首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region.  相似文献   

4.
5.
6.
To establish the basis of sequence-specific DNA recognition by HMG boxes we separately transferred the minor and major wings from the sequence-specific HMG box of TCF1 alpha into their equivalent position in the non-sequence-specific box 2 of HMG1. Thus chimera THT1 contains the minor wing (of 11 N-terminal and 25 C-terminal residues) from the HMG box of TCF1 alpha and the major wing (the 45 residue central section) from HMG1 box 2, whilst the situation is reversed in chimera HTH1. The structural integrity of the two chimeric proteins was established by CD, NMR and their binding to four-way junction DNA. Gel retardation and circular permutation assays showed that only chimera THT1, containing the TCF1 alpha minor wing, formed a sequence-specific complex and bent the DNA. The bend angle was estimated to be 59 degrees for chimera THT1 and 52 degrees for the HMG box of TCF1 alpha. Our results, in combination with mutagenesis and other data, suggests a model for the DNA binding of HMG boxes in which the N-terminal residues and part of helix 1 contact the minor groove on the outside of a bent DNA duplex.  相似文献   

7.
The energetics of the Sox-5 HMG box interaction with DNA duplexes, containing the recognition sequence AACAAT, were studied by fluorescence spectroscopy, isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Fluorescence titration showed that the association constant of this HMG box with the duplexes is of the order 4x10(7) M(-1), increasing somewhat with temperature rise, i.e. the Gibbs energy is -40 kJ mol(-1) at 5 degrees C, decreasing to -48 kJ mol(-1) at 32 degrees C. ITC measurements of the enthalpy of association over this temperature range showed an endothermic effect below 17 degrees C and an exothermic effect above, suggesting a heat capacity change on binding of about -4 kJ K(-1) mol(-1), a value twice larger than expected from structural considerations. A straightforward interpretation of ITC data in heat capacity terms assumes, however, that the heat capacities of all participants in the association reaction do not change over the considered temperature range. Our previous studies showed that over the temperature range of the ITC experiments the HMG box of Sox-5 starts to unfold, absorbing heat and the heat capacities of the DNA duplexes also increase significantly. These heat capacity effects differ from that of the DNA/Sox-5 complex. Correcting the ITC measured binding enthalpies for the heat capacity changes of the components and complex yielded the net enthalpies which exhibit a temperature dependence of about -2 kJ K(-1) mol(-1), in good agreement with that predicted on the basis of dehydration of the protein-DNA interface. Using the derived heat capacity change and the enthalpy and Gibbs energy of association measured at 5 degrees C, the net enthalpy and entropy of association of the fully folded HMG box with the target DNA duplexes was determined over a broad temperature range. These functions were compared with those for other known cases of sequence specific DNA/protein association. It appears that the enthalpy and entropy of association of minor groove binding proteins are more positive than for proteins binding in the major groove. The observed thermodynamic characteristics of protein binding to the A+T-rich minor groove of DNA might result from dehydration of both polar and non-polar groups at the interface and release of counterions. The expected entropy of dehydration was calculated and found to be too large to be compensated by the negative entropy of reduction of translational/rotational freedom. This implies that DNA/HMG box association proceeds with significant decrease of conformational entropy, i.e. reduction in conformational mobility.  相似文献   

8.
The fold of the murine Sox-5 (mSox-5) HMG box in free solution has been determined by multidimensional NMR using (15)N-labeled protein and has been found to adopt the characteristic twisted L-shape made up of two wings: the major wing comprising helix 1 (F10--F25) and helix 2 (N32--A43), the minor wing comprising helix 3 (P51--Y67) in weak antiparallel association with the N-terminal extended segment. (15)N relaxation measurements show considerable mobility (reduced order parameter, S(2)) in the minor wing that increases toward the amino and carboxy termini of the chain. The mobility of residues C-terminal to Q62 is significantly greater than the equivalent residues of non-sequence-specific boxes, and these residues show a weaker association with the extended N-terminal segment than in non-sequence boxes. Comparison with previously determined structures of HMG boxes both in free solution and complexed with DNA shows close similarity in the packing of the hydrophobic cores and the relative disposition of the three helices. Only in hSRY/DNA does the arrangement of aromatic sidechains differ significantly from that of mSox-5, and only in rHMG1 box 1 bound to cisplatinated DNA does helix 1 have no kink. Helix 3 in mSox-5 is terminated by P68, a conserved residue in DNA sequence-specific HMG boxes, which results in the chain turning through approximately 90 degrees.  相似文献   

