首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic T lymphocytes play a central role in the control of persistent human CMV (HCMV) infection and reactivation. In healthy virus carriers, the specific CD8(+) CTL response is almost entirely directed against the virion tegument protein pp65 and/or the 72-kDa major immediate early protein, IE1. Studies that included a large panel of HCMV(+) donors suggested that immunorelevance of pp65 and IE1 was directly related with individual HLA haplotype difference. Nevertheless, there are no data on the incidence of HCMV natural polymorphism on virus-specific CTL responses. To assess the impact of IE1 polymorphism on CTL response, we have sequenced in 103 clinical isolates the DNA region corresponding to IE1(315-324), an immunodominant epitope presented by HLA-A*0201 molecules. Seven peptidic variants were found with extensive difference in their frequencies. The response of four HLA-A*0201-restricted anti-IE1 T lymphocyte clones, which were previously generated from one donor against autologous B lymphoblastoid cells expressing a recombinant clinical variant of IE1, was then evaluated using target cells loaded with mutant synthetic peptides or expressing rIE1 variants. One of four clones, which have been sorted 19 times among 22 clones targeted against IE1(315-324), recognized six of the seven tested variant epitopes. All three other clones showed distinct reactivity patterns to target cells loaded with the different mutant peptides or expressing IE1 variants. Therefore, in the HLA-A2 context, clonal expansions of anti-IE1 memory CTLs may confer a protection against HCMV successive infections and reactivations by killing cells presenting most of the naturally occurring IE1(315-324) epitope variants.  相似文献   

2.
The Ag specificity of the CTL response against CMV is directed almost entirely to a single CMV tegument protein, the phosphoprotein pp65. We report the identification of three peptides derived from the protein pp65 that displayed a high or intermediate binding to HLA-A*0201 molecules, which were also able to induce an in vitro CTL response in peripheral blood lymphocytes from CMV seropositive individuals. The peptide-specific CTLs generated were capable of recognizing the naturally processed pp65 either presented by CMV-infected cells or by cells infected with an adenovirus construct expressing pp65 in an HLA-A*0201-restricted manner. Thus, we were able to demonstrate responses to subdominant CTL epitopes in CMV-pp65 that were not detected in polyclonal cultures obtained by conventional stimulations. We also found that the amino acid sequences of the three peptides identified as HLA-A*0201-restricted CTL epitopes were conserved among different wild-type strains of CMV obtained from renal transplant patients, an AIDS patient, and a congenitally infected infant, as well as three laboratory strains of the virus (AD169, Towne and Davis). These observations suggest that these pp65 CTL peptide epitopes could potentially be used as synthetic peptide vaccines or for other therapeutic strategies aimed at HLA-A*0201-positive individuals, who represent approximately 40% of the European Caucasoid population. However, strain variation must be taken in consideration when the search for CTL epitopes is extended to other HLA class I alleles, because these mutations may span potential CTL epitopes for other HLA molecules, as it is described in this study.  相似文献   

3.
Background aimsAdoptive transfer of cytomegalovirus (CMV)-specific memory T cells can be used for treatment of CMV reactivation after allogeneic stem cell transplantation. As co-ordinated CD8+ and CD4+ T cells specific for a broad repertoire of CMV epitopes may be most effective for adoptive immunotherapy, the aim of this study was to isolate these cells from peripheral blood of CMV seropositive donors, irrespective of their HLA type.MethodsActivation of CMV-specific CD8+ and CD4+ T cells was compared after stimulation of donor peripheral blood with minimal epitope peptides, pools of overlapping 15-mer peptides or full-length protein. Furthermore, the kinetics of interferon (IFN)-γ production after stimulation was analyzed to determine the optimal time-point for IFN-γ-based isolation of CMV-specific T cells. The specificity, phenotype and functionality of generated T-cell lines were analyzed.ResultsCMV protein-spanning 15-mer peptide pools induced simultaneous activation of both CD8+ and CD4+ CMV-specific T cells, while full-length CMV protein only efficiently activated CD4+ CMV-specific T cells. Isolation of IFN-γ-secreting cells at the peak of the IFN-γ response after 4-h stimulation with CMV pp65 and IE1 peptide pools resulted in efficient enrichment of CMV-specific T cells. The T-cell lines contained high frequencies of CD8+ and CD4+ T cells recognizing multiple CMV pp65 and IE1 epitopes, and produced IFN-γ and tumor necrosis factor (TNF)-α upon specific restimulation.ConclusionsThis study provides a feasible strategy for the rapid generation of clinical-grade CD8+ and CD4+ T-cell lines with high specificity for multiple CMV pp65 and IE1 epitopes, which may be used for effective adoptive immunotherapy.  相似文献   

