首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction between aminoglycosides (AGs) and rat renal brush-border membrane (BBM) vesicles was investigated by the aggregation technique. The order of aggregation was gentamicin greater than dibekacin not equal to netilmicin greater than amikacin, and this order corresponds to the strength of the nephrotoxicity of the aminoglycosides in vivo rather than the number of amino groups in the aminoglycosides. BBM vesicles were aggregated through ionic interaction, as evident from the finding that aggregation ceased to occur at alkaline pH. By addition of N-acetylneuraminic acid (NANA) to the incubation medium, the vesicle aggregation induced by gentamicin was significantly inhibited. To affect the liberation of the NANA residue from BBM vesicles, the vesicles were treated with neuraminidase, resulting in an about 60% release with a significant decrease in the uptake of gentamicin into the vesicles. The decrease in the degree of vesicle aggregation was in proportion to the amount of NANA liberated. It follows from the findings that the NANA residue may in some way be responsible for the accumulation of aminoglycosides in renal proximal tubular cells.  相似文献   

2.
The effects of aminoglycoside antibiotics on plasma membranes were studied using rat renal basolateral and brush-border membrane vesicles. 3',4'-Dideoxykanamycin was bound to the basolateral membrane and brush-border membrane vesicles. They had a single class of binding sites with nearly the same constant, and the basolateral membrane vesicles had more binding sites than those of the brush-border membrane. Dideoxykanamycin B was transported into the intravesicular space of brush-border membrane vesicles, but not into that of basolateral membrane vesicles. The (Na+ + K+)-ATPase activity of the plasma membrane fraction prepared from the kidney of rat administered with dideoxykanamycin B intravenously decreased significantly. Aminoglycoside antibiotics entrapped in the basolateral membrane vesicles inhibited (Na+ + K+)-ATPase activity, but those added to the basolateral membrane vesicles externally failed to do so. The activity of (Na+ + K+)-ATPase was non-competitively inhibited by gentamicin. It is thus concluded that aminoglycoside antibiotics are taken up into the renal proximal tubular cells across the brush-border membrane and inhibit the (Na+ + K+)-ATPase activity of basolateral membrane. This inhibition may possibly disrupt the balance of cellular electrolytes, leading to a cellular dysfunction, and consequently to the development of aminoglycoside antibiotics' nephrotoxicity.  相似文献   

3.
We studied the effect of gentamicin on Na+-dependent D-glucose transport into brush-border membrane vesicles isolated from rabbit kidney outer cortex (early proximal tubule) and outer medulla (late proximal tubule) in vitro. We found the same osmotically active space and nonspecific binding between control and gentamicin-treated brush-border membrane vesicles. There was no difference in the passive permeability properties between control and gentamicin-treated brush-border membrane vesicles. Kinetic analyses of D-glucose transport into 1 mM gentamicin-treated brush-border membrane vesicles demonstrated that gentamicin decreased Vmax in the outer cortical preparation, while it did not affect Vmax in the outer medullary preparation. With regard to Km, there was no effect of gentamicin in any vesicle preparation. When brush-border membrane vesicles were incubated with higher concentrations of gentamicin, Na+-dependent D-glucose transport was inhibited dose-dependently in both outer cortical and outer medullary preparations. Dixon plots yield inhibition constant Ki = 4 mM in the outer cortical preparation and Ki = 7 mM in the outer medullary preparation. These results indicate that the Na+-dependent D-glucose transport system in early proximal tubule is more vulnerable to gentamicin toxicity than that in late proximal tubule.  相似文献   

4.
Recent studies of Fe2+ uptake by mouse proximal intestine brush-border membrane vesicles revealed low-affinity, NaCl-sensitive and high-affinity, NaCl-insensitive, components of uptake (Simpson, R.J. and Peters, T.J. (1985) Biochim. Biophys. Acta 814, 381-388). In this study, the former component is demonstrated to show a strong pH dependence with an optimum of pH 6.8-6.9. Studies at pH 6.5, where the low affinity component is inhibited by more than 25-fold compared with pH 7.2, suggest that the pH-sensitive component represents transport across the brush-border membrane followed by intravesicular binding. Cholate extracts of brush-border membrane vesicles contain pH- and NaCl-sensitive Fe2+ binding moieties which may be involved in the transfer of Fe2+ across the intestinal brush-border membrane and subsequent binding inside the vesicles. Fe2+ uptake by brush-border membrane vesicles from the duodenum of hypoxic mice is higher than uptake by vesicles from control-fed animals, suggesting the existence of a regulable brush-border membrane Fe2+ carrier.  相似文献   

