首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal is an important factor in plant community assembly, but assembly studies seldom include information on actual dispersal into communities, i.e. the local propagule pool. The aim of this study was to determine which factors influence plant community assembly by focusing on two phases of the assembly process: the dispersal phase and the establishment phase. At 12 study sites in grazed ex-arable fields in Sweden the local plant community was determined and in a 100-m radius around the centre of each site, the regional species pool was measured. The local seed bank and the seed rain was explored to estimate the local propagule pool. Trait-based models were then applied to investigate if species traits (height, seed mass, clonal abilities, specific leaf area and dispersal method) and regional abundance influenced which species from the regional species pool, dispersed to the local community (dispersal phase) and which established (establishment phase). Filtering of species during the dispersal phase indicates the effect of seed limitation while filtering during the establishment phase indicates microsite limitation. On average 36% of the regional species pool dispersed to the local sites and of those 78% did establish. Species with enhanced dispersal abilities, e.g. higher regional abundance, smaller seeds and dispersed by cattle, were more likely to disperse to the sites than other species. At half the sites, dispersal was influenced by species height. Species establishment was however mainly unlinked to the traits included in this study. This study underlines the importance of seed limitation in local plant community assembly. It also suggests that without information on species dispersal into a site, it is difficult to distinguish between the influence of dispersal and establishment abilities, and thus seed and microsite limitation, as both can be linked to the same trait.  相似文献   

2.
The relative importance of dispersal limitation versus environmental filtering for community assembly has received much attention for macroorganisms. These processes have only recently been examined in microbial communities. Instead, microbial dispersal has mostly been measured as community composition change over space (i.e., distance decay). Here we directly examined fungal composition in airborne wind currents and soil fungal communities across a 40 000 km2 regional landscape to determine if dispersal limitation or abiotic factors were structuring soil fungal communities. Over this landscape, neither airborne nor soil fungal communities exhibited compositional differences due to geographic distance. Airborne fungal communities shifted temporally while soil fungal communities were correlated with abiotic parameters. These patterns suggest that environmental filtering may have the largest influence on fungal regional community assembly in soils, especially for aerially dispersed fungal taxa. Furthermore, we found evidence that dispersal of fungal spores differs between fungal taxa and can be both a stochastic and deterministic process. The spatial range of soil fungal taxa was correlated with their average regional abundance across all sites, which may imply stochastic dispersal mechanisms. Nevertheless, spore volume was also negatively correlated with spatial range for some species. Smaller volume spores may be adapted to long-range dispersal, or establishment, suggesting that deterministic fungal traits may also influence fungal distributions. Fungal life-history traits may influence their distributions as well. Hypogeous fungal taxa exhibited high local abundance, but small spatial ranges, while epigeous fungal taxa had lower local abundance, but larger spatial ranges. This study is the first, to our knowledge, to directly sample air dispersal and soil fungal communities simultaneously across a regional landscape. We provide some of the first evidence that soil fungal communities are mostly assembled through environmental filtering and experience little dispersal limitation.  相似文献   

3.
Aims The assembly of plant communities is a complex process which combines impacts from the species pool, dispersal and propagule pressure, niche requirements of colonizing species and the niche structure of the community. Recent theory development has incorporated all these aspects, e.g. in 'stochastic niche theory'. We investigated recruitment into a species-rich grassland community, using an experimental approach where we manipulated the trait composition of the community and examined the success of colonizing species entering with various propagule pressure. Specifically, we examined two predictions: (i) colonization success increases with increasing difference between traits of the colonizing species and the trait profile of the community and (ii) colonization success increases with increasing propagule pressure.Methods The examined communities were species-rich semi-natural grasslands located in southern Sweden. After a careful documentation of the composition of the plant communities at the experimental sites, we manipulated the trait profile of species-rich grassland plots based on the plant functional trait specific leaf area (SLA), which is correlated with several key life history functions. In addition to SLA, seed mass was also used to describe the trait profile of grassland plots. Seeds of 12 plant species from the regional species pool, varying in SLA and seed mass, were sown into plots using four different levels of propagule pressure. Recruitment was examined after 1 year. We also planted juvenile 'plug plants' of the same species which allowed us to examine survivorship and growth beyond the seedling stage.Important findings Overall we found very limited evidence for relationships between the traits of the colonizing species and the trait profile of the community and for recruitment after sowing these relationships were contrary to the prediction. Survival of plug plants after two seasons of growth was high irrespective of the trait profile of the community, but growth of plug plants was affected by the trait profile of the surrounding community. For four of the species there was a positive effect of increased propagule pressure on colonization. The results suggest that species assembly in species-rich grasslands is not strongly dependent on the niche structure of the community. However, the finding that colonization of only a third of the species responded positively to increased propagule pressure indicates that there might be niche-related effects that were not captured by our treatments. Overall, our results indicate that the factors determining colonization in this community are species specific. Some species are able to colonize irrespective of niche relationships, provided that the propagule pressure is sufficiently high to overcome stochastic mortality after seed arrival. For other species, however, we cannot exclude that niche assembly occurred, but we failed to identify the relevant niche factor.  相似文献   

