首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biodegradation of benzothiazole and 2-hydroxybenzothiazole by two strains of Rhodococcus was monitored by reversed phase high-pressure liquid chromatography and by 1H nuclear magnetic resonance (NMR). Both xenobiotics were biotransformed into a hydroxylated derivative of 2-hydroxybenzothiazole by these two strains. The chemical structure of this metabolite was determined by a new NMR methodology: long-range 1H-15N heteronuclear shift correlation without any previous 15N enrichment of the compound. This powerful NMR tool allowed us to assign the metabolite structure to 2,6-dihydroxybenzothiazole.  相似文献   

2.
The pathway for biodegradation of benzothiazole (BT) and 2-hydroxybenzothiazole (OBT) by Rhodococcus pyridinovorans strain PA was studied in detail. The kinetics of biodegradation were monitored by in situ (1)H nuclear magnetic resonance (NMR) in parallel with reversed-phase high-performance liquid chromatography (HPLC). Successive oxidations from BT to OBT and then from OBT to dihydroxybenzothiazole were observed. Further insight was obtained by using a mutant strain with impaired ability to grow on BT and OBT. The precise structure of another intermediate was determined by in situ two-dimensional (1)H-(13)C NMR and HPLC-electrospray ionization mass spectrometry; this intermediate was found to be a ring-opening product (a diacid structure). Detection of this metabolite, together with the results obtained by (1)H and (19)F NMR when cells were incubated with 3-fluorocatechol, demonstrated that a catechol 1,2-dioxygenase is involved in a pathway for biodegradation of BTs in this Rhodococcus strain. Our results show that catechol 1,2-dioxygenase and catechol 2,3-dioxygenase activities may both be involved in the biodegradation of BTs depending on the culture conditions.  相似文献   

3.
Incubation of NAD+ with extracts from sea urchin eggs resulted in production of a metabolite which could mobilize intracellular Ca2+ stores of the eggs. In this study we present structural evidence indicating that the metabolite is a cyclized ADP-ribose having an N-glycosyl linkage between the anomeric carbon of the terminal ribose unit and the N6-amino group of the adenine moiety. In view of this structure we propose cyclic ADP-ribose as the common name for the metabolite. The purification procedure for the metabolite consisted of deproteinizing the incubated egg extracts and sequentially chromatographing the extracts through three different high pressure liquid chromatography (HPLC) columns. The homogeneity of the purified metabolite was further verified by HPLC on a Partisil 5 SAX column. Using radioactive precursor NAD+ with label at various positions it was demonstrated that the metabolite was indeed derived from NAD+ and that the adenine ring as well as the adenylate alpha-phosphate were retained in the metabolite whereas the nicotinamide group was removed. This was confirmed by 1H NMR and two-dimensional COSY experiments, which also allowed the identification of all 12 protons on the two ribosyl units as well as the two protons on the adenine ring. From the chemical shifts of the two anomeric protons it was concluded that the C-1 carbons of both ribosyl units were still bonded to nitrogen. The positive and negative ion fast atom bombardment mass spectra showed (M + Na)+, (M - H + 2Na)+, (M - H)-, and (M - 2H + Na)- peaks at m/z 564, 586, 540, and 562, respectively. Exact mass measurements indicated a molecular weight of 540.0526 for (M - H)-. This together with the constraints imposed by the results from NMR, radioactive labeling, and total phosphate determination uniquely specified a molecular composition of C15H21N5O13P2. Analysis by 1H NMR and mass spectroscopy of the only major breakdown product of the metabolite after prolonged incubation at room temperature established that it was ADP-ribose, thus providing strong support for the cyclic structure.  相似文献   

4.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

5.
The identity of the axial ligand contributed by the drug in hydroperoxide-Co(III)-bleomycin and hydroperoxide-Co(III)-deglycobleomycin has been in doubt. With each structure, a combination of (1)H[(15)N] HSQC and HMBC and (1)H COSY and NOESY NMR spectroscopy was used to observe and completely assign the nonaromatic (15)N chemical shifts of natural abundance bleomycin in the two hydroperoxide-Co(III) structures. Together with the (15)N assignments from a published 1D (15)N spectrum, the results permitted the assignment of the primary amine nitrogen to an axial ligand position in both structures.  相似文献   