5.
The interaction of 5-(N-methyl-N-isobutyl)amiloride (MIBA) with brush-border membrane vesicles isolated from normal human term placentas was investigated using two parameters: binding and transport. The binding of MIBA to placental membranes was specific and temperature- and pH-dependent, and the apparent dissociation constant (Kd) for the process was 58 +/- 2 microM. The binding was inhibited by other amiloride analogs and also by clonidine and cimetidine with a rank order potency: MIBA > benzamil > dimethylamiloride > amiloride > clonidine > cimetidine. These compounds also inhibited Na(+)-H+ exchanger activity in these membrane vesicles, but with a different order of potency: dimethylamiloride > MIBA > amiloride > benzamil > cimetidine > clonidine. The membrane vesicles were also able to transport MIBA into the intravesicular space, and the transport was stimulated many-fold by the presence of an outwardly directed H+ gradient across the membrane. The H+ gradient was the driving force for uphill accumulation of MIBA inside the vesicles. The transport process was electrically silent. The transport of MIBA was inhibited by other amiloride analogs and by clonidine and cimetidine, and the order of potency was the same as the order with which these compounds inhibited the binding of MIBA. The Michaelis-Menten constant (Kt) for the transport process was 46 +/- 2 microM. The binding as well as the transport were also inhibited by Na+ and Li+. Interestingly, tetraethylammonium and N1-methylnicotinamide, two of the commonly used substrates in organic cation transport studies, failed to inhibit the binding and transport of MIBA. Furthermore, although the outwardly directed H+ gradient-dependent uphill transport of tetraethylammonium could be demonstrated in renal brush-border membrane vesicles, there was no evidence for the presence of a transport system for this prototypical organic cation in placental brush-border membrane vesicles. It is concluded that the human placental brush-border membranes possess an organic cation-proton antiporter which accepts MIBA as a substrate, the low affinity binding site for MIBA observed in these membranes represents this antiporter, and that the placental organic cation-proton antiporter is distinct from the widely studied renal organic cation-proton antiporter.  相似文献   

6.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

7.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

8.
The uptake of the alpha-aminocephalosporin cephalexin into brush-border membrane vesicles from rat renal cortex was independent on an inward H+-gradient in contrast to the intestinal transport system. The transport system could be irreversibly inhibited by photoaffinity labeling. Two binding polypeptides for beta-lactam antibiotics and dipeptides with apparent molecular weights 130,000 and 95,000 were identified by photoaffinity labeling with [3H]benzylpenicillin and N-(4-azido[3,5-3H]benzoyl) derivatives of cephalexin and glycyl-L-proline. The uptake of cephalexin and the labeling of the respective binding proteins was inhibited by beta-lactam antibiotics and dipeptides as with intestinal brush-border membranes. These data indicate that the transport systems for beta-lactam antibiotics and dipeptides in the brush-border membrane from rat kidney and small intestine are similar but not identical.  相似文献   

