首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide using S-adenosyl-L-methionine (SAM) as a methyl donor and, through doing so, can modulate cellular methylation potential to impact diverse epigenetic processes. NNMT has been implicated in a range of diseases, including cancer and metabolic disorders. Potent, selective, and cell-active inhibitors would constitute valuable probes to study the biological functions and therapeutic potential of NNMT. We previously reported the discovery of electrophilic small molecules that inhibit NNMT by reacting with an active-site cysteine residue in the SAM-binding pocket. Here, we have used activity-based protein profiling (ABPP)-guided medicinal chemistry to optimize the potency and selectivity of NNMT inhibitors, culminating in the discovery of multiple alpha-chloroacetamide (αCA) compounds with sub-µM IC50 values in vitro and excellent proteomic selectivity in cell lysates. However, these compounds showed much weaker inhibition of NNMT in cells, a feature that was not shared by off-targets of the αCAs. Our results show the potential for developing potent and selective covalent inhibitors of NNMT, but also highlight challenges that may be faced in targeting this enzyme in cellular systems.  相似文献   

2.
Cathepsin K (Cat K), highly expressed in osteoclasts, is a cysteine protease member of the cathepsin lysosomal protease family and has been of increasing interest as a target of medicinal chemistry efforts for its role in bone matrix degradation. Inhibition of the Cat K enzyme reduces bone resorption and thus, has rendered the enzyme as an attractive target for anti-resorptive osteoporosis therapy. Over the past decades, considerable efforts have been made to design and develop highly potent, excellently selective and orally applicable Cat K inhibitors. These inhibitors are derived from synthetic compounds or natural products, some of which have passed preclinical studies and are presently in clinical trials at different stages of advancement. In this review, we briefly summarised the historic development of Cat K inhibitors and discussed the relationship between structures of inhibitors and active sites in Cat K for the purpose of guiding future development of inhibitors.  相似文献   

3.
This review focuses on the syntheses of PI3K/Akt/mTOR inhibitors that have been reported outside of the patent literature in the last 5 years but is largely centered on synthetic work reported in 2011 and 2012. While focused on syntheses of inhibitors, some information on in vitro and in vivo testing of compounds is also included. Many of these reported compounds are reversible, competitive adenosine triphosphate (ATP) binding inhibitors, so given the structural similarities of many of these compounds to the adenine core, this review presents recent work on inhibitors based on where the synthetic chemistry was started, that is, inhibitor syntheses which started with purines/pyrimidines are followed by inhibitor syntheses which began with pyridines, pyrazines, azoles, and triazines then moves to inhibitors which bear no structural resemblance to adenine: liphagal, wortmannin and quercetin analogs. The review then finishes with a short section on recent syntheses of phosphotidyl inositol (PI) analogs since competitive PI binding inhibitors represent an alternative to the competitive ATP binding inhibitors which have received the most attention.  相似文献   

4.
Protein kinases have been important targets for antitumor targets due to their key roles in regulating multiple cell signaling pathways. Numerous compounds containing flavonoid scaffold as an indispensable anchor have been found to be potent inhibitors of protein kinases. Some of these flavonoids have been in clinical research as protein kinases inhibitors. Thus, the present review mainly focuses on the structural requirement for anticancer potential of flavone derivatives targeting several key serine/threonine protein kinases. This information may provide an opportunity to scientists of medicinal chemistry to design multi-functional flavone derivatives for the treatment of cancer.  相似文献   

5.
A small set of triazole bisphosphonates has been prepared and tested for the ability to inhibit geranylgeranyltransferase II (GGTase II). The compounds were prepared through use of click chemistry to assemble a central triazole that links a polar head group to a hydrophobic tail. The resulting compounds were tested for their ability to inhibit GGTase II in an in vitro enzyme assay and also were tested for cytotoxic activity in an MTT assay with the human myeloma RPMI-8226 cell line. The most potent enzyme inhibitor was the triazole with a geranylgeranyl tail, which suggests that inhibitors that can access the enzyme region that holds the isoprenoid tail will display greater activity.  相似文献   

6.
A number of naturally occurring biological intermediates have been found to inhibit competitively the activity of a highly purified NADP+-dependent oxidore-ductase which catalyzes the simultaneous oxidation of γ-hydroxybutyrate to succinic semialdehyde, and the reduction of D-glucuronate to L-gulonate. Of the inhibitors studied, those with the lowest Ki are the α-keto analogues of the branched chain or aromatic amino acids. The Vmax and Km for this enzyme are affected by pH; consequently, changes in substrate concentration can markedly alter the pH optimum. The enzyme has been found to be inhibited by reducing agents such as dithiothreitol and mercapto-ethanol, protected against this inhibition by oxidizing agents such as oxidized glutathione or H2O2, and finally, protected against heat inactivation by the presence of either NADP+ or NADPH.  相似文献   