6.
This is the second of two papers [Drews, M., Doverskog, M., Ohman, L., Chapman, B.E., Jacobsson, U., Kuchel, P.W., H?ggstr?m, L., 2000. Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by 1H/15N NMR. J. Biotechnol. 78, 23-37]. where the general goal has been to determine and characterise the glutamine metabolism in Sf9 cells. The presence of glutamate synthase (GOGAT) activity was investigated in cell-free extracts of S. frugiperda (Sf9) insect cells by modified 1H/15N spin-echo and gradient enhanced multiple quantum coherence NMR spectroscopy techniques. Cell-free extracts were prepared from cells cultured in a serum-free medium. The assay conditions were based on conventional spectrophotometric and chromatographic methods. NMR data showed that nitrogen from [5-15N] glutamine was selectively incorporated into 2-oxoglutarate forming [2-15N] glutamate with a specific activity of 4.15 +/- 0.21 nmol [2-15N] glutamate min -1 (mg total protein)-1 in the cell-free extracts. The enzyme activity was exclusively dependent on NADH as coenzyme and was completely inhibited by 1 mM azaserine. From the results obtained, we conclude that Sf9 cells possess NADH-GOGAT activity. Furthermore, the high specificity of the NMR method enables distinction of competing reactions from glutaminase and glutamate dehydrogenase.  相似文献   

7.
Solid-state NMR spectroscopic techniques were used to investigate the secondary structure of the transmembrane peptide phospholamban (TM-PLB), a sarcoplasmic Ca(2+) regulator. (13)C cross-polarization magic angle spinning spectra of (13)C carbonyl-labeled Leu39 of TM-PLB exhibited two peaks in a pure 1-palmitoyl-2-oleoyl-phosphocholine (POPC) bilayer, each due to a different structural conformation of phospholamban as characterized by the corresponding (13)C chemical shift. The addition of a negatively charged phospholipid (1-palmitoyl-2-oleoylphosphatidylglycerol (POPG)) to the POPC bilayer stabilized TM-PLB to an alpha-helical conformation as monitored by an enhancement of the alpha-helical carbonyl (13)C resonance in the corresponding NMR spectrum. (13)C-(15)N REDOR solid-state NMR spectroscopic experiments revealed the distance between the (13)C carbonyl carbon of Leu39 and the (15)N amide nitrogen of Leu42 to be 4.2+/-0.2A indicating an alpha-helical conformation of TM-PLB with a slight deviation from an ideal 3.6 amino acid per turn helix. Finally, the quadrupolar splittings of three (2)H labeled leucines (Leu28, Leu39, and Leu51) incorporated in mechanically aligned DOPE/DOPC bilayers yielded an 11 degrees +/-5 degrees tilt of TM-PLB with respect to the bilayer normal. In addition to elucidating valuable TM-PLB secondary structure information, the solid-state NMR spectroscopic data indicates that the type of phospholipids and the water content play a crucial role in the secondary structure and folding of TM-PLB in a phospholipid bilayer.  相似文献   

8.
Proton and phosphorus two-dimensional NMR studies are reported for the complementary d(C1-A2-T3-G4-X5-G6-T7-A8-C9).d(G10-T11-A12-C13-A14-C15-A 16-T17-G18) nonanucleotide duplex (designated X.A 9-mer) that contains a 1,N2-propanodeoxyguanosine exocyclic adduct, X5, opposite deoxyadenosine A14 in the center of the helix. The NMR studies detect a pH-dependent conformational transition; this paper focuses on the structure present at pH 5.8. The two-dimensional NOESY studies of the X.A 9-mer duplex in H2O and D2O solution establish that X5 adopts a syn orientation while A14 adopts an anti orientation about the glycosidic bond at the lesion site. The large downfield shift of the amino protons of A14 demonstrates protonation of the deoxyadenosine base at pH 5.8 such that the protonated X5(syn).A14(anti) pair is stabilized by two hydrogen bonds at low pH. At pH 5.8, the observed NOE between the H8 proton of X5 and the H2 proton of A14 in the X.A 9-mer duplex demonstrates unequivocally the formation of the protonated X5(syn).A14(anti) pair. The 1,N2-propano bridge of X5(syn) is located in the major groove. Selective NOEs from the exocyclic methylene protons of X5 to the major groove H8 proton of flanking G4 but not G6 of the G4-X5-G6 segment provide additional structural constraints on the local conformation at the lesion site. A perturbation in the phosphodiester backbone is detected at the C13-A14 phosphorus located at the lesion site by 31P NMR spectroscopy. The two-dimensional NMR studies have been extended to the related complementary X.G 9-mer duplex that contains a central X5.G14 lesion in a sequence that is otherwise identical with the X.A 9-mer duplex. The NMR experimental parameters are consistent with formation of a pH-independent X5(syn).G14(anti) pair stabilized by two hydrogen bonds with the 1,N2-propano exocyclic adduct of X5(syn) located in the major groove.  相似文献   