9.
In our previous paper (Yanase, M. et al. (1983) Biochim. Biophys. Acta 733, 95-101) we reported that the Na+-dependent D-glucose uptake into brush-border membrane vesicles is decreased in rabbits with experimental Fanconi syndrome (induced by anhydro-4-epitetracycline). In the present paper we investigate the mechanism underlying this decrease. D-Glucose is taken up into the osmotically active space in anhydro-4-epitetracycline-treated brush-border membrane vesicles and exhibits the same distribution volume and the same degree of nonspecific binding and trapping as in control brush-border membrane vesicles. The passive permeability properties of control and anhydro-4-epitetracycline-treated brush-border membrane vesicles are shown to be the same as measured by the time-dependence of L-glucose efflux from brush-border membrane vesicles. D-Glucose flux was measured by the equilibrium exchange procedure at constant external and internal Na+ concentrations and zero potential. Kinetic analyses of Na+-dependent D-glucose flux indicate that Vmax in anhydro-4-epitetracycline-treated brush-border membrane vesicles (79.3 +/- 7.6 nmol/min per mg protein) is significantly smaller than in control brush-border membrane vesicles (141.3 +/- 9.9 nmol/min per mg protein), while the Km values in the two cases are not different from each other (22.3 +/- 0.9 and 27.4 +/- 1.8 mM, respectively). These results suggest that Na+-dependent D-glucose carriers per se are affected by anhydro-4-epitetracycline, and that this disorder is an important underlying mechanism in the decreased Na+-dependent D-glucose uptake into anhydro-4-epitetracycline-treated brush-border membrane vesicles.  相似文献   

10.
Brush-border membrane vesicles prepared from rabbit kidney cortex were incubated at 37 degrees C for 30 min with phosphatidylinositol-specific phospholipase C. This maneuver resulted in a release of approx. 85% of the brush-border membrane-linked enzyme alkaline phosphatase as determined by its enzymatic activity. Transport of inorganic [32P]phosphate (100 microM) by the PI-specific phospholipase C-treated brush-border membrane vesicles was measured at 20-22 degrees C in the presence of an inwardly directed 100 mM Na+ gradient. Neither initial uptake rates, as estimated from 10-s uptake values (103.5 +/- 6.8%, n = 7 experiments), nor equilibrium uptake values, measured after 2 h (102 +/- 3.4%) were different from controls (100%). Control and PI-specific phospholipase C-treated brush-border membrane vesicles were extracted with chloroform/methanol to obtain a proteolipid fraction which has been shown to bind Pi with high affinity and specificity (Kessler, R.J., Vaughn, D.A. and Fanestil, D.D. (1982) J. Biol. Chem. 257, 14311-14317). Phosphate binding (at 10 microM Pi) by the extracted proteolipid was measured. No significant difference in binding was observed between the two types of preparations: 31.0 +/- 9.37 in controls and 29.8 +/- 8.3 nmol/mg protein in the proteolipid extracted from PI-specific phospholipase C-treated brush-border membrane vesicles. It appears therefore that alkaline phosphatase activity is essential neither for Pi transport by brush-border membrane vesicles nor for Pi binding by proteolipid extracted from brush-border membrane. These results dissociate alkaline phosphatase activity, but not brush-border membrane vesicle transport of phosphate, from phosphate binding by proteolipid.  相似文献   

11.
Folate binding and transport by rat kidney brush-border membrane vesicles   总被引:1,自引:0,他引:1  
[3H]Pteroylglutamic acid (PteGlu) uptake was studied using brush-border membrane vesicles isolated from rat kidney. Results on the uptake of [3H]PteGlu by brush-border membrane vesicles incubated in media of increasing osmolarities demonstrated that uptake was contributed by two components, intravesicular transport and membrane binding. Both the components of the uptake exhibited similar pH dependence, with maxima at pH 5.6, and were found to be saturable mechanisms with Km values of 6.7.10(-7) and 11.2.10(-7) M, respectively. These studies show that PteGlu is transported by isolated rat kidney brush-border membrane vesicles in a manner consistent with a saturable system and that a binding component may be functionally associated with this.  相似文献   