4.
Aims Studies integrating phylogenetic history and large-scale community assembly are few, and many questions remain unanswered. Here, we use a global coastal dune plant data set to uncover the important factors in community assembly across scales from the local filtering processes to the global long-term diversification and dispersal dynamics. Coastal dune plant communities occur worldwide under a wide range of climatic and geologic conditions as well as in all biogeographic regions. However, global patterns in the phylogenetic composition of coastal dune plant communities have not previously been studied.Methods The data set comprised vegetation data from 18463 plots in New Zealand, South Africa, South America, North America and Europe. The phylogenetic tree comprised 2241 plant species from 149 families. We calculated phylogenetic clustering (Net Relatedness Index, NRI, and Nearest Taxon Index, NTI) of regional dune floras to estimate the amount of in situ diversification relative to the global dune species pool and evaluated the relative importance of land and climate barriers for these diversification patterns by geographic analyses of phylogenetic similarity. We then tested whether dune plant communities exhibit similar patterns of phylogenetic structure within regions. Finally, we calculated NRI for local communities relative to the regional species pool and tested for an association with functional traits (plant height and seed mass) thought to vary along sea–inland gradients.Important findings Regional species pools were phylogenetically clustered relative to the global pool, indicating regional diversification. NTI showed stronger clustering than NRI pointing to the importance of especially recent diversifications within regions. The species pools grouped phylogenetically into two clusters on either side of the tropics suggesting greater dispersal rates within hemispheres than between hemispheres. Local NRI plot values confirmed that most communities were also phylogenetically clustered within regions. NRI values decreased with increasing plant height and seed mass, indicating greater phylogenetic clustering in communities with short maximum height and good dispersers prone to wind and tidal disturbance as well as salt spray, consistent with environmental filtering along sea–inland gradients. Height and seed mass both showed significant phylogenetic signal, and NRI tended to correlate negatively with both at the plot level. Low NRI plots tended to represent coastal scrub and forest, whereas high NRI plots tended to represent herb-dominated vegetation. We conclude that regional diversification processes play a role in dune plant community assembly, with convergence in local phylogenetic community structure and local variation in community structure probably reflecting consistent coastal-inland gradients. Our study contributes to a better understanding of the globally distributed dynamic coastal ecosystems and the structuring factors working on dune plant communities across spatial scales and regions.  相似文献   

5.
Several longer-term assembly studies on ex-arable land have found that species that arrive first at a disturbed site can play a key role in the further development of the community and that this priority effect influences aboveground productivity, species diversity and stability of the grassland communities that develop. Restoration of nutrient poor, species rich grasslands is often limited by seed dispersal as well as the accessibility of suitable microsites for establishment. Sowing species (i.e. creating priority effects for further assembly) may help overcome such dispersal barriers, but the potential of using priority effects for restoration has not been tested in this type of dry grassland. We tested the hypothesis that sowing two different seed mixtures used for dry acidic grassland restoration onto a sandy substrate (which formed an equivalent to a primary succession) would create priority effects, and that these priority effects would be sustained over a number of years. We followed community assembly and measured aboveground productivity for four years after sowing. We found that priority effects caused by sowing of differently diverse mixtures did also occur in dry acidic grassland habitat, but that how persistent they were over time depended on the response variable considered. Priority effects on species number were not as strong as found in previous ex-arable land studies, whereas priority effects for aboveground productivity were still visible after 4 years. In addition, functional composition of the community still reflected the composition of the seed mixtures 4 years later. Our results suggest that priority effects can occur in nutrient-poor dry acidic grassland but in contrast to more nutrient-rich sites the breadth of responses affected may not be as wide.  相似文献   

