size is an important fitness indicator in the Mediterranean fruit fly; larger individuals are more competitive at mating and have a greater dispersion capacity and fertility. Both temperature during larval development and host fruit quality have been cited as possible causes for this variation. We studied the influence of host fruit and temperature during larval development on adult body size (wing area) in the laboratory, and determined body size variation in field populations of the Mediterannean fruit fly in eastern Spain. Field flies measured had two origins: 1) flies periodically collected throughout the year in field traps from 32 citrus groves, during the period 2003-2007; and 2) flies evolved from different fruit species collected between June and December in 2003 and 2004. In the lab, wing area of male and female adults varied significantly with temperature during larval development, being larger at the lowest temperature. Adult size also was significantly different depending on the host fruit in which larvae developed. The size of the flies captured at the field, either from traps or from fruits, varied seasonally showing a gradual pattern of change along the year. The largest individuals were obtained during winter and early spring and the smallest during late summer. In field conditions, the size of the adult Mediterannean fruit fly seems apparently more related with air temperature than with host fruit. The implications of this adult size pattern on the biology of C. capitata and on the application of the sterile insect technique are discussed.  相似文献   

14.
Field studies were conducted in southeastern Minnesota, 2000-2002, to assess damage potential and management options for adult Lygus lineolaris (Palisot de Beauvois) in June-bearing strawberries (Fragaria x ananassa). The first study was designed to assess the efficacy of a published economic threshold for L. lineolaris nymphs compared with a plant phenology-based threshold management program, targeted at L. lineolaris adults. L. lineolaris nymphs were sampled using the standard white pan beat method; adults were sampled using yellow sticky traps. In the second study, during 2001-2002, caged strawberries were artificially infested with adult L. lineolaris at specific plant growth stages (i.e., vegetative, green bud, white bud, first blossom, peak blossom, first green fruit, and first ripe fruit) to determine the most susceptible growth stages of strawberry. The phenology-based thresholds proved to be more effective in managing L. lineolaris than the current economic threshold based on nymphs. Results from the infestation timing study indicate that early-growth stages (i.e., green and white bud) are most susceptible to adult L. lineolaris feeding damage. During the early-growth stages, only L. lineolaris adults were present; infestations of nymphs occurred primarily from first blossom to green berry. Results from both studies indicate that (1) management of adult L. lineolaris during the early strawberry growth stages is recommended for maximizing marketable yield and (2) the use of plant phenology-based thresholds, when adults are present, will significantly improve insecticide spray timing, and thus minimize the number of insecticide sprays.  相似文献   

15.
In southern California, the sterile insect technique has been used since 1994 to prevent establishment of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). This method involves the continual mass release of sterile flies, which suppress or eliminate any introduced wild fly populations. In addition, Jackson traps baited with trimedlure are deployed throughout the preventative release region for the dual purpose of detecting wild flies and monitoring released sterile flies. Sterile fly recapture data for a 3-yr period was compared with climate and to host plant (in which traps were placed). Precipitation was negatively correlated; and temperature and relative humidity were positively correlated with fly recapture levels. The highest numbers of flies were recaptured during trapping periods associated with intermediate relative humidity and temperature, and low precipitation. Flies were recaptured throughout the entire year, in traps that had been frequently relocated to host plants with fruit. This finding suggests that these flies were capable of locating acceptable fruit in a variety of abiotic conditions. However, these data do not necessarily suggest that measurements unimportant in explaining sterile fly recapture are not of value in determining other outcomes important to the goals of sterile release programs, such as reducing the likelihood of establishment of an introduced wild Mediterranean fruit fly population. Future research might build on these results in developing more precise models useful in predicting recapture of sterile flies.  相似文献   

16.
The evolutionary ecology of nut dispersal   总被引:3,自引:0,他引:3  
A variety of nut-producing plants have mutualistic seed-dispersal interactions with animals (rodents and corvids) that scatter hoard their nuts in the soil. The goals of this review are to summarize the widespread horticultural, botanical, and ecological literature pertaining to nut dispersal inJuglans, Carya, Quercus, Fagus, Castanae, Castanopsis, Lithocarpus, Corylus, Aesculus, andPrunus; to examine the evolutionary histories of these mutualistic interactions; and to identify the traits of nut-bearing plants and nut-dispersing rodents and jays that influence the success of the mutualism. These interactions appear to have originated as early as the Paleocene, about 60 million years ago. Most nuts appear to have evolved from ancestors with wind-dispersed seeds, but the ancestral form of dispersal in almonds (Prunus spp.) was by frugivorous animals that ingested fruit. Nut-producing species have evolved a number of traits that facilitate nut dispersal by certain rodents and corvids while serving to exclude other animals that act as parasites of the mutualism. Nuts are nutritious food sources, often with high levels of lipids or proteins and a caloric value ranging from 5.7 to 153.5 kJ per propagule, 10–1000 times greater than most wind-dispersed seeds. These traits make nuts highly attractive food items for dispersers and nut predators. The course of nut development tends to reduce losses of nuts to insects, microbes, and nondispersing animals, but despite these measures predispersal and postdispersal nut mortality is generally high. Chemical defenses (e.g., tannins) in the cotyledons or the husk surrounding the nut discourage some nut predators. Masting of nuts (periodic, synchronous production of large nut crops) appears to reduce losses to insects and to increase the number of nuts dispersed by animals, and it may increase cross-pollination. Scatter hoarding by rodents and corvids removes nuts from other sources of nut predation, moves nuts away from source trees where density-dependent mortality is high (sometimes to habitats or microhabitats that favor seedling establishment), and buries nuts in the soil (which reduces rates of predation and helps to maintain nut viability). The large nutrient reserves of nuts not only attract animal dispersers but also permit seedlings to establish a large photosynthetic surface or extensive root system, making them especially competitive in low-light environments (e.g., deciduous forest) and semi-arid environments (e.g., dry mountains, Mediterranean climates). The most important postestablishment causes of seedling failure are drought, insufficient light, browsing by vertebrate herbivores, and competition with forbs and grasses. Because of the nutritional qualities of nuts and the synchronous production of large nut crops by a species throughout a region, nut trees can have pervasive impacts on other members of ecological communities. Nut-bearing trees have undergone dramatic changes in distribution during the last 16,000 years, following the glacial retreat from northern North America and Europe, and the current dispersers of nuts (i.e., squirrels, jays, and their relatives) appear to have been responsible for these movements.  相似文献   