12.
Calcium uptake in isolated brush-border vesicles from rat small intestine.   总被引:1,自引:1,他引:0  
Ca2+ uptake in brush-border vesicles isolated from rat duodena was studied by a rapid-filtration technique. Ca2+ uptake showed saturation kinetics, was dependent on the pH and ionic strength of the medium and was independent of metabolic energy. Uptake activity was readily inhibited by Ruthenium Red, La3+, tetracaine, EGTA, choline chloride and Na+ or K+. The effect of variations in medium osmolarity on Ca2+ uptake and the ionophore A23187-induced efflux of the cation from preloaded vesicles indicated that the Ca2+-uptake process involved binding to membrane components, as well as transport into an osmotically active space. Scatchard-plot analyses of the binding data suggested at least two classes of Ca2+-binding sites. The high-affinity sites, Ka = (2.7 +/- 1.1) x 10(4) M-1 (mean +/- S.D.) bound 3.2 +/- 0.8 nmol of Ca2+/mg of protein, whereas the low-affinity sites (Ka = 60 +/- 6 M-1) bound 110 +/- 17 nmol of Ca2+/mg of protein. In the presence of 100 mM-NaCl, 1.7 and 53 nmol of Ca2+/mg of protein were bound to the high- and low-affinity sites respectively. Decreased Ca2+-uptake activity was observed in vesicles isolated from vitamin D-deficient as compared with vitamin D-replete animals and intraperitoneal administration of 1,25-dihydroxycholecalciferol to vitamin D-deficient rats 16 h before membrane isolation stimulated the initial rate of Ca2+ uptake significantly. The data indicated that Ca2+ entry and/or binding was passive and may involve a carrier-mediated Ca2+-uptake component that is associated with the brush-border membrane. Altering the electrochemical potential difference across the membrane by using anions of various permeability and selected ionophores appeared to increase primarily binding to the membrane rather than transport into the intravesicular space. Since there is considerable binding of Ca2+ to the vesicle interior, a comprehensive analysis of the transport properties of the brush-border membrane remains difficult at present.  相似文献   

13.
1. In the kidney, filtered proteins are rapidly reabsorbed by the proximal tubule via adsorptive endocytosis. This process starts with the protein binding to the luminal brush-border membrane. 2. The binding of 125I-labelled albumin to rat renal brush-border membrane vesicles and the effect of a low molecular weight protein lysozyme on that binding was assessed by the filtration method. 3. The Scatchard plot revealed a one-component binding-type curve with a dissociation constant Kd of 430.9 nM and 39.6 pmol/mg membrane protein for the number of binding sites. 4. Albumin binding was saturable and reversible, time and temperature dependent and the initial rate enhanced by increasing amounts of lysozyme. 5. The fact that association of albumin with the brush-border membrane vesicles was dependent upon the intravesicular space suggested a double process, binding of the ligand to the membrane surface and its internalization. These data suggest that albumin has a different binding site than that of a low-molecular weight protein lysozyme, with a constant affinity value near physiological loads. That specificity may confer selectivity upon the endocytic uptake process.  相似文献   

14.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient overshoot phenomenon was observed, indicating active transport. Kinetic analysis of the saturable Na+-dependent component of uridine flux indicated that it was consistent with Michaelis-Menten kinetics (Km 12 +/- 3 microM, Vmax. 3.9 +/- 0.9 pmol/s per mg of protein). The sodium:uridine coupling stoichiometry was found to be consistent with 1:1 and involved the net transfer of positive charge. In contrast, uridine influx by basolateral membrane vesicles was not dependent on the cation present and was inhibited by nitrobenzylthioinosine (NBMPR). NBMPR-sensitive uridine transport was saturable (Km 137 +/- 20 microM, Vmax. 5.2 +/- 0.6 pmol/s per mg of protein). Inhibition of uridine flux by NBMPR was associated with high-affinity binding of NBMPR to the basolateral membrane (Kd 0.74 +/- 0.46 nM). Binding of NBMPR to these sites was competitively blocked by adenosine and uridine. These results indicate that uridine crosses the brush-border surface of rabbit proximal renal tubule cells by Na+-dependent pathways, but permeates the basolateral surface by NBMPR-sensitive facilitated-diffusion carriers.  相似文献   