4.
BACKGROUND: Recipients of allogeneic stem cell transplants (SCT) are at risk of human CMV infection during their immunocompromised period. The increasing number of reports of CMV isolates resistant to ganciclovir after transplantation has led us to attempt to develop alternative strategies for preventing or treating CMV infection. This study describes a system for generating sufficient numbers of CMV-specific cytotoxic T lymphocytes (CTL) for adoptive immunotherapy after SCT. METHODS: CMV-specific CTL were isolated from a single blood draw of a CMV-seropositive donor using PE-labeled HLA-A*0201/pp65(495-503) tetramers and anti-PE magnetic beads. A mixture of a tetramer-positive population and CD4(+) T lymphocytes was expanded to sufficient numbers for clinical application with IL-2 and immobilized anti-CD3 stimulation. RESULT: Starting from 50 mL of blood, we generated >10(7)/m(2) tetramer-positive CTL within 2 weeks. Flow cytometric analysis of expanded lymphocytes showed that purity of CMV peptide-specific CTL was >75%. Upon stimulation of HLA-A*0201-restricted CMV peptide, expanded CD8 T lymphocytes produced intracellular IFN-gamma. Purified CTL exhibited cytotoxic activity against CMV peptide-pulsed T2 cells and CMV-infected HLA-A*0201-positive fibroblasts, but not against HLA mismatched or uninfected target cells. Alloreactivity could be excluded in MLC. DISCUSSION: This simple, rapid culture system can be useful for adoptive immunotherapy after allogeneic SCT. We are now trying to adapt our laboratory scale study to a clinical scale study under good manufacturing practices (GMP) conditions.  相似文献   

5.
Cytotoxic T lymphocytes (CTL) appear to play an important role in the control of human cytomegalovirus (HCMV) in the normal virus carrier: previous studies have identified peripheral blood CD8+ CTL specific for the HCMV major immediate-early gene product (IE1) and more recently, by bulk culture and cloning techniques, have identified CTL specific for a structural gene product, the lower matrix protein pp65. In order to determine the relative contributions of CTL which recognize the HCMV proteins IE1, pp65, and glycoprotein B (gB) to the total HCMV-specific CTL response, we have used a limiting-dilution analysis system to quantify HCMV-specific CTL precursors with different specificities, allowing the antigenic specificity of multiple short-term CTL clones to be assessed, in a group of six healthy seropositive donors. All donors showed high frequencies of HCMV-specific major histocompatibility complex-restricted CTL precursors. There was a very high frequency of CTL specific for pp65 (lower matrix protein); IE1-specific CTL were also detectable at lower frequencies in three of five donors, while CTL directed to gB were undetectable. A pp65 gene deletion mutant of HCMV was then used to estimate the contribution of pp65-specific CTL to the total HCMV-specific CTL response; this showed that between 70 and 90% of all CTL recognizing HCMV-infected cells were pp65 specific. Analysis of the peptide specificity of pp65-specific CTL showed that some donors have a highly focused response recognizing a single peptide; the T-cell receptor Vbeta gene usage in these two donors was shown to be remarkably restricted, with over half of the responding CD8+ T cells utilizing a single Vbeta gene rearrangement. Other subjects recognized multiple pp65 peptides: nine new pp65 CTL peptide epitopes were defined, and for five of these the HLA-presenting allele has been identified. All four of the HLA A2 donors tested in this study recognized the same peptide. This apparent domination of the CTL response to HCMV during persistent infection by a single structural protein, irrespective of major histocompatibility complex haplotype, is not clearly described for other persistent virus infections, and the mechanism requires further investigation.  相似文献   