9.
There is evidence that HMGB proteins facilitate, while linker histones inhibit chromatin remodelling, respectively. We have examined the effects of HMG-D and histone H1/H5 on accessibility of nucleosomal DNA. Using the 601.2 nucleosome positioning sequence designed by Widom and colleagues we assembled nucleosomes in vitro and probed DNA accessibility with restriction enzymes in the presence or absence of HMG-D and histone H1/H5. For HMG-D our results show increased digestion at two spatially adjacent sites, the dyad and one terminus of nucleosomal DNA. Elsewhere varying degrees of protection from digestion were observed. The C-terminal acidic tail of HMG-D is essential for this pattern of accessibility. Neither the HMG domain by itself nor in combination with the adjacent basic region is sufficient. Histone H1/H5 binding produces two sites of increased digestion on opposite faces of the nucleosome and decreased digestion at all other sites. Our results provide the first evidence of local changes in the accessibility of nucleosomal DNA upon separate interaction with two linker binding proteins.  相似文献   

10.
An NMR model is presented for the structure of HMG-D, one of the DROSOPHILA: counterparts of mammalian HMG1/2 proteins, bound to a particular distorted DNA structure, a dA(2) DNA bulge. The complex is in fast to intermediate exchange on the NMR chemical shift time scale and suffers substantial linebroadening for the majority of interfacial resonances. This essentially precludes determination of a high-resolution structure for the interface based on NMR data alone. However, by introducing a small number of additional constraints based on chemical shift and linewidth footprinting combined with analogies to known structures, an ensemble of model structures was generated using a computational strategy equivalent to that for a conventional NMR structure determination. We find that the base pair adjacent to the dA(2) bulge is not formed and that the protein recognizes this feature in forming the complex; intermolecular NOE enhancements are observed from the sidechain of Thr 33 to all four nucleotides of the DNA sequence step adjacent to the bulge. Our results form the first experimental demonstration that when binding to deformed DNA, non-sequence-specific HMG proteins recognize the junction between duplex and nonduplex DNA. Similarities and differences of the present structural model relative to other HMG-DNA complex structures are discussed.  相似文献   

11.
To clarify the physical basis of DNA binding specificity, the thermodynamic properties and DNA binding and bending abilities of the DNA binding domains (DBDs) of sequence-specific (SS) and non-sequence-specific (NSS) HMG box proteins were studied with various DNA recognition sequences using micro-calorimetric and optical methods. Temperature-induced unfolding of the free DBDs showed that their structure does not represent a single cooperative unit but is subdivided into two (in the case of NSS DBDs) or three (in the case of SS DBDs) sub-domains, which differ in stability. Both types of HMG box, most particularly SS, are partially unfolded even at room temperature but association with DNA results in stabilization and cooperation of all the sub-domains. Binding and bending measurements using fluorescence spectroscopy over a range of ionic strengths, combined with calorimetric data, allowed separation of the electrostatic and non-electrostatic components of the Gibbs energies of DNA binding, yielding their enthalpic and entropic terms and an estimate of their contributions to DNA binding and bending. In all cases electrostatic interactions dominate non-electrostatic in the association of a DBD with DNA. The main difference between SS and NSS complexes is that SS are formed with an enthalpy close to zero and a negative heat capacity effect, while NSS are formed with a very positive enthalpy and a positive heat capacity effect. This indicates that formation of SS HMG box-DNA complexes is specified by extensive van der Waals contacts between apolar groups, i.e. a more tightly packed interface forms than in NSS complexes. The other principal difference is that DNA bending by the NSS DBDs is driven almost entirely by the electrostatic component of the binding energy, while DNA bending by SS DBDs is driven mainly by the non-electrostatic component. The basic extensions of both categories of HMG box play a similar role in DNA binding and bending, making solely electrostatic interactions with the DNA.  相似文献   