15.
Summary Antibody raised in mice was used in attempting to identify proteins responsible for the conductive chloride transport that can be measured in porcine ileal brush border membrane vesicles. Ileal brush-border membrane vesicle protein from pig was separated into five different molecular mass fractions by preparative SDS polyacrylamide disc gel electrophoresis. Separated protein fractions were used to immunize mice. Antibody was screened for reactivity with antigen by Western blotting, and for effects on conductive chloride transport in ileal brush border membrane vesicles. Immunization with brush-border protein from fraction I proteins (>110 kDa) produced polyclonal antisera which specifically inhibited the conductive component of chloride uptake by ileal brush border vesicle preparations. Western blotting of the antigen showed the presence of several protein species of molecular mass >100 kDa that were recognized by immune serum. Spleen cells from a mouse producing antiserum that inhibited conductive chloride transport were fused with a myeloma cell line. The resulting hybridoma colonies produced antibody that reacted with at least seven distinct protein bands by Western blot assay and inhibited chloride conductance in brush-border membrane vesicles.  相似文献   

16.
Conductive transport of chloride ion is important in controlling ion and fluid secretion by exocrine tissues. The current study was directed at identifying proteins in the intestinal brush-border membrane that may be involved with conductive chloride transport. Reaction of total brush-border membrane protein with phenyl-isothiocyanate inhibited conductive chloride transport into brush-border membrane vesicles. The conductive transport process was protected from this inhibition by including the ligands Cl- and alpha-phenylcinnamate in the reaction mixture. Brush-border membrane protein protected by this procedure and labeled with fluorescein had an apparent molecular mass in the region of 130 and 23 kDa on separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphorylation of brush-border membrane protein with [gamma-32P] ATP and endogenous protein kinase under conditions causing activation of chloride conductance in membrane vesicles caused the transfer of 32P to several proteins, including ones in the same molecular size range (130 and 23 kDa) as those identified by the fluorescein labeling procedure. Conductive chloride transport in porcine intestinal brush-border vesicles may occur via proteins identified by this differential labeling procedure.  相似文献   

17.
We have investigated the transport characteristics of L-phenylalanyl-L-prolyl-L-alanine in renal brush-border membrane vesicles isolated from Japan Fisher 344 rats. This particular rat strain genetically lacks dipeptidyl peptidase IV. Owing to the absence of this enzyme, the tripeptide was found to be completely resistant to hydrolysis by the renal brush-border membrane vesicles. Uptake of the tripeptide into these membrane vesicles in the presence of an inwardly directed Na+ gradient was slightly greater than in the presence of a K+ gradient, but there was no evidence for active transport. On the contrary, uptake was very rapid in the presence of an inside-alkaline transmembrane pH gradient, and accumulation of the tripeptide inside the vesicles against a concentration gradient could be demonstrated under these conditions. The uptake was drastically reduced by dissipation of the pH gradient. The uptake was stimulated by an inside-negative membrane potential and inhibited by an inside-positive membrane potential. Moreover, the uptake was greater in voltage-clamped membrane vesicles than in control vesicles. Many di- and tripeptides inhibited this pH gradient-stimulated uptake of Phe-Pro-Ala. The apparent dissociation constant for the tripeptide was 48 microM. High performance liquid chromatography analysis of the intravesicular content at the peak of the overshoot revealed that the tripeptide was transported across the membrane almost entirely in the intact form. These data provide the first direct evidence for the presence of an electrogenic tripeptide-proton symport in renal brush-border membranes.  相似文献   

18.
Solubilization and reconstitution of the renal phosphate transporter   总被引:1,自引:0,他引:1  
Proteins from brush-border membrane vesicles of rabbit kidney cortex were solubilized with 1% octylglucoside (protein to detergent ratio, 1:4 (w/w). The solubilized proteins (80.2 +/- 2.3% of the original brush-border proteins, n = 10, mean +/- S.E.) were reconstituted into artificial lipid vesicles or liposomes prepared from purified egg yolk phosphatidylcholine (80%) and cholesterol (20%). Transport of Pi into the proteoliposomes was measured by rapid filtration in the presence of a Na+ or a K+ gradient (out greater than in). In the presence of a Na+ gradient, the uptake of Pi was significantly faster than in the presence of a K+ gradient. Na+ dependency of Pi uptake was not observed when the liposomes were reconstituted with proteins extracted from brush-border membrane vesicles which had been previously treated with papain, a procedure that destroys Pi transport activity. Measurement of Pi uptake in media containing increasing amounts of sucrose indicated that Pi was transported into an intravesicular (osmotically sensitive) space, although about 70% of the Pi uptake appeared to be the result of adsorption or binding of Pi. However, this binding of Pi was not dependent upon the presence of Na+. Both Na+-dependent transport and the Na+-independent binding of Pi were inhibited by arsenate. The initial Na+-dependent Pi transport rate in control liposomes of 0.354 nmol Pi/mg protein per min was reduced to 0.108 and 0 nmol Pi/mg protein per min in the presence of 1 and 10 mM arsenate, respectively. Future studies on reconstitution of Pi transport systems must analyze and correct for the binding of Pi by the lipids used in the formation of the proteoliposomes.  相似文献   