9.
Camelids, (dromedaries, camels, and llamas) produce heavy-chains antibodies, with their antigen recognition sites composed of a single VH-like domain, referred to as VHH. The solution structure of one of these VHHs domains (VHH-H14), raised against the alpha subunit of the human chorionic gonadotropin hormone (hCG), has been determined by (15)N heteronuclear three-dimensional NMR spectroscopy. The framework is well resolved within the set of 20 best-calculated NMR structures and is close to that of classical VH domains from vertebrate antibodies, consisting of two antiparallel beta-sheets organized in a beta-barrel. Loops display a lower precision, especially the Complementarity Determining Regions (CDRs), involved in antigen recognition. Comparison of the three-dimensional VHH-H14 solution structure with its previously solved crystal structure (Spinelli et al., Nature Struct. Biol. 1996;3:752-757) reveals a high similarity to the framework, whereas significant conformational differences occur on CDRs, leading to the assumption that the antigen recognition site is a more mobile part. In order to deepen our insights into the dynamics of VHH-H14 in solution, (15)N relaxation was measured with longitudinal R1 and transverse R2 self-relaxation rates, and (15)N steady-state heteronuclear nuclear Overhauser enhancements (NOE), making it possible to probe picosecond-to-millisecond internal motions. Determination of dynamic parameters (S(2), tau(e), and Rex) through the Lipari-Szabo Model-free approach enables the identification of several regions with enhanced dynamics. Especially, the mobility measurements from NMR confirm that the antigen recognition site is the most mobile part of the VHH-H14 domain on picosecond-to-nanosecond fast time scales. Several residues belonging to the three CDRs are submitted to chemical exchange processes occurring on slow microsecond-to-millisecond time scales, suggesting that the formation of the VHH/antigen complex should be accompanied by structural changes.  相似文献   

10.
Asakura T  Sugino R  Yao J  Takashima H  Kishore R 《Biochemistry》2002,41(13):4415-4424
The solid-state (13)C CP-MAS NMR spectra of biosynthetically labeled [(13)C(alpha)]Tyr, [(13)C(beta)]Tyr, and [(13)C(alpha)]Val silk fibroin samples of Bombyx mori, in silk I (the solid-state structure before spinning) and silk II (the solid-state structure after spinning) forms, have been examined to gain insight into the conformational preferences of the semicrystalline regions. To establish the relationship between the primary structure of B. mori silk fibroin and the "local" structure, the conformation-dependent (13)C chemical shift contour plots for Tyr C(alpha), Tyr C(beta), and Val C(alpha) carbons were generated from the atomic coordinates of high-resolution crystal structures of 40 proteins and their characteristic (13)C isotropic NMR chemical shifts. From comparison of the observed Tyr C(alpha) and Tyr C(beta) chemical shifts with those predicted by the contour plots, there is strong evidence in favor of an antiparallel beta-sheet structure of the Tyr residues in the silk fibroin fibers. On the other hand, Tyr residues take a random coil conformation in the fibroin film with a silk I form. The Val residues are likely to assume a structure similar to those of Tyr residues in silk fiber and film. Solid-state (2)H NMR measurements of [3,3-(2)H(2)]Tyr-labeled B. mori silk fibroin indicate that the local mobility of the backbone and the C(alpha)-C(beta) bond is essentially "static" in both silk I and silk II forms. The orientation-dependent (i.e., parallel and perpendicular to the magnetic field) solid-state (15)N NMR spectra of biosynthetically labeled [(15)N]Tyr and [(15)N]Val silk fibers reveal the presence of highly oriented semicrystalline regions.  相似文献   