7.
The enzyme 6-phosphogluconate dehydrogenase is a potential drug target for the parasitic protozoan Trypanosoma brucei, the causative organism of human African trypanosomiasis. This enzyme has a polar active site to accommodate the phosphate, hydroxyl and carboxylate groups of the substrate, 6-phosphogluconate. A virtual fragment screen was undertaken of the enzyme to discover starting points for the development of inhibitors which are likely to have appropriate physicochemical properties for an orally bioavailable compound. A virtual screening library was developed, consisting of compounds with functional groups that could mimic the phosphate group of the substrate, but which have a higher pKa. Following docking, hits were clustered and appropriate compounds purchased and assayed against the enzyme. Three fragments were identified that had IC50 values in the low micromolar range and good ligand efficiencies. Based on these initial hits, analogues were procured and further active compounds were identified. Some of the fragments identified represent potential starting points for a medicinal chemistry programme to develop potent drug-like inhibitors of the enzyme.  相似文献   

8.
A bacterial complementation assay has been developed for the rapid screening of a large number of compounds to identify those that inhibit an enzyme target for structure-based inhibitor design. The target enzyme is the hypoxanthine phosphoribosyltransferase (HPRT). This enzyme has been proposed as a potential target for inhibitors that may be developed into drugs for the treatment of diseases caused by several parasites. The screening assay utilizes genetically deficient bacteria complemented by active, recombinant enzyme grown in selective medium in microtiter plates. By comparing absorbance measurements of bacteria grown in the presence and absence of test compounds, the effect of the compounds on bacterial growth can be rapidly assayed. IC50 values for inhibition of bacterial growth are a reflection of the ability of the compounds to bind and/or inhibit the recombinant enzyme. We have tested this bacterial complementation screening assay using recombinant HPRT from the parasites Plasmodium falciparum and Trypanosoma cruzi, as well as the human enzyme. The results of these studies demonstrate that a screening assay using bacterial complement selection can be used to identify compounds that target enzymes and can become an important part of structure-based drug design efforts. Received: 4 December 1997 / Received revision: 17 March 1998 / Accepted: 26 March 1998  相似文献   

9.
PIN1 is considered as a therapeutic target for a wide variety of tumours. However, most of known inhibitors are devoid of cellular activity despite their good enzyme inhibitory profile. Hence, the lack of effective compounds for the clinic makes the identification of novel PIN1 inhibitors a hot topic in the medicinal chemistry field. In this work, we reported a virtual screening study for the identification of new promising PIN1 inhibitors. A receptor-based procedure was applied to screen different chemical databases of commercial compounds. Based on the whole workflow, two compounds were selected and biologically evaluated. Both ligands, compounds VS1 and VS2, showed a good enzyme inhibitory activity and VS2 also demonstrated a promising antitumoral activity in ovarian cancer cells. These results confirmed the reliability of our in silico protocol and provided a structurally novel ligand as a valuable starting point for the development of new PIN1 inhibitors.  相似文献   

10.
Several indole esters were tested as inhibitors of tyrosine kinase p60c-Src. Compound (4) was found fairly active against the enzyme with IC50=1.34?μM. DOCK methodology was used to asses our inhibitors for their inhibitory potency against tyrosine kinase. The docking results showed that compounds (4), (25) and (26) were bound to the active site of the enzyme Lys 295 of p60c-Src tyrosine kinase. Both activity and docking studies showed a parallel result, with compound (4) having a better interaction with the enzyme active site and also greater activity than the other compounds, indicating a potential role as new lead inhibitor.  相似文献   

