首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work examines the relative contribution of the triceps surae heads and the tibialis anterior (TA) to tension development with reference to voluntary plantarflexion at various velocities and at two articular positions of the knee joint (extended and flexed at 90 °). Subjects were instructed to perform plantarflexion at various submaximal and maximal velocities with no intention of stopping the movement. Voluntary electromyographic (EMG) activity was recorded and the amplitude, duration and integral were analysed. Integrated EMG (IEMG) was normalized with respect to duration. The maximal M wave and the Hoffmann (H) reflex elicited by electrical stimulation of the tibial nerve were recorded in the triceps surae to estimate the effects in gastrocnemii (G) length and motoneuron excitability differences, respectively, in the two knee positions. The results indicate that: (a) although the largest EMG activity was recorded in the extended limb, the greatest maximal velocities were performed in the flexed knee position; (b) with increasing velocity of movement, all triceps surae muscles showed enhanced IEMG activities; (c) at a low velocity of movement the soleus (So1)/G IEMG ratio was larger in the flexed compared to the extended knee; and (d) with increasing velocity, co-activation of agonist and antagonist muscles appeared. It is concluded that the larger maximal velocity of movement observed in the flexed compared to the extended knee was not primarily related to the neural command of the different triceps surae components, but rather to their mechanical properties. Furthermore, co-activation of agonist and antagonist muscles may contribute to the performance of the contractile strategy during rapid movements.  相似文献   

2.
The relationship between the size of the soleus (Sol) Hoffmann (H-) reflex and the level of background (BG) electromyographic (EMG) activity was examined during plantarflexing at different force levels. The experiments were carried out on seven healthy male subjects aged 20-37 years. The subjects were asked to perform fast plantarflexion under a reaction-time condition. The amounts of contraction force were 10, 20, 50 and 80% of maximum voluntary contraction (MVC). Since the maximum size of the M-wave (Mmax) changed systematically during the plantarflexion, we tried to maintain the size of the reference M-wave, an indicator of the efficiency of the electrical stimulation, at a constant value (20% of Mmax) throughout the experiment. The size of the H-reflex was rapidly increased at the very beginning of the movement, and then it tended to decrease in the later phase of the movement. Consequently, even with the same level of BG EMG, the size of the H-reflex was always larger in the early rising phase of the EMG activity than in the later falling phase. The maximum size of the H-reflex was poorly correlated with the force exerted. In contrast, the size of the F-response was proportional to the force exerted. The non-linear relationship between the size of the H-reflex and the BG EMG suggests that the level of the presynaptic inhibition onto Ia terminals was modified depending on the required force level and during the course of the movement.  相似文献   

3.
4.
In the present study, we investigated whether weak (10% of maximal voluntary contraction) tonic dorsiflexion (DF) and plantarflexion (PF) affects the two conventional parameters used for evaluating the excitability of the soleus motoneuron (MN) pool, i.e. the ratio of the threshold of H-reflex to that of M-response (Hth:Mth) and the ratio of the maximal amplitude of H-reflex to that of M-response (Hmax:Mmax) in human subjects. The results showed that the Hmax:Mmax decreased during DF and increased during PF compared with that during rest, whereas no clear alteration was observed in Hth:Mth. These results are consistent with the scheme proposed by earlier workers, who have argued that neither inhibitory nor facilitatory effects of the conditioning stimulus apply to specific spinal reflex circuits occurring around the threshold of the test H-reflex. It is suggested, therefore, that the conventional use of the Hth:Mth ratio as a parameter reflecting the excitability of the MN pool should be reconsidered.  相似文献   

5.
Muscle compression commonly occurs in daily life (for instance wearing backpacks or compression garments, and during sitting). However, the effects of the compression on contraction dynamics in humans are not well examined. The aim of the study was to quantify the alterations of contraction dynamics and muscle architecture in human muscle with external transverse loads.The posterior tibialis nerve of 29 subjects was stimulated to obtain the maximal double-twitch force of the gastrocnemius muscle with and without transverse compression that was generated using an indentor. The muscle architecture was determined by a sonographic probe that was embedded within the indentor. Five stimulations each were conducted at 5 conditions: (1) pretest (unloaded), (2) indentor loading with 2 kg, (3) 4.5 kg, (4) 10 kg, and (5) posttest (unloaded).Compared to the pretest maximal force decreased by 9%, 13% and 16% for 2 kg, 4.5 kg and 10 kg, respectively. The half-relaxation time increased with increased transverse load whereas the rate of force development decreased from pretest to 2 kg and from 4.5 kg to 10 kg. The lifting height of the indentor increased with transverse load from 2 kg to 4.5 kg but decreased from 4.5 kg to 10 kg. Increases in pennation during the twitches were reduced at the highest transverse load.The results demonstrate changes of the contraction dynamics due to transversal muscle loading. Those alterations are associated with the applied pressure, changes in muscle architecture and partitioning of muscle force in transversal and longitudinal direction.  相似文献   