11.
We report the three-dimensional structure of YggX from Salmonella enterica, determined by solution nuclear magnetic resonance (NMR) spectroscopy from protein labeled with carbon-13 and nitrogen-15 produced by Escherichia coli cells. The protein has a beta1beta2alpha1alpha2alpha3 fold that is unique to YggX and one of its homologs, a protein from Pseudomonas aeruginosa with 45% sequence identity whose X-ray structure [Protein Data Bank (PDB) 1T07] was determined by a structural genomics center. The NMR structure, which revealed that the C-terminal region of YggX is dynamically disordered, explains why electron density from the corresponding region was missing in the X-ray structure of the Pseudomonas protein. Because it has been hypothesized that YggX has a role in iron trafficking, we investigated the influence of Fe(II) on the (1)H-(15)N NMR fingerprint region of nitrogen-15-labeled YggX. Several signals shifted or broadened upon the addition of excess Fe(II) under anoxic conditions, with His81 showing the largest effect. These results indicate that Fe(II) binds weakly to this protein at a region of the sequence conserved only in the subset of the YggX proteins from organisms similar to Salmonella. The finding that iron binds only weakly to YggX, and not to a highly conserved region of the structure, suggests that the role of this protein in iron homeostasis is more complex than previously thought.  相似文献   

12.
During growth in an arginine-deficient (chemically defined) medium, cells of Streptococcus lactis K1 formed significant amounts of a previously undetected ninhydrin-positive compound. This intracellular compound did not cochromatograph with any of a wide range of amino acids or amino acid analogs tested. However, by two-dimensional thin layer chromatography, the unknown compound migrated close to the recently discovered N5-(1-carboxyethyl)ornithine (Thompson, J., Curtis, M. A., and Miller, S. P. F. (1986) J. Bacteriol. 167, 522-529; Miller, S. P. F., and Thompson, J. (1987) J. Biol. Chem. 262, 16109-16115). The purified compound behaved as a neutral amino acid and eluted between valine and methionine in the amino acid analyzer. The results of 1H NMR spectroscopy suggested the presence of a lysine backbone and a coupled methyl-methine unit in the molecule, and 13C NMR showed that there were nine carbon atoms, of which two (C-1 and C-7) were carboxyl carbons. The simplest structure compatible with the physicochemical data was that of an alkylated derivative of lysine. The identity of this new amino acid, N6-(1-carboxyethyl)lysine, was confirmed by chemical synthesis. In vivo labeling experiments conducted using L[U-14C]lysine and [epsilon-15N]lysine showed that exogenous lysine served as the precursor of intracellular N6-(1-carboxyethyl)lysine and that the epsilon-amino N atom was conserved during biosynthesis of the lysine derivative. Of the two possible diastereomers (2S,8S or 2S,8R) of N6-(1-carboxyethyl)lysine, comparative 13C NMR spectroscopy established that the amino acid produced by S. lactis K1 was exclusively of the 2S,8S configuration.  相似文献   

13.
14.
Capsular polysaccharide from two strains of Pasteurella haemolytica serotype T15 was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, proved to be very similar in structure to the capsular polysaccharide of P. haemolytica serotype T4 and identical to the previously described K62 (K2ab) capsular polysaccharide of Escherichia coli, and the capsular polysaccharide of Neisseria meningitidis serotype H, i.e. ----(2-glycerol-3)----(phosphate)----(4-alpha-D-galactopyranose -1)---- with partial O-acetylation on the galactose residues. Electron microscopy with Protein A-gold labelled antisera showed that the polysaccharide was peripherally located on the surface of all three organisms. Chemical removal of O-acetyl groups from the polysaccharide yielded a structure identical to that previously described for E. coli K2 (K2a). Both O-acetylated and de-O-acetylated P. haemolytica T15 polymers, when absorbed on to sheep erythrocytes in passive haemagglutination assays, yielded identical antibody titres with sera raised against P. haemolytica T15, E. coli K2 or N. meningitidis H whole cells. De-O-acetylation of the Pasteurella polysaccharide influenced its precipitability with immune sera, but this could not be related to the absence of O-acetyl groups because the non-acetylated E. coli K2 polymer readily precipitated with a line of 'identity' with the acetylated P. haemolytica T15 polymer.  相似文献   