11.
Uridine phosphorylase (UPP) is a central enzyme in the pyrimidine salvage pathway, catalyzing the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate. Human UPP activity has been a focus of cancer research due to its role in activating fluoropyrimidine nucleoside chemotherapeutic agents such as 5-fluorouracil (5-FU) and capecitabine. Additionally, specific molecular inhibitors of this enzyme have been found to raise endogenous uridine concentrations, which can produce a cytoprotective effect on normal tissues exposed to these drugs. Here we report the structure of hUPP1 bound to 5-FU at 2.3 Å resolution. Analysis of this structure reveals new insights as to the conformational motions the enzyme undergoes in the course of substrate binding and catalysis. The dimeric enzyme is capable of a large hinge motion between its two domains, facilitating ligand exchange and explaining observed cooperativity between the two active sites in binding phosphate-bearing substrates. Further, a loop toward the back end of the uracil binding pocket is shown to flexibly adjust to the varying chemistry of different compounds through an “induced-fit” association mechanism that was not observed in earlier hUPP1 structures. The details surrounding these dynamic aspects of hUPP1 structure and function provide unexplored avenues to develop novel inhibitors of this protein with improved specificity and increased affinity. Given the recent emergence of new roles for uridine as a neuron protective compound in ischemia and degenerative diseases, such as Alzheimer''s and Parkinson''s, inhibitors of hUPP1 with greater efficacy, which are able to boost cellular uridine levels without adverse side-effects, may have a wide range of therapeutic applications.  相似文献   

12.
Inhibitors of the mitochondrial respiratory chain enzyme cytochrome bc 1 (respiratory complex III) have been developed as antimicrobial agents. They are used in agriculture to control plant pathogenic fungi and in medicine against human pathogens, such as the malaria parasite Plasmodium falciparum , or Pneumocystis jiroveci (an opportunistic pathogenic fungus life-threatening in immuno-compromised patients). These respiratory inhibitors are thus effective against a broad range of important pathogens. Unfortunately, the problem of acquired resistance has rapidly emerged. A growing number of pathogen isolates resistant to inhibitor treatment have been reported, and this resistance is often linked to mutation within cytochrome b , one of the essential catalytic subunits of the complex. Saccharomyces cerevisiae is an invaluable model in order to assess the impact of the mutations on the sensitivity to the drugs, on the respiratory capacity and the fitness of cells. In this minireview, the inhibitors, their mode of action, and the mutations implicated in resistance and studied in yeast are briefly reviewed. Four mutations that are of particular importance in medicine and in agriculture are briefly reviewed and described in more detail and the molecular basis of resistance and of evolution of the mutations is discussed succinctly.  相似文献   

13.
Diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) have been identified in bovine adrenal medullary tissue using an HPLC method. The values obtained were 0.1 +/- 0.05 mumol/g of tissue for both compounds. The subcellular fraction where Ap4A and Ap5A were present in the highest concentration was chromaffin granules: 32 nmol/mg of protein for both compounds (approximately 6 mM intragranularly). This value was 30 times higher than in the cytosolic fraction. Enzymatic degradation of Ap4A and Ap5A, isolated from chromaffin granules, with phosphodiesterase produces AMP as the final product. The Ap4A and Ap5A obtained from this tissue were potent inhibitors of adenosine kinase. Their Ki values relative to adenosine were 0.3 and 2 microM for Ap4A and Ap5A, respectively. The cytosolic fraction also contains enzymatic activities that degrade Ap4A as well as Ap5A. These activities were measured by an HPLC method; the observed Km values were 10.5 +/- 0.5 and 13 +/- 1 microM for Ap4A and Ap5A, respectively.  相似文献   

14.
A great variety of biological reactions that are physiologically important are catalyzed by enzymes. Understanding the reaction course of these enzyme-catalyzed transformations are of significant importance since the insights gained from these experiments may facilitate the design of methods to control or mimic their actions. A common strategy to study enzyme catalyses is to use fluorinated substrate analogues as mechanistic probes, since fluorine is an effective hydroxyl group mimic and can also be used to replace a hydrogen atom. Using fluorinated substrate probes have enabled researchers to obtain crucial information regarding the catalytic mechanism of enzymatic reactions. Many of these compounds are good enzyme inhibitors and have been developed into clinically useful chemotherapeutic agents. This review will discuss some examples of the use of fluorine containing compounds as mechanistic probes/enzyme inhibitors, many of which are selected from our own work.  相似文献   

15.
High-throughput screening (HTS) has become an integral part of academic and industrial efforts aimed at developing new chemical probes and drugs. These screens typically generate several 'hits', or lead active compounds, that must be prioritized for follow-up medicinal chemistry studies. Among primary considerations for ranking lead compounds is selectivity for the intended target, especially among mechanistically related proteins. Here, we show how the chemical proteomic technology activity-based protein profiling (ABPP) can serve as a universal assay to rank HTS hits based on their selectivity across many members of an enzyme superfamily. As a case study, four metalloproteinase-13 (MMP13) inhibitors of similar potency originating from a publically supported HTS and reported in PubChem were tested by ABPP for selectivity against a panel of 27 diverse metalloproteases. The inhibitors could be readily separated into two groups: (1) those that were active against several metalloproteases and (2) those that showed high selectivity for MMP13. The latter set of inhibitors was thereby designated as more suitable for future medicinal chemistry optimization. We anticipate that ABPP will find general utility as a platform to rank the selectivity of lead compounds emerging from HTS assays for a wide variety of enzymes.  相似文献   