6.
7.
During exercise, muscle mechanoreflex-mediated sympathoexcitation evokes renal vasoconstriction. Animal studies suggest that prostaglandins generated within the contracting muscle sensitize muscle mechanoreflexes. Thus we hypothesized that local prostaglandin blockade would attenuate renal vasoconstriction during ischemic muscle stretch. Eleven healthy subjects performed static handgrip before and after local prostaglandin blockade (6 mg ketorolac tromethamine infused into the exercising forearm) via Bier block. Renal blood flow velocity (RBV; Duplex Ultrasound), mean arterial pressure (MAP; Finapres), and heart rate (HR; ECG) were obtained during handgrip, post-handgrip muscle ischemia (PHGMI) followed by PHGMI with passive forearm muscle stretch (PHGMI + stretch). Renal vascular resistance (RVR, calculated as MAP/RBV) was increased from baseline during all paradigms except during PHGMI + stretch after the ketorolac Bier block trial where RVR did not change from baseline. Before Bier block, RVR rose more during PHGMI + stretch than during PHGMI alone (P < .01). Similar results were found after a saline Bier block trial (Delta53 +/- 13% vs. Delta35 +/- 10%; P < 0.01). However, after ketorolac Bier block, RVR was not greater during PHGMI + stretch than during PHGMI alone [Delta39 +/- 8% vs. Delta40 +/- 12%; P = not significant (NS)]. HR and MAP responses were similar during PHGMI and PHGMI + stretch (P = NS). Passive muscle stretch during ischemia augments renal vasoconstriction, suggesting that ischemia sensitizes mechanically sensitive afferents. Inhibition of prostaglandin synthesis eliminates this mechanoreceptor sensitization-mediated constrictor responses. Thus mechanoreceptor sensitization in humans is linked to the production of prostaglandins.  相似文献   

8.
9.
We examined muscle sympathetic nerve activity (MSNA) in thenonexercising lower limb during repetitive static quadricepscontraction paradigm at 25% maximal voluntary contraction in eightmen. Subjects performed 20-s contractions with 5-s rest periods for upto 12 contractions. Although the workload was constant, we found that MSNA amplitude rose as a function of contraction number [0.6 ln (amplitude/min)/contraction]; this suggests chemicalsensitization of the muscle reflex response. We employedsignal-averaging techniques and then integrated the data to examine theonset latency of the MSNA response as a function of the 25-scontraction-rest period. We observed an onset latency of ~4-6 s.Moreover, although the onset latency did not appear to vary as afunction of contraction number, the rate of MSNA increase tookapproximately four contractions to reach a steady-state rate of rise;this suggests contraction-induced sensitization. The onset latencyreported here is similar to findings in recent animal studies, but itis at odds with latencies determined in prior human handgripcontraction studies. We believe our data suggest that1) mechanically sensitive afferentscontribute importantly to the MSNA response to the paradigm employedand 2) these afferents may besensitized by the chemical products of muscle contraction.  相似文献   

10.
Decay of inspiratory muscle pressure during expiration in conscious humans   总被引:1,自引:0,他引:1  
In eight conscious spontaneously breathing adults we studied the decay of pressure developed by the inspiratory muscles during expiration (PmusI). PmusI was obtained according to the following equation: PmusI(t) = Ers X V(t) - Rrs X V(t), where V is volume and V is flow at any instant t during spontaneous expiration, and Ers and Rrs are, respectively, the passive elastance and resistance of the total respiratory system. Ers was determined with the relaxation method, and resistance with the interrupter method. All subjects showed marked braking of expiratory flow by PmusI. The mean time for PmusI to reduce to 50 and 0% amounted, respectively, to 23 and 79% of expiratory time. During expiration, 24-55% of the elastic energy stored during inspiration was used as resistive work and the remainder (45-76%) as negative work.  相似文献   