15.
Four novel aqua-bridged dinuclear complexes with a formula M2(mu-H2O)(mu-OAc)2(Im)4(OAc)2(Im)4(OAc)2 (where Im=imidazole, M=Mg2+ 1, Mn2+ 2, Ni2+ 3 and Co2+ 4) have been synthesized and characterized. Complexes 1, 2 and 3 have been characterized by X-ray crystallography. Two M2+ ions are bridged by an aqua molecule and two carboxylate anion with M...M=3.635-3.777 A, M-OH(2)=2.109-2.246 A and M-OH(2)-M=114.4-119.0 degrees, respectively. Each complex is further stabilized by two intramolecular hydrogen bonds between the hydrogens of the bridging aqua and the oxygens of the terminal monodentate acetates with a distance of O...O=2.6 A. The terminal monodentate acetates display "reversed" C-O distances, namely the C-O(free) distances are actually longer than the C-O(coordinating) distances. This abnormal geometry of a monodentate carboxylate would be caused by the strong "pulling effect" on the terminal carboxylates by intra- and intermolecular hydrogen bonds. The O-H stretching vibration of the bridging water was identified at ca. 2328 cm(-1) in IR spectra based on the deuterium isotope shift. The solid state 13C and 15N NMR spectra of 1 displayed two sets of peaks for acetate and Im ligands, respectively, consistent with the presence of two types of coordination modes of acetate and the two symmetrically non-equivalent Im as revealed by X-ray structure. 15N chemical shift of NH in Im ligands underwent about 6 ppm downfield shift due to its involvement in an intermolecular hydrogen bond.  相似文献   

16.
Plasma obtained from 20 week old normal Wistar-derived and Zucker (fa/fa) rats was analysed using a number of different analytical methodologies to obtain global metabolite profiles as part of metabonomic investigations of animal models of diabetes. Samples were analysed without sample pre-treatment using 1H NMR spectroscopy, after acetonitrile solvent protein precipitation by ultra-performance liquid chromatography-MS (UPLC-MS) and after acetonitrile protein precipitation and derivatisation for capillary gas chromatography-MS (GC-MS). Subsequent data analysis using principal components analysis revealed that all three analytical platforms readily detected differences between the plasma metabolite profiles of the two strains of rat. There was only limited overlap between the metabolites detected by the different methodologies and the combination of all three methods of metabolite profiling therefore provided a much more comprehensive profile than would have been provided by their use individually.  相似文献   

17.
The labelling of metabolites with the NMR active nucleus 13C allows not only metabolite enrichments to be monitored, but also the relative fluxes through competing pathways to be delineated. [2-13C, 15N]alanine was used as a metabolic probe to investigate compartmentation in superfused cerebral slices. Perchloric acid extracts of the tissue were investigated using 13C NMR spectroscopy. The spectra were obtained using a CryoProbe optimised for 13C detection (dual CryoProbe [13C, 1H]) in which the receiver and transmitter coils are cooled to approximately 20K to reduce contributions to noise in the signal obtained. Compared with conventional inverse geometry probe, the signal-to-noise ratio (S/N) was increased by approximately 17-fold using this device. A large proportion of alanine was initially metabolised over the first 20 min by glial cells, as indicated by the relative importance of the glial, only enzyme pyruvate carboxylase to the labelling pattern of glutamate, with the ratio of pyruvate carboxylase to pyruvate dehydrogenase derived glutamate being 0.25, and exported [2-13C, 15N]aspartate.Using the increased sensitivity of the CryoProbe, [2-13C, 15N]aspartate was also detected in the extracts of cerebral tissue. This metabolite could only have been derived via the pyruvate carboxylase pathway, and given the large export of the metabolite into the superfusion buffer suggests the occurrence of a "metabolon" arrangement of enzymes within glial cells.  相似文献   