12.
DNA minicircles, where the length of DNA is below the persistence length, are highly effective, preferred, ligands for HMG-box proteins. The proteins bind to them "structure-specifically" with affinities in the nanomolar range, presumably to an exposed widened minor groove. To understand better the basis of this preference, we have studied the binding of HMG1 (which has two tandem HMG boxes linked by a basic extension to a long acidic tail) and Drosophila HMG-D (one HMG box linked by a basic region to a short and less acidic tail), and their HMG-box domains, to 88 bp and 75 bp DNA minicircles. In some cases we see cooperative binding of two molecules to the circles. The requirements for strong cooperativity are two HMG boxes and the basic extension; the latter also appears to stabilize and constrain the complex, preventing binding of further protein molecules. HMG-D, with a single HMG box, does not bind cooperatively. In the case of HMG1, the acidic tail is not required for cooperativity and does not affect binding significantly, in contrast to a much greater effect with linear DNA, or even four-way junctions (another distorted DNA substrate). Such effects could be relevant in the hierarchy of binding of HMG-box proteins to DNA distortions in vivo, where both single-box and two-box proteins might co-exist, with or without basic extensions and acidic tails.  相似文献   

13.
Cmb1, a novel HMG box protein from Schizosaccharomyces pombe, has been characterized biochemically using glutaraldehyde cross-linking, gel-filtration and analytical ultracentrifugation. It was identified as a monomeric, non-spherical protein, with a tendency to aggregate in solution. Limited proteolysis with trypsin and chymotrypsin showed that the C-terminal HMG box was a compact, proteolytically stable domain and the N-terminal region of Cmb1 was relatively unstructured and more easily digested.As Cmb1 was previously identified as a potential mismatch-binding protein, the binding constants and stoichiometry for both homoduplex and heteroduplex DNA were determined using an IASys resonant mirror biosensor. Cmb1 indeed demonstrated a tighter association with mismatched DNA, especially with the C/Delta-mismatch. Expression constructs of Cmb1 were made to study the sections of the protein involved in DNA binding. Constructs with the N-terminal region absent revealed that the C-terminal HMG box was the primary DNA-binding region. The presence of the N-terminal region did, however, facilitate tighter binding to both homoduplex and heteroduplex DNA. The amino acid residues isoleucine 14 and leucine 39 were located as putative intercalating residues using structure guided homology modelling. The model templates were derived from two distinct HMG:DNA complexes: HMG-D bound to homoduplex DNA and HMG 1 bound to cisplatin DNA. Binding studies using the Cmb1 HMG box with point mutations in these residues showed that isoleucine 14 was important for the binding of Cmb1 to homoduplex DNA, but affected binding to mismatches to a lesser extent. In contrast, leucine 39 appeared to have a more significant function in binding to mismatched DNA.  相似文献   