6.
植物群落构建机制研究进展   总被引:25,自引:15,他引:10  
柴永福  岳明 《生态学报》2016,36(15):4557-4572
群落构建研究对于解释物种共存和物种多样性的维持是至关重要的,因此一直是生态学研究的中心论题。尽管近年来关于生态位和中性理论的验证研究已经取得了显著的成果,但对于局域群落构建机制的认识仍存在很大争议。随着统计和理论上的进步使得用功能性状和群落谱系结构解释群落构建机制变为可能,主要是通过验证共存物种的性状和谱系距离分布模式来实现。然而,谱系和功能性状不能相互替代,多种生物和非生物因子同时控制着群落构建,基于中性理论的扩散限制、基于生态位的环境过滤和竞争排斥等多个过程可能同时影响着群落的构建。所以,综合考虑多种方法和影响因素探讨植物群落的构建机制,对于预测和解释植被对干扰的响应,理解生物多样性维持机制有重要意义。试图在简要回顾群落构建理论及研究方法发展的基础上,梳理其最新研究进展,并探讨整合功能性状及群落谱系结构的研究方法,解释群落构建和物种多样性维持机制的可能途径。在结合功能性状和谱系结构研究群落构建时,除了考虑空间尺度、环境因子、植被类型外,还应该关注时间尺度、选择性状的种类和数量、性状的种内变异、以及人为干扰等因素对群落构建的影响。  相似文献   

7.
放牧干扰梯度下川西亚高山植物群落的组合机理   总被引:2,自引:1,他引:1       下载免费PDF全文
为了阐明放牧干扰对川西亚高山区域植物群落的组合过程以及群落结构的影响, 研究了放牧干扰梯度下的功能群均匀度和群落谱系结构的变化趋势。结果显示: 在干扰较轻的阔叶林与针叶林样地, 部分样方的功能群均匀度显著高于无效模型, 随着干扰梯度的增强, 功能群均匀度呈线性下降, 样方平均值从0.930降至0.840, 其高于无效模型的次数也逐渐降低, 干扰程度较大的草甸中出现部分样方的功能群均匀度显著低于无效模型。随着干扰程度的增强, 群落的谱系结构指数也呈逐渐上升趋势, 净关联指数平均值由-0.634逐渐增加至2.360, 邻近类群指数由-0.158上升至2.179。草甸与低矮灌丛受干扰较为严重, 其大部分样方的谱系结构指数显著高于随机群落, 表明干扰群落的谱系结构呈聚集分布。功能群均匀度与谱系结构的变化趋势一致, 表明生境筛滤效应与种间竞争作用的平衡决定着群落的组合过程。干扰降低了竞争作用, 促进了少数耐干扰功能群的优势地位, 造成功能群均匀度下降, 同时通过生境筛滤作用, 使群落的谱系结构呈现出聚集分布; 而未干扰的群落中由于竞争作用的效应, 功能群均匀度较高, 谱系结构也更加分散。研究区域植物群落的功能群均匀度与物种丰富度呈负相关, 表明物种间特别是相似物种间的竞争限制了群落的物种多样性。研究结果说明, 生态位分化和物种间的相互竞争在物种共存与群落组合中具有重要作用。  相似文献   