11.
12.
The aim of the present study was to establish the behavior of human medial gastrocnemius (GM) muscle fascicles during stair negotiation. Ten healthy male subjects performed normal stair ascent and descent at their own comfortable speed on a standard-dimension four-step staircase with embedded force platforms in each step. Kinematic, kinetic, and electromyographic data of the lower limbs were collected. Real-time ultrasound scanning was used to determine GM muscle fascicle length changes. Musculotendon complex (MTC) length changes were estimated from ankle and knee joint kinematics. The GM muscle was mainly active during the push-off phase in stair ascent, and the muscle fascicles contracted nearly isometrically. The GM muscle was mainly active during the touch-down phase of stair descent where the MTC was lengthened; however, the GM muscle fascicles shortened by approximately 7 mm. These findings show that the behavior and function of GM muscle fascicles in stair negotiation is different from that expected on the basis of length changes of the MTC as derived from joint kinematics.  相似文献   

13.
The aim of the present study was to use nicotinamide adenine dinucleotide phosphate, reduced (NADH) fluorimetry, to investigate in situ NADH changes during muscle contraction in humans on an isokinetic dynamometer. Thirteen healthy male subjects each performed one maximal voluntary contraction (MVC) with the knee extensor muscle. The NADH muscle fluorescence was monitored by a double beam laser fluorimeter which uses an optical fibre, percutaneously inserted through a needle into the vastus lateral muscle, to guide the light. The NADH fluorescence was continuously measured at a wavelength of 337 nm. To estimate the haemodynamic artefact, blood backscattering was simultaneously determined at a wavelength of 586 nm. The fluorescence signal was recorded before, during and after contractions at 50% of MVC. The fibre was kept out of contact with the muscle during contractions at 100% of MVC and was only put into contact with it at the end of the contraction. At the onset of contractions at 50% of MVC, NADH fluorescence increased rapidly for 3 s and remained stable thereafter until exhaustion. After a muscle measurement had been made, the optical fibre was put successively into solutions of increasing NADH concentration to ascertain the relationship between the muscle fluorescence signal and the muscle NADH level. This procedure yielded estimated mean values for muscle NADH of 0.172 mmol.kg-1, SEM 0.028 and of 0.184 mmol.kg-1, SEM 0.027 after contractions at 50% and 100% of MVC, respectively, from a resting value of 0.087 mmol.kg-1, SEM 0.015. These results indicated that in situ laser fluorimetry could be used to evaluate NADH changes in humans during muscle contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Changes accompanying long-lasting intermittent muscle contractions (30%–50% of the maximal) were investigated by tracing the activity of 38 motor units (MU) of the human biceps brachii muscle recorded from fine-wire branched electrodes. The motor task was a continuous repetition of ramp-and-hold cycles of isometric flexion contractions. During ramp-up phases a significant decline in recruitment thresholds was found with no changes in the discharge pattern. During ramp-down phases the unchanged mean value of derecruitment thresholds during the task was accompanied by increased duration of the last two interspike intervals (ISI). These findings would suggest that during fatigue development the main compensatory mechanism during ramp-up contractions is space coding while for ramp-down contractions it is rate coding. During the steady-state phases the mean value of ISI, as well as the firing variability, had increased by the end of the task in most of the MU investigated . In addition 17 recruited MU were also investigated. These units revealed a lower initial discharge rate and a faster decrease in the mean discharge rate with the development of fatigue. The gradual reduction of the recruitment threshold of already active MU and the recruitment of new units demonstrated an increased excitability of the motorneuron pool during fatigue. A typical recruitment pattern (a first short ISI followed by a long one) was observed during ramp-up contractions in units active from the very beginning of the task, as well as during sustained contractions at the onset of the stable discharge of the additionally recruited MU. Accepted: 23 September 1997  相似文献   

15.
16.
To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.001) during posthandgrip muscle ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.  相似文献   