14.
Bauerle KT  Kamau E  Grove A 《Biochemistry》2006,45(11):3635-3645
The Saccharomyces cerevisiae high-mobility group protein HMO1 is composed of two DNA-binding domains termed box A and box B, of which only box B is predicted to adopt a HMG fold, and a lysine-rich C-terminal extension. To assess the interaction between individual domains and their contribution to DNA binding, several HMO1 variants were analyzed. Using circular dichroism spectroscopy, thermal stability was measured. While the melting temperatures of HMO1-boxA and HMO1-boxB are 57.2 and 47.2 degrees C, respectively, HMO1-boxBC, containing box B and the entire C-terminal tail, melts at 46.1 degrees C, suggesting little interaction between box B and the tail. In contrast, full-length HMO1 exhibits a single melting transition at 47.9 degrees C, indicating that interaction between box A and either box B or the tail destabilizes this domain. As HMO1-boxAB, lacking only the lysine-rich C-terminal segment, exhibits two melting transitions at 46.0 and 63.3 degrees C, we conclude that the destabilization of the box A domain seen in full-length HMO1 is due primarily to its interaction with the lysine-rich tail. Determination of DNA substrate specificity using electrophoretic mobility shift assays shows unexpectedly that the lysine-rich tail does not increase DNA binding affinity but instead is required for DNA bending by full-length HMO1; HMO1-boxBC, lacking the box A domain, also fails to bend DNA. In contrast, both HMO1 and HMO1-boxAB, but not the individual HMG domains, exhibit preferred binding to constrained DNA minicircles. Taken together, our data suggest that interactions between box A and the C-terminal tail induce a conformation that is required for DNA bending.  相似文献   

15.
16.
RAG1 and RAG2 proteins catalyze site-specific DNA cleavage reactions in V(D)J recombination, a process that assembles antigen receptor genes from component gene segments during lymphocyte development. The first step towards the DNA cleavage reaction is the sequence-specific association of the RAG proteins with the conserved recombination signal sequence (RSS), which flanks each gene segment in the antigen receptor loci. Questions remain as to the contribution of each RAG protein to recognition of the RSS. For example, while RAG1 alone is capable of recognizing the conserved elements of the RSS, it is not clear if or how RAG2 may enhance sequence-specific associations with the RSS. To shed light on this issue, we examined the association of RAG1, with and without RAG2, with consensus RSS versus non-RSS substrates using fluorescence anisotropy and gel mobility shift assays. The results indicate that while RAG1 can recognize the RSS, the sequence-specific interaction under physiological conditions is masked by a high-affinity non-sequence-specific DNA binding mode. Significantly, addition of RAG2 effectively suppressed the association of RAG1 with non-sequence-specific DNA, resulting in a large differential in binding affinity for the RSS versus the non-RSS sites. We conclude that this represents a major means by which RAG2 contributes to the initial recognition of the RSS and that, therefore, association of RAG1 with RAG2 is required for effective interactions with the RSS in developing lymphocytes.  相似文献   

17.
Sox-5 is one of a family of genes which show homology to the HMG box region of the testis determining gene SRY. We have used indirect immunofluorescence to show that Sox-5 protein is localized to the nucleus of post-meiotic round spermatids in the mouse testis. In vitro footprinting and gel retardation assays demonstrate that Sox-5 binds specifically to the sequence AACAAT with moderately high affinity (Kd of approximately 10(-9) M). Moreover, interaction of Sox-5 with its target DNA induces a significant bend in the DNA, characteristic of HMG box proteins. Circular dichroism spectroscopy of the Sox-5 HMG box and its specific complex with DNA shows an alteration in the DNA spectrum, perhaps as a consequence of DNA bending, but none in the protein spectrum on complex formation. The dependence of the change in the CD spectrum with protein to DNA ratio demonstrates the formation of a 1:1 complex. Analysis of the structure of the Sox-5 HMG box by 2D NMR suggests that both the location of helical secondary structure as well as the tertiary structure is similar to that of HMG1 box 2.  相似文献   