8.
Understanding the imprint of environmental filtering on community assembly along environmental gradients is a key objective of trait‐gradient analyses. Depending on local constraints, this filtering generally entails that species departing from an optimum trait value have lower abundances in the community. The community‐weighted mean (CWM) and variance (CWV) of trait values are then expected to depict the optimum and intensity of filtering, respectively. However, the trait distribution within the regional species pool and its limits can also affect local CWM and CWV values apart from the effect of environmental filtering. The regional trait range limits are more likely to be reached in communities at the extremes of environmental gradients. Analogous to the mid‐domain effect in biogeography, decreasing CWV values in extreme environments can then represent the influence of regional trait range limits rather than stronger filtering in the local environment. We name this effect the ‘trait‐gradient boundary effect’ (TGBE). First, we use a community assembly framework to build simulated communities along a gradient from a species pool and environmental filtering with either constant or varying intensity while accounting for immigration processes. We demonstrate the significant influence of TGBE, in parallel to environmental filtering, on CWM and CWV at the extremes of the environmental gradient. We provide a statistical tool based on Approximate Bayesian Computation to decipher the respective influence of local environmental filtering and regional trait range limits. Second, as a case study, we reanalyze the functional composition of alpine plant communities distributed along a gradient of snow cover duration. We show that leaf trait convergence found in communities at the extremes of the gradient reflect an influence of trait range limits rather than stronger environmental filtering. These findings challenge correlative trait–environment relationships and call for more explicitly identifying the mechanisms responsible of trait convergence/divergence along environmental gradients.  相似文献   

9.
Theoretical models predict that effects of dispersal on local biodiversity are influenced by the size and composition of the species pool, as well as ecological filters that limit local species membership. We tested these predictions by conducting a meta-analysis of 28 studies encompassing 62 experiments examining effects of propagule supply (seed arrival) on plant species richness under contrasting intensities of ecological filters (owing to disturbance and resource availability). Seed arrival increased local species richness in a wide range of communities (forest, grassland, montane, savanna, wetland), resulting in a positive mean effect size across experiments. Mean effect size was 70% higher in disturbed relative to undisturbed communities, suggesting that disturbance increases recruitment opportunities for immigrating species. In contrast, effect size was not significantly influenced by nutrient or water availability. Among seed-addition experiments, effect size was positively correlated with species and functional diversity within the pool of added seeds (species evenness and seed-size diversity), primarily in disturbed communities. Our analysis provides experimental support for the general hypothesis that species pools and local environmental heterogeneity interactively structure plant communities. We highlight empirical gaps that can be addressed by future experiments and discuss implications for community assembly, species coexistence, and the maintenance of biodiversity.  相似文献   

10.
A central goal in ecology is to develop theories that explain the diversity and distribution of species. The evolutionary history of species and their functional traits may provide mechanistic links between community assembly and the environment. Such links may be hierarchically structured such that the strength of environmental filtering decreases in a step‐wise manner from regional conditions through landscape heterogeneity to local habitat conditions. We sampled the wild bee species assemblages in power‐line strips transecting forests in south‐eastern Norway. We used altitude, landscape diversity surrounding sites and plant species composition, together with total plant cover as proxies for regional, landscape and local environmental filters, respectively. The species richness and abundance of wild bees decreased with altitude. The reduction in species richness and abundance was accompanied by a phylogenetic clustering of wild bee individuals. Furthermore, regional filters followed by local filters best explained the structure of the functional species composition. Sites at high altitudes and sites with Ericaceae‐dominated plant communities tended to have larger bees and a higher proportion of social and spring‐emerging bees. When Bombus species were excluded from the analysis, the proportion of pollen specialists increased with the dominance of Ericaceae. Furthermore, we also found that the taxonomic, phylogenetic and functional compositional turnover between sites was higher in the northern region than in the southern part of the study region. Altogether, these results suggest that regional filters drive the species richness and abundance in trait‐groups whereas local filters have more descrete sorting effects. We conclude that the model of multi‐level environmental filters provides a good conceptual model for community ecology. We suggest that future studies should focus on the relationship between the biogeographical history of species and their current distribution, and on the assumption that closely related species do indeed compete more intensely than distantly related species.  相似文献   