19.
The influence of chemical modification of functional amino acid side-chains in proteins on the H(+)-dependent uptake system for orally active alpha-amino-beta-lactam antibiotics and small peptides was investigated in brush-border membrane vesicles from rabbit small intestine. Neither a modification of cysteine residues by HgCl2, NEM, DTNB or PHMB and of vicinal thiol groups by PAO nor a modification of disulfide bonds by DTT showed any inhibition on the uptake of cephalexin, a substrate of the intestinal peptide transporter. In contrast, the Na(+)-dependent uptake systems for D-glucose and L-alanine were greatly inhibited by the thiol-modifying agents. With reagents for hydroxyl groups, carboxyl groups or arginine the transport activity for beta-lactam antibiotics also remained unchanged, whereas the uptake of D-glucose and L-alanine was inhibited by the carboxyl specific reagent DCCD. A modification of tyrosine residues with N-acetylimidazole inhibited the peptide transport system and did not affect the uptake systems for D-glucose and L-alanine. The involvement of histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics and small peptides (Kramer, W. et al. (1988) Biochim. Biophys. Acta 943, 288-296) was further substantiated by photoaffinity labeling studies using a new photoreactive derivative of the orally active cephalosporin cephalexin, 3-[phenyl-4-3H]azidocephalexin, which still carries the alpha-amino group being essential for oral activity. 3-Azidocephalexin competitively inhibited the uptake of cephalexin into brush-border membrane vesicles. The photoaffinity labeling of the 127 kDa binding protein for beta-lactam antibiotics with this photoprobe was decreased by the presence of cephalexin, benzylpenicillin or dipeptides. A modification of histidine residues in brush-border membrane vesicles with DEP led to a decreased labeling of the putative peptide transporter of Mr 127,000 compared to controls. This indicates a decrease in the affinity of the peptide transporter for alpha-amino-beta-lactam antibiotics by modification of histidine residues. The data presented demonstrate an involvement of tyrosine and histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics across the enterocyte brush-border membrane.  相似文献   

20.
Renal brush-border membrane vesicles isolated from rats kept for 6-8 weeks on a low-phosphate diet (0.15% of dry matter) showed a markedly faster Na(+)-dependent phosphate uptake than did membrane vesicles isolated from animals kept on a high-phosphate diet (2% of dry matter). Phosphate-uptake rate by brush-border membrane vesicles isolated from animals on a low-phosphate diet remained significantly increased after acute parathyroidectomy. Dietary adaptation was also observed in animals that had been parathyroidectomized before exposure to the different diets. In animals on the low-phosphate diet parathyrin administration inhibited phosphate uptake by brush-border vesicles only if the animals were repleted with P(i) (5ml of 20mm-NaH(2)PO(4)) 1h before being killed. After acute phosphate loading and parathyrin administration the difference in the transport rate between the two dietary groups remained statistically significant. The results suggest that the adaptation of proximal-tubule phosphate transport to dietary intake of phosphate is reflected in the Na(+)/phosphate co-transport system located in the luminal membrane of the proximal-tubule cell. Since the dietary effects on phosphate transport by brush-border membranes are only partially reversed by acute changes in parathyrin concentration and are also observed in chronically parathyroidectomized animals, the adaptation of the Na(+)/phosphate co-transport system to dietary phosphate intake seems to involve an additional mechanism independent of parathyrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号