18.
The biological activity of the c-Abl protein is linked to its tyrosine kinase and DNA-binding activities. The protein, which plays a major role in the cell cycle response to DNA damage, interacts preferentially with sequences containing an AAC motif and exhibits a higher affinity for bent or bendable DNA, as is the case with high mobility group (HMG) proteins. We have compared the DNA-binding characteristics of the DNA-binding domain of human c-Abl and the HMG-D protein from Drosophila melanogaster. c-Abl binds tightly to circular DNA molecules and potentiates the interaction of DNA with HMG-D. In addition, we used a series of DNA molecules containing modified bases to determine how the exocyclic groups of DNA influence the binding of the two proteins. Interfering with the 2-amino group of purines affects the binding of the two proteins similarly. Adding a 2-amino group to adenines restricts the access of the proteins to the minor groove, whereas deleting this bulky substituent from guanines facilitates the protein-DNA interaction. In contrast, c-Abl and HMG-D respond very differently to deletion or addition of the 5-methyl group of pyrimidine bases in the major groove. Adding a methyl group to cytosines favours the binding of c-Abl to DNA but inhibits the binding of HMG-D. Conversely, deleting the methyl group from thymines promotes the interaction of the DNA with HMG-D but diminishes its interaction with c-Abl. The enhanced binding of c-Abl to DNA containing 5-methylcytosine residues may result from an increased propensity of the double helix to denature locally coupled with a protein-induced reduction in the base stacking interaction. The results show that c-Abl has unique DNA-binding properties, quite different from those of HMG-D, and suggest an additional role for the protein kinase.  相似文献   

19.
Jung Y  Lippard SJ 《Biochemistry》2003,42(9):2664-2671
HMGB1, a highly conserved non-histone DNA-binding protein, interacts with specific DNA structural motifs such as those encountered at cisplatin damage, four-way junctions, and supercoils. The interaction of full-length HMGB1, containing two tandem HMG box domains and a C-terminal acidic tail, with cisplatin-modified DNA was investigated by hydroxyl radical footprinting and electrophoretic gel mobility shift assays. The full-length HMGB1 protein binds to DNA containing a 1,2-intrastrand d(GpG) cross-link mainly through domain A, as revealed by footprinting, with a dissociation constant K(d) of 120 nM. Site-directed mutagenesis of intercalating residues in both HMG domains A and B in full-length HMGB1 further supports the conclusion that only one HMG box domain is bound to the site of cisplatin damage. Interaction of the C-terminal tail with the rest of the HMGB1 protein was examined by EDC cross-linking experiments. The acidic tail mainly interacts with domain B and linker regions rather than domain A in HMGB1. These results illuminate the respective roles of the tandem HMG boxes and the C-terminal acidic tail of HMGB1 in binding to DNA and to the major DNA adducts formed by the anticancer drug cisplatin.  相似文献   

20.
Thermodynamics of HMGB1 interaction with duplex DNA   总被引:4,自引:0,他引:4  
Müller S  Bianchi ME  Knapp S 《Biochemistry》2001,40(34):10254-10261
The high mobility group protein HMGB1 is a small, highly abundant protein that binds to DNA in a non-sequence-specific manner. HMGB1 consists of 2 DNA binding domains, the HMG boxes A and B, followed by a short basic region and a continuous stretch of 30 glutamate or aspartate residues. Isothermal titration calorimetry was used to characterize the binding of HMGB1 to the double-stranded model DNAs poly(dAdT).(dTdA) and poly(dGdC).(dCdG). To elucidate the contribution of the different structural motifs to DNA binding, calorimetric measurements were performed comparing the single boxes A and B, the two boxes plus or minus the basic sequence stretch (AB(bt) and AB), and the full-length HMGB1 protein. Thermodynamically, binding of HMGB1 and all truncated constructs to duplex DNA was characterized by a positive enthalpy change at 15 degrees C. From the slopes of the temperature dependence of the binding enthalpies, heat capacity changes of -0.129 +/- 0.02 and -0.105 +/- 0.05 kcal mol(-1) K(-1) were determined for box A and full-length HMGB1, respectively. Significant differences in the binding characteristics were observed using full-length HMGB1, suggesting an important role for the acid tail in modulating DNA binding. Moreover, full-length HMGB1 binds differently these two DNA templates: binding to poly(dAdT).(dTdA) was cooperative, had a larger apparent binding site size, and proceeded with a much larger unfavorable binding enthalpy than binding to poly(dGdC).(dCdG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号