17.
Muscle contraction is driven by the cyclical interaction of myosin with actin, coupled with ATP hydrolysis. Myosin attaches to actin, forming a crossbridge that produces force and movement as it tilts or rocks into subsequent bound states before finally detaching. It has been hypothesized that the kinetics of one or more of these mechanical transitions are dependent on load, allowing muscle to shorten quickly under low load, but to sustain tension economically, with slowly cycling crossbridges under high load conditions. The idea that muscle biochemistry depends on mechanical output is termed the 'Fenn effect'. However, the molecular details of how load affects the kinetics of a single crossbridge are unknown. Here, we describe a new technique based on optical tweezers to rapidly apply force to a single smooth muscle myosin crossbridge. The crossbridge produced movement in two phases that contribute 4 nm + 2 nm of displacement. Duration of the first phase depended in an exponential manner on the amplitude of applied load. Duration of the second phase was much less affected by load, but was significantly shorter at high ATP concentration. The effect of load on the lifetime of the bound crossbridge is to prolong binding when load is high, but to accelerate release when load is low or negative.  相似文献   

18.
The respiratory-related activity of the arytenoideus (AR) muscle, a vocal cord adductor, was investigated in 10 healthy adults during wakefulness and sleep. AR activity was measured with intramuscular hooked-wire electrodes implanted by means of a fiber-optic nasopharyngoscope. Correct placement of the electrodes was confirmed by discharge patterns during voluntary maneuvers. The AR usually exhibited respiratory-related activity during quiet breathing in all awake subjects. Tonic activity was frequently present throughout the respiratory cycle. The pattern of phasic discharge during wakefulness exhibited considerable intrasubject variability both in timing and level of activity. Phasic activity usually began in midinspiration and terminated in mid- to late expiration. Periods of biphasic discharge were observed in four subjects. Phasic discharge primarily confined to expiration was also commonly observed. During quiet breathing in wakefulness, the level of phasic AR activity appeared to be directly related to the time of expiration. The AR was electrically silent in the six subjects who achieved stable periods of non-rapid-eye-movement sleep. Rapid-eye-movement sleep was observed in three subjects and was associated with sporadic paroxysmal bursts of AR activity. The results during wakefulness indicate that vocal cord adduction in expiration is an active phenomenon and suggest that the larynx may have an active role in braking exhalation.  相似文献   

19.
20.
To elucidate the mechanisms of lactate formation during submaximal exercise, eight men were studied during one- (1-LE) and two-leg (2-LE) exercise (approximately 11-min cycling) using the catheterization technique and muscle biopsies (quadriceps femoris muscle). The absolute exercise intensity and thus the energy demand for the exercising limb was the same [mean 114 (SEM 7) W] during both 1-LE and 2-LE. At the end of exercise partial pressure of O2 and O2 saturation in femoral venous blood were lower and arterial adrenaline and noradrenaline were higher during 2-LE than during 1-LE. Mean arterial blood lactate concentration increased to 10.8 (SEM 0.8) (2-LE) and 5.2 (SEM 0.4) mmol · 1–1 (1-LE) after 10 min of exercise. The intramuscular metabolic response to exercise was attenuated during 1-LE [mean, lactate = 49 (SEM 9); glucose 6-P = 3.3 (SEM 0.3); nicotinamide adenine dinucleotide, reduced = 0.17 (SEM 0.02); adenosine 5-diphosphate 2.7 (SEM 0.1) mmol · kg dry mass–1] compared to 2-LE [76 (SEM 6); 6.1 (SEM 0.7); 0.21 (SEM 0.02); 3.0 (SEM 0.1) mmol · kg dry mass–1, respectively]. To elucidate whether the lower plasma adrenaline concentration could contribute to the attenuated metabolic response, additional experiments were performed on four of the eight subjects with infusion of adrenaline during 1-LE (1-LEE). Average plasma adrenaline concentration was increased during 1-LEE and reached 2–4 times higher levels than during 2-LE. Post-exercise muscle lactate and glucose 6-P contents were higher during 1-LEE than during 1-LE and were similar to those during 2-LE. Also, leg lactate release was elevated during 1-LEE versus 1-LE. It was concluded that during submaximal dynamic exercise the intramuscular metabolic response not only depended on the muscle power output, but also on the total muscle mass engaged. Plasma adrenaline concentrations and muscle oxygenation were found to be dependent upon the working muscle mass and both may have affected the metabolic response during exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号