18.
The denaturant-induced (un)folding of apoflavodoxin from Azotobacter vinelandii has been followed at the residue level by NMR spectroscopy. NH groups of 21 residues of the protein could be followed in a series of 1H-15N heteronuclear single-quantum coherence spectra recorded at increasing concentrations of guanidinium hydrochloride despite the formation of protein aggregate. These NH groups are distributed throughout the whole apoflavodoxin structure. The midpoints of unfolding determined by NMR coincide with the one obtained by fluorescence emission spectroscopy. Both techniques give rise to unfolding curves with transition zones at significantly lower denaturant concentrations than the one obtained by circular dichroism spectroscopy. The NMR (un)folding data support a mechanism for apoflavodoxin folding in which a relatively stable intermediate is involved. Native apoflavodoxin is shown to cooperatively unfold to a molten globule-like state with extremely broadened NMR resonances. This initial unfolding step is slow on the NMR chemical shift timescale. The subsequent unfolding of the molten globule is faster on the NMR chemical shift timescale and the limited appearance of 1H-15N HSQC cross peaks of unfolded apoflavodoxin in the denaturant range studied indicates that it is noncooperative.  相似文献   

19.
Fragments of G protein-coupled receptors (GPCRs) are widely used as models to investigate these polytopic integral-membrane, signal-transducing molecules, but have proven difficult to prepare in quantities necessary for NMR analyses. We report on the biosynthesis of two double transmembrane (TM) containing fragments of Ste2p, the alpha-factor GPCR from the yeast Saccharomyces cerevisiae. Ste2p(G31-T110) [TM1-TM2] and Ste2p(R231-S339) [TM6-TM7-CT40] were expressed as TrpDeltaLE fusion proteins in Escherichia coli and released by CNBr cleavage. Expression yields were optimized using different strains and induction parameters, and by performing CNBr cleavage directly on inclusion bodies. Nonlabeled and uniformly labeled [15N]-TM1-TM2 and TM6-TM7-CT40, as well as uniformly labeled [15N,13C]-TM1-TM2 and TM1-TM2 selectively labeled with [15N-Ala], [15N-Phe], [15N-Leu], [15N-Ile], and [15N-Val] were prepared. Yields of target peptides with >95% homogeneity varied from 3 mg/L of fermentation ([15N]-TM6-TM7-CT40) to 20 mg/L (selectively labeled TM1-TM2). The high level biosynthesis and the efficient CNBr processing and purification yields allowed the initiation of a comprehensive biophysical analysis of TM1-TM2 and TM6-TM7-CT40. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that TM1-TM2 was monomeric in this micellar environment, whereas TM6-TM7-CT40 migrated as a dimer. CD analysis indicated that TM1-TM2 was highly helical in SDS and 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-RAC-(1-glycerol)], but had a tendency to aggregate in dodecylphosphocholine micelles. Similar results were found with TM6-TM7-CT40. Conditions for NMR measurements were optimized, and both TM1-TM2 and TM6-TM7-CT40 exhibited more than 90% of the expected crosspeaks in the [15N,1H]-HSQC spectrum. These findings set the stage for the determination of the 3D structure of these large domains of a GPCR in micelles using high-resolution NMR.  相似文献   

20.
Comparative quantitative metabolite profiling can be used for better understanding of cell functions and dysfunctions in particular circumstances such as sperm banking which is an important approach for cryopreservation of endangered species. Cryopreservation techniques have some deleterious effects on spermatozoa which put the obtained results in controversy. Therefore, in the present study, quantitative 1H NMR (Nuclear Magnetic Resonance) based metabolite profiling was conducted to evaluate metabolite changes related to energetics and some other detected metabolites in vitrified semen of critically endangered wild Acipenser persicus. The semen was diluted with extenders containing 0, 5, 10, and 15 μM of fish antifreeze protein (AFP) type III as a cryoprotectant. Semen-extenders were vitrified and stored for two days. Based on post-thaw motility duration and motility percentage assessments, two treatments with 10 μM and 0 μM of AFP had the highest and the lowest motility percentages respectively and they were objected to 1H NMR spectroscopy investigations in order to reveal the extremes of the metabolites dynamic range. Univariate (ANOVA) and multivariate (PCA) analysis of the resulting metabolic profiles indicated significant changes (P > 0.05) in metabolites. The level of some metabolites including acetate, adenine, creatine, creatine phosphate, lactate, betaine, sarcosine, β-alanine and trimethylamine N-oxide significantly decreased in vitrified semen while some others such as creatinine, guanidinoacetate, N, N-dimethylglycine, and glycine significantly increased. There were also significant differences between vitrified treatments in levels of creatine, creatine phosphate, creatinine, glucose, guanidinoacetate, lactate, N, N-dimethylglycine, and glycine, suggesting how fish AFP type III can be effective as a cryoprotectant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号