17.
Cashew nut trees are consistently ant-visited throughout the year, with the ants attracted to a large number of extrafloral nectaries on the leaves, inflorescences, flowers, and developing nuts. The commercial production of cashew nut, for example, in India, Brazil, and east Africa, consistently applies pesticides, especially insecticides, in large monoculture plantings. Each year prophylactic spraying begins with the first flush of new leaves, continues through flowering, ending at about mid-nut development. We surveyed for ant diversity in sprayed and unsprayed cashew monocultures of various sizes and ages in Sri Lanka, India, and Malaysia to document the ant-cashew relationship and to explore the potential of ants replacing chemical pesticides in insect control. Using for-profit, commercial-size plantations as examples, we present information that cashew has a strong potential for arthropod-dependent protection from pests and suggest important habitat considerations for encouraging ants within cashew plantings.  相似文献   

18.
Parasitoid fitness depends largely on the capability to locate a host in an ecosystem. A parasitoid of a polyphagous host might not be able to find or to access the host in all its feeding niches. This study evaluated the niche selection of Hyssopus pallidus (Askew), a larval parasitoid of Cydia pomonella (Linnaeus), at the plant level with the goal of assessing its potential for biological control on different fruit crops throughout the plant cycle. Parasitoid behaviour during host location and reproduction rate were investigated on host caterpillars actively feeding on apple, pear, apricot or plum, and on caterpillars diapausing under the bark. Under laboratory conditions, the host searching behaviour of H. pallidus varied depending on the fruit species offered and the infestation of the fruits. Parasitoid females searched longer on apples than on other fruit species, and they searched longer on infested than on uninfested apples. Female wasps were able to locate and parasitize host caterpillars under the tree bark, and their behaviour did not vary with host accessibility. The numbers of caterpillars attacked by H. pallidus depended on the fruit species. The highest numbers of caterpillars were parasitized in apples and apricots. Their accessibility (i.e. position) within the fruit or on the branch did not influence parasitism success. Although hosts were parasitized throughout the season, the best results were achieved with early and late releases. Therefore, the host niche selection behaviour of H. pallidus most likely co-evolved with the host C. pomonella on apples, which renders H. pallidus a valuable biocontrol agent for successful release at different times of the season into apple orchards.  相似文献   

19.
Plant terpenes constitute a large class of compounds and have numerous biological roles as either primary or secondary metabolites. Terpene synthases (TPSs) play key roles on catalyzing the formation of different terpenes; they are divided into seven subfamilies based on sequence relatedness (TPSa–h). TPS-a proteins catalyze the formation of sesquiterpenes and diterpenes in plants. Physic nut (Jatropha curcas L.) is an attractive biofuel tree, but its seeds contain diterpene derivatives, which make them inedible for animals. In this study, 59 putative TPS genes (JcTPS01 to JcTPS59) were identified in the physic nut genome, and 26 belong to the TPS-a subfamily. Eight among the 26 TPS-a genes showed expression in developing seeds of physic nut in the present study. After heterologous expression of these eight genes in Escherichia coli and in vitro enzyme assays, six were shown to have TPS activities. Two (JcTPS09 and JcTPS11) catalyzed the production of diterpene casbene, which was consistent with earlier findings. The other four (JcTPS02, 23, 55, and 56) catalyzed the production of sesquiterpenes. These results may facilitate the efforts for identifying TPS genes involving the physic nut terpene synthesize.  相似文献   

20.
半闭弯尾姬蜂寄主搜索中的学习行为   总被引:3,自引:3,他引:0  
李欣  刘树生 《昆虫学报》2003,46(6):749-754
研究了半闭弯尾姬蜂寄主搜索过程中的学习行为。结果表明,成虫期之前的饲养寄主所取食的寄主植物对成蜂行为没有影响,而雌蜂早期的短暂经历可对其随后的行为反应产生显著影响,从而对已经历的植物气味表现出显著的嗜好,但这种通过学习所表现出的嗜好又可因新的经历而改变。雌成蜂不仅能对其所经历的虫伤寄主植物释放的信息化合物进行学习,而且对其所经历的寄主幼虫的信息化合物也能进行学习。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号