16.
The mechanism of action of nonsteroidal anti-inflammatory drugs (NSAIDs) is inhibition of specific prostaglandin (PG) synthesis by inhibition of cyclooxygenase (COX) enzymes. The two COX isoenzymes show 60 % similarity. It is known that the nonspecific side effects of conventional NSAIDs are physiologically caused by inhibition of the COX-1 enzyme. Therefore, the use of COX-2 selective inhibitors is seen to be a more beneficial approach in reducing these negative effects. However, some of the existing COX-2 selective inhibitors show cardiovascular side effects. Therefore, studies on the development of new selective COX-2 inhibitors remain necessary. It is important to develop new COX-2 inhibitors in the field of medicinal chemistry. Accordingly, novel N-acyl hydrazone derivatives were synthesized as new COX-2 inhibitors in this study. The hydrazone structure, also known for its COX activity, is important in terms of many biological activities and was preferred as the main structure in the design of these compounds. A methyl sulfonyl pharmacophore was added to the structure in order to increase the affinity for the polar side pocket present in the COX-2 enzyme. It is known that methyl sulfonyl groups are suitable for polar side pockets. The synthesis of the compounds ( 3a – 3j ) was characterized by spectroscopic methods. Evaluation of in vitro COX-1/COX-2 enzyme inhibition was performed by fluorometric method. According to the enzyme inhibition results, the obtained compounds displayed the predicted selectivity for COX-2 enzyme inhibition. Compound 3j showed important COX-2 inhibition with a value of IC50=0.143 uM. Interaction modes between the COX-2 enzyme and compound 3j were investigated by docking studies.  相似文献   

17.
The current rise in mycobacterial-related infections and disease, coupled with drug resistance, underlines the continuing need for new antimycobacterials. To this end, we have screened approximately 1500 extracts derived from marine plants and invertebrates and terrestrial fungi for their ability to inhibit a newly described mycobacterial detoxification enzyme mycothiol-S-conjugate amidase (MCA). As described in this paper, our screening and chemistry efforts thus far have led to the identification of 13 natural product inhibitors that represent six different structural classes. By conducting enzyme inhibition assays using varied inhibitor and substrate concentrations, we have determined the mode of inhibition of Mycobacterium tuberculosis MCA for four of these compounds. We show that two types of bromotyrosine-derived natural products are competitive inhibitors of MCA; while oceanapiside, an alpha,omega-bis-aminohydroxy glycosphingolipid, and the fungal metabolite gliotoxin, a dithiadiketopiperazine, are simple and mixed non-competitive inhibitors, respectively. Correlation of these results with the chemical structures suggests that MCA is a metalloenzyme and that the oximinoamide and spiro-isoxazoline amide groups present in the competitive inhibitors are substrate mimics.  相似文献   

18.
H Chung  J Fried  J Jarabak 《Prostaglandins》1987,33(3):391-402
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that possess both NADP-linked 15-hydroxyprostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstable and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutathione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA1-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutathione site.  相似文献   

19.
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that posses both NADP-linked 15-hydroxypyrostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstble and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutahione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutahione site.  相似文献   

20.
Protein kinase B (PKB/AKT) has been identified as a promising cancer drug target downstream of PI3 kinase. To find novel inhibitors of PKB/AKT kinase activity for progression as anticancer agents, the authors have used a high-throughput screen based on AlphaScreentrade mark technology. A known kinase inhibitor, the isoquinoline H8, was used as a positive control with mean inhibition in the screen of 43.4% +/- 13.1%. The performance of the screen was highly acceptable with Z' and Z factors of 0.83 +/- 0.07 and 0.75 +/- 0.04, respectively. A number of confirmed hits ( approximately 0.1% hit rate) were identified from 63,500 compounds screened. Five compounds have previously been described as PKB inhibitors, demonstrating the ability of the assay to find authentic inhibitors of the enzyme. Five hits had the potential to interfere with the assay signal and were deemed to be false positives. Two compounds were nonspecific inhibitors of PKB as enzyme inhibition in a filter-based assay was markedly reduced in the presence of 0.01% Triton X100. The authors now include an interference assay during hit confirmation procedures and check compound activity in the presence of Triton X100 in an attempt to eliminate nonspecific aggregators at an early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号