6.
The importance of CD8 T cells for the control of cytomegalovirus (CMV) infection has raised interest in the identification of immunogenic viral proteins as candidates for vaccination and cytoimmunotherapy. The final aim is to determine the viral "immunome" for any major histocompatibility complex class I molecule by antigenicity screening of proteome-derived peptides. For human CMV, there is a limitation to this approach: the T cells used as responder cells for peptide screening are usually memory cells that have undergone in vivo selection. On this basis, pUL83 (pp65) and pUL123 (IE1 or pp68 to -72) were classified as immunodominant proteins. It is an open question whether this limited "memory immunome" really reflects the immunogenic potential of the human CMV proteome. Here we document an analogous focus of the memory repertoire on two proteins of murine CMV. Specifically, ca. 80% of all memory CD8 T cells in the spleen as well as in persisting pulmonary infiltrates were found to be specific for the known IE1 peptide 168YPHFMPTNL176 and for the peptide 257AGPPRYSRI265, newly defined here, derived from open reading frame m164. Notably, CD8 T-cell lines of both specificities protected against acute infection upon adoptive transfer. In contrast, the natural immune response to acute infection in draining lymph nodes and in the lungs indicated a somewhat broader specificity repertoire. We conclude that the low number of antigenic peptides identified so far for CMVs reflects a focused memory repertoire, and we predict that more antigenic peptides will be disclosed by analysis of the acute immune response.  相似文献   

7.
Although CD8(+) T cells help control Mycobacterium tuberculosis infection, their M. tuberculosis Ag repertoire, in vivo frequency, and functionality in human tuberculosis (TB) remains largely undefined. We have performed genome-based bioinformatics searches to identify new M. tuberculosis epitopes presented by major HLA class I supertypes A2, A3, and B7 (covering 80% of the human population). A total of 432 M. tuberculosis peptides predicted to bind to HLA-A*0201, HLA-A*0301, and HLA-B*0702 (representing the above supertypes) were synthesized and HLA-binding affinities determined. Peptide-specific CD8(+) T cell proliferation assays (CFSE dilution) in 41 M. tuberculosis-responsive donors identified 70 new M. tuberculosis epitopes. Using HLA/peptide tetramers for the 18 most prominently recognized HLA-A*0201-binding M. tuberculosis peptides, recognition by cured TB patients' CD8(+) T cells was validated for all 18 epitopes. Intracellular cytokine staining for IFN-γ, IL-2, and TNF-α revealed mono-, dual-, as well as triple-positive CD8(+) T cells, indicating these M. tuberculosis peptide-specific CD8(+) T cells were (poly)functional. Moreover, these T cells were primed during natural infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis-epitope/Ag repertoire for human CD8(+) T cells is much broader than hitherto suspected, and the newly identified M. tuberculosis Ags are recognized by (poly)functional CD8(+) T cells during control of infection. These results impact on TB-vaccine design and biomarker identification.  相似文献   

8.
Immunodominance hierarchies operating in immune responses to viral Ags limit the diversity of the elicited CD8 T cell responses. We evaluated in I-A(b+)/A2-HHD-II and HLA-DR1(+)/A2-DR1 mice the HLA-A*0201-restricted, multispecific CD8 T cell responses to the human CMV tegument phosphoprotein pp65 (pp65) Ag. Vaccination of mice with pp65-encoding DNA elicited high IFN-γ(+) CD8 T cell frequencies to the pp65(495-503)/(e6) epitope and low responses to the pp65(320-328)/(e3) and pp65(522-530)/(e8) epitopes. Abrogation of the e6-specific immunity efficiently enhanced e3- and e8-specific T cell responses by a pp65(Δ501-503) DNA vaccine. The immunodominant e6-specific (but not the e3- and e8-specific) CD8 T cell response critically depends on CD4 T cell help. Injection of monospecific DNA- or peptide-based vaccines encoding the e3 or e8 (but not the e6) epitope into mice elicited CD8 T cells. Codelivering the antigenic peptides with different heterologous CD4 T cell helper epitopes enhanced e6-specific (but not e3- or e8-specific) CD8 T cell responses. Similarly, homologous CD4 T cell help, located within an overlapping (nested) pp65(487-503) domain, facilitated induction of e6-specific CD8 T cell responses by peptide-based vaccination. The position of the e6 epitope within this nested domain is not critical to induce the immunodominant, e6-specific CD8 T cell response to the pp65 Ag. Distant CD4 T cell epitope(s) can thus provide efficient help for establishing pp65-e6 immunodominance in vaccinated mice. These results have practical implications for the design of new T cell-stimulating vaccines.  相似文献   