11.
Aims Species abundance distributions (SADs) are often used to verify mechanistic theories underlying community assembly. However, it is now accepted that SADs alone are not sufficient to reveal biological mechanisms. Recent attention focuses on the relative importance of stochastic dispersal processes versus deterministic processes such as interspecific competition and environmental filtering. Here, we combine a study of the commonness and rarity of species (i.e. the SAD) with mechanistic processes underlying community composition. By comparing the occurrence frequencies of each and every species with its abundance, we quantify the relative contributions of common and rare species to the maintenance of community structure. Essentially, we relate the continuum between commonness and rarity with that of niches and neutrality.Methods An individual-based, spatially explicit model was used to simulate local communities in niche spaces with the same parameters. We generated sets of assemblages from which species were eliminated in opposing sequences: from common to rare and from rare to common, and investigated the relationship between the abundance and frequency of species. We tested the predictions of our model with empirical data from a field experiment in the environmentally homogeneous alpine meadows of the Qinghai–Tibetan plateau.Important findings Our simulations support the widespread notion that common species maintain community structure, while rare species maintain species diversity, in both local and regional communities. Our results, both from theoretical simulations and from empirical observations, revealed positive correlations between the abundance of a particular species and its occurrence frequency. SAD curves describe a continuum between commonness and rarity. Removing species from the 'rare' end of this continuum has little effect on the similarity of communities, but removing species from the 'common' end of the continuum causes significant increases in beta diversity, or species turnover, between communities. In local communities distributed in a homogenous habitat, species located at the 'common' end of the continuum should be selected by environmental filtering, with niche space partitioning governed by interspecific competition. Conversely, species located at the 'rare' end of the continuum are most likely subject to stochastic dispersal processes. Species situated at intermediate locations on this continuum are therefore determined by niche and neutral processes acting together. Our results suggest that, in homogeneous habitats, SAD curves describing the common-rare continuum may also be used to describe the continuum between niches and neutrality.  相似文献   

12.
Karel Mokany  Stephen H. Roxburgh 《Oikos》2010,119(9):1504-1514
The concept of community assembly through trait‐based environmental filtering has played a key role in our understanding of how communities change over space and time, however, the importance of spatial scale in the filtering process remains unclear. We propose that different environmental filters may operate at different spatial scales, and that filters at finer scales would be nested within those acting at coarser scales. We tested for the existence of spatially nested sets of trait‐based filters in a temperate native grassland by applying the recently proposed maximum entropy (MaxEnt) approach to trait‐based community assembly, which we extend through a trait selection procedure. We found that different traits were important in influencing the abundances of species at the three different spatial scales examined (micro‐habitat, habitat, landscape), supporting the idea that trait based filtering processes operating at coarse spatial scales can be quite distinct from those operating at fine scales. Despite this result, we identified several traits which were frequently related to abundance at all spatial scales. Taken together, our results support the proposition that trait‐based environmental filters at finer spatial scales are nested within those operating at coarser scales. We compared our results to those obtained using a simpler trait‐by‐trait analytical approach (correlation analysis and MaxEnt on individual traits). The capacity for MaxEnt to incorporate multiple traits simultaneously provided unique insights into the important traits at each spatial scale and presents significant advantages over existing univariate and multivariate approaches.  相似文献   

13.
Taxa co-occurring in communities often represent a nonrandom sample, in phenotypic or phylogenetic terms, of the regional species pool. While heuristic arguments have identified processes that create community phylogenetic patterns, further progress hinges on a more comprehensive understanding of the interactions between underlying ecological and evolutionary processes. We created a simulation framework to model trait evolution, assemble communities (via competition, habitat filtering, or neutral assembly), and test the phylogenetic pattern of the resulting communities. We found that phylogenetic community structure is greatest when traits are highly conserved and when multiple traits influence species membership in communities. Habitat filtering produces stronger phylogenetic structure when taxa with derived (as opposed to ancestral) traits are favored in the community. Nearest-relative tests have greater power to detect patterns due to competition, while total community relatedness tests perform better with habitat filtering. The size of the local community relative to the regional pool strongly influences statistical power; in general, power increases with larger pool sizes for communities created by filtering but decreases for communities created by competition. Our results deepen our understanding of processes that contribute to phylogenetic community structure and provide guidance for the design and interpretation of empirical research.