9.
To determine if mutations of an immunodominant HLA-restricted cytomegalovirus (CMV) peptide sequence occur in nature, the sequence corresponding to the HLA A*0201-specific peptide CMVpp65(495-503) was determined in 50 human CMV isolates. Rare mutations were detected; 6 of 50 were silent mutations at the amino terminus of the peptide, while 3 of 50 were mutations of the native methionine residue to isoleucine (M499I). The observed M499I mutation in three isolates decreased cytolytic targeting.  相似文献   

10.
Oncoretroviral vectors encoding either full-length Ag or a corresponding immunodominant peptide were expressed in Langerhans-type dendritic cells (LCs) differentiated from CD34(+) progenitors. We used human CMV as a model Ag restricted by HLA-A*0201 to define parameters for eventual expression of cancer Ags by LCs for active immunization against tumors. Stimulation by CMVpp65(495-503)-pulsed LCs, CMVpp65(495-503)-transduced LCs, and full-length CMVpp65-transduced LCs respectively increased tetramer-reactive T cells with an effector memory phenotype by 10 +/- 11, 34 +/- 21, and 51 +/- 24-fold (p < 0.05) from CMV-seropositive donors. CMV-specific CD8(+) CTLs achieved respective frequencies of 231 +/- 102, 583 +/- 219, and 714 +/- 281 spot-forming cells per 10(5) input cells (p < 0.01) in ELISPOT assays for IFN-gamma secretion. LCs expressing full-length Ag stimulated greater lytic activity than either peptide-transduced or peptide-pulsed LCs (p < 0.05), all in the absence of exogenous cytokines. pp65-transduced LCs presenting class I and II MHC-restricted epitopes expanded IFN-gamma-secreting CD4(+) T cells, whereas pp65(495-503)-transduced LCs did not. CD4(+) T cell numbers even declined after stimulation by pp65(495-503) peptide-pulsed LCs. CD4(+) T cell depletion confirmed their contribution to the more robust CTL responses. LCs, transduced with a retroviral vector encoding full-length Ag, stimulate potent CTLs directed against multiple epitopes in a CD4(+) Th cell-dependent manner.  相似文献   

11.
Reconstitution of antiviral CD8 T cells is essential for controlling cytomegalovirus (CMV) infection after bone marrow transplantation. Accordingly, polyclonal CD8 T cells derived from BALB/c mice infected with murine CMV protect immunocompromised adoptive transfer recipients against CMV disease. The protective population comprises CD8 T cells with T-cell receptors (TCRs) specific for defined and for as-yet-unknown viral epitopes, as well as a majority of nonprotective cells with unrelated specificities. Defined epitopes include IE1/m123 and m164, which are immunodominant in terms of the magnitude of the CD8 T-cell response, and a panel of subordinate epitopes (m04, m18, M45, M83, and M84). While cytolytic T-lymphocyte lines (CTLLs) were shown to be protective regardless of the immunodominance of the respective epitope, the individual contributions of in vivo resident epitope-specific CD8 T cells to the antiviral control awaited investigation. The IE1 peptide 168-YPHFMPTNL-176 is generated from the immediate-early protein 1 (IE1) (pp89/76) of murine CMV and is presented by the major histocompatibility complex class I (MHC-I) molecule Ld. To quantitate its contribution to the protective potential of a CD8-T memory (CD8-TM) cell population, IE1-TCR+ and IE1-TCR- CD8-TM cells were purified by epitope-specific cell sorting with IE1 peptide-loaded MHC-immunoglobulin G1 dimers as ligands of cognate TCRs. Of relevance for clinical approaches to an adoptive cellular immunotherapy, sorted IE1 epitope-specific CD8-TM cells were found to be exceedingly protective upon adoptive transfer. Compared with CTLLs specific for the same epitope and of comparable avidity and TCR beta-chain variable region (Vbeta)-defined polyclonality, sorted CD8-TM cells proved to be superior by more than 2 orders of magnitude.  相似文献   

12.
Interstitial cytomegalovirus (CMV) pneumonia is a clinically relevant complication in recipients of bone marrow transplantation (BMT). Recent data for a model of experimental syngeneic BMT and concomitant infection of BALB/c mice with murine CMV (mCMV) have documented the persistence of tissue-resident CD8 T cells after clearance of productive infection of the lungs (J. Podlech, R. Holtappels, M.-F. Pahl-Seibert, H.-P. Steffens, and M. J. Reddehase, J. Virol. 74:7496-7507, 2000). It was proposed that these cells represent antiviral "standby" memory cells whose functional role might be to help prevent reactivation of latent virus. The pool of pulmonary CD8 T cells was composed of two subsets defined by the T-cell activation marker L-selectin (CD62L): a CD62L(hi) subset of quiescent memory cells, and a CD62L(lo) subset of recently resensitized memory-effector cells. In this study, we have continued this line of investigation by quantitating CD8 T cells specific for the three currently published antigenic peptides of mCMV: peptide YPHFMPTNL processed from the immediate-early protein IE1 (pp89), and peptides YGPSLYRRF and AYAGLFTPL, derived from the early proteins m04 (gp34) and M84 (p65), respectively. IE1-specific CD8 T cells dominated in acute-phase pulmonary infiltrates and were selectively enriched in latently infected lungs. Notably, most IE1-specific CD8 T cells were found to belong to the CD62L(lo) subset representing memory-effector cells. This finding is in accordance with the interpretation that IE1-specific CD8 T cells are frequently resensitized during latent infection of the lungs and may thus be involved in the maintenance of mCMV latency.  相似文献   

13.
CD8(+) cytotoxic T-lymphocytes (CTLs) have been proven, in multiple animal models, to be the most powerful antiviral and antitumor components of the immune system. We have developed a protocol to activate and expand tumor and virus peptide-specific CD8(+) T-lymphocytes from the peripheral blood of healthy, human trophic leukemia virus-1 (HTLV-1) seronegative human leucocyte antigen (HLA)-A*0201 individuals. A combination of density-based separation and culture conditions was employed to isolate dendritic cells (DCs), which are the most potent antigen-presenting cells (APCs), and T-lymphocytes. The DCs were pulsed with HLA-A*0201 binding peptides and cultured with autologous T-lymphocytes to generate peptide-specific CTLs. The CTLs were generated against a nine-amino-acid peptide from the Tax protein of HTLV-1. The CTLs were expanded according to a restimulation schedule employing peptide-pulsed autologous monocytes and low-dose interleukin-2 (IL-2) to numbers in excess of 100 x 10(6) cells following 5 weeks of culture. Expanded cells contained primarily CD3(+) T-cells, of which CD8(+) T-lymphocytes constituted greater than two-thirds of the cell population. Obtained CTLs exhibited potent antigen-specific lysis of peptide-pulsed target cells in a dose-dependent fashion in in vitro (51)Cr release cytotoxicity assay. This antigen-specific killing was shown to be HLA class I restricted and mediated by CD8(+) T-lymphocytes. Since the T-lymphocytes were obtained from HTLV-1 seronegative donors, the generation of peptide-specific CTLs represents reliable and reproducible elicitation of a primary immune response in vitro against naive antigens and subsequent expansion of generated CTLs for adoptive immunotherapy. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Altered peptide antigens that enhance T-cell immunogenicity have been used to improve peptide-based vaccination for a range of diseases. Although this strategy can prime T-cell responses of greater magnitude, the efficacy of constituent T-cell clonotypes within the primed population can be poor. To overcome this limitation, we isolated a CD8+ T-cell clone (MEL5) with an enhanced ability to recognize the HLA A*0201-Melan A27–35 (HLA A*0201-AAGIGILTV) antigen expressed on the surface of malignant melanoma cells. We used combinatorial peptide library screening to design an optimal peptide sequence that enhanced functional activation of the MEL5 clone, but not other CD8+ T-cell clones that recognized HLA A*0201-AAGIGILTV poorly. Structural analysis revealed the potential for new contacts between the MEL5 T-cell receptor and the optimized peptide. Furthermore, the optimized peptide was able to prime CD8+ T-cell populations in peripheral blood mononuclear cell isolates from multiple HLA A*0201+ individuals that were capable of efficient HLA A*0201+ melanoma cell destruction. This proof-of-concept study demonstrates that it is possible to design altered peptide antigens for the selection of superior T-cell clonotypes with enhanced antigen recognition properties.  相似文献   

15.

Background

In healthy, HIV seronegative, CMV seropositive adults, a large proportion of T cells are CMV-specific. High-level CMV-specific T cell responses are associated with accelerated immunologic aging (“immunosenesence”) in the elderly population. The impact of untreated and treated HIV infection on the frequency of these cells remains undefined.

Methodology/Principal Findings

We measured the proportion of CD4+ and CD8+ T cells responding to CMV pp65 and IE proteins was measured using flow cytometry in 685 unique HIV seronegative and seropositive individuals. The proportion of CMV-specific CD8+ T cells was consistently higher in the HIV-seropositive subjects compared to the HIV-seronegative subjects. This HIV effect was observed even in patients who lacked measurable immunodeficiency. Among the HIV-seropositive subjects, CMV-specific CD8+ T cell responses were proportionately lower during recent infection, higher during chronic untreated infection and higher still during long-term antiretroviral treated infection. The CD8+ T cell response to just two CMV proteins (pp65 and IE) was approximately 6% during long-term therapy, which was over twice that seen in HIV-seronegative persons. CMV-specific CD4+ T cell responses followed the same trends, but the magnitude of the effect was smaller.

Conclusions/Significance

Long-term successfully treated HIV infected patients have remarkably high levels of CMV-specific effector cells. These levels are similar to that observed in the elderly, but occur at much younger ages. Future studies should focus on defining the potential role of the CMV-specific inflammatory response in non-AIDS morbidity and mortality, including immunosenescence.  相似文献   

16.
CD8(+) T cells are thought to play an important role in protective immunity to tuberculosis. Although several nonprotein ligands have been identified for CD1-restricted CD8(+) CTLs, epitopes for classical MHC class I-restricted CD8(+) T cells, which most likely represent a majority among CD8(+) T cells, have remained ill defined. HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A2/K(b) transgenic mice were shown to provide a powerful model for studying induction of HLA-A*0201-restricted immune responses in vivo. The Ag85 complex, a major component of secreted Mycobacterium tuberculosis proteins, induces strong CD4(+) T cell responses in M. tuberculosis-infected individuals, and protection against tuberculosis in Ag85-DNA-immunized animals. In this study, we demonstrate the presence of HLA class I-restricted, CD8(+) T cells against Ag85B of M. tuberculosis in HLA-A2/K(b) transgenic mice and HLA-A*0201(+) humans. Moreover, two immunodominant Ag85 peptide epitopes for HLA-A*0201-restricted, M. tuberculosis-reactive CD8(+) CTLs were identified. These CD8(+) T cells produced IFN-gamma and TNF-alpha and recognized Ag-pulsed or bacillus Calmette-Guérin-infected, HLA-A*0201-positive, but not HLA-A*0201-negative or uninfected human macrophages. This CTL-mediated killing was blocked by anti-CD8 or anti-HLA class I mAb. Using fluorescent peptide/HLA-A*0201 tetramers, Ag85-specific CD8(+) T cells could be visualized in bacillus Calmette-Guérin-responsive, HLA-A*0201(+) individuals. Collectively, our results demonstrate the presence of HLA class I-restricted CD8(+) CTL against a major Ag of M. tuberculosis and identify Ag85B epitopes that are strongly recognized by HLA-A*0201-restricted CD8(+) T cells in humans and mice. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis.  相似文献   

17.
According to a number of previous reports, control of HIV replication in humans appears to be linked to the presence of anti-HIV-1 Gag-specific CD8 responses. During the chronic phase of HIV-1 infection, up to 75% of the HIV-infected individuals who express the histocompatibility leukocyte Ag (HLA)-A*0201 recognize the Gag p17 SLYNTVATL (aa residues 77-85) epitope (SL9). However, the role of the anti-SL9 CD8 CTL in controlling HIV-1 infection remains controversial. In this study we determined whether the pattern of SL9 immunodominance in uninfected, HLA-A*0201 HIV vaccine recipients is similar to that seen in chronically HIV-infected subjects. The presence of anti-SL9 responses was determined using a panel of highly sensitive cellular immunoassays, including peptide:MHC tetramer binding, IFN-gamma ELISPOT, and cytokine flow cytometry. Thirteen HLA-A*0201 vaccinees with documented anti-Gag CD8 CTL reactivities were tested, and none had a detectable anti-SL9 response. These findings strongly suggest that the pattern of SL9 epitope immunodominance previously reported among chronically infected, HLA-A*0201-positive patients is not recapitulated in noninfected recipients of Gag-containing canarypox-based candidate vaccines and may be influenced by the relative immunogenicity of these constructs.  相似文献   

18.
To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, we examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. Analysis of promoter deletion mutants indicated that the 5' minimal sequence required for activation is -61 from the CAP site (+1) and that an 8-base-pair sequence located at -51 to -58 is necessary for activation of the pp65 promoter. This sequence is repeated once at +93 and is found as an inverted repeat at +67. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene.  相似文献   

19.
The consequences of human lymphocytic choriomeningitis virus (LCMV) infection can be severe, including aseptic meningitis in immunocompetent individuals, hydrocephalus or chorioretinitis in fetal infection, or a highly lethal outcome in immunosuppressed individuals. In murine models of LCMV infection, CD8(+) T cells play a primary role in providing protective immunity, and there is evidence that cellular immunity may also be important in related arenavirus infections in humans. For this reason, we sought to identify HLA-A2 supertype-restricted epitopes from the LCMV proteome and evaluate them as vaccine determinants in HLA transgenic mice. We identified four HLA-A*0201-restricted peptides-nucleoprotein NP(69-77), glycoprotein precursor GPC(10-18), GPC(447-455), and zinc-binding protein Z(49-58)-that displayed high-affinity binding (< or =275 nM) to HLA-A*0201, induced CD8(+) T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LCMV antigens in HLA-restricted human antigen presenting cells. One of the epitopes (GPC(447-455)), after peptide immunization of HLA-A*0201 mice, induced CD8(+) T cells capable of killing peptide-pulsed HLA-A*0201-restricted target cells in vivo and protected mice against lethal intracranial challenge with LCMV.  相似文献   

20.
Protective immunity against mycobacteria is dependent on antigen/MHC class II specific, CD4+ Th1 cells. HLA-DR3-restricted Th1 cells respond to a subset of mycobacterial antigens, including the immunodominant hsp65, and recognize a single epitope in hsp65, notably p1-20. Altered peptide ligands (APL) of p1-20 can inhibit p1-20/hsp65-induced proliferation of DR3-restricted T cells in an allele specific mannerin vitro. In order to develop a preclinical model in which p1-20 APL can be testedin vivo in the context of HLA, we have used murine class II deficient, HLA transgenic (Ab0) mice, in which all CD4+ T cells are restricted by the tg HLA molecule. BCG-immunized DR3.Ab0 and DQ8.Ab0 mice both responded well to hsp65. Furthermore, DR3.Ab0 mice recognized precisely the same p1-20 epitope as DR3-restricted human T cells, whereas DQ8.Ab0 mice responded to a different set of hsp65 peptides. This shows that (i) the same immunodominant protein and peptide epitope are recognized by T cells from DR3.Ab0 mice and DR3+ humans and (ii) indicates the major role of HLA-polymorphism in controlling the human T cell response to mycobacterial antigens. Thus, HLA-transgenic, Ab0 mice provide a novel, preclinical model system to analyze APL and vaccines in the context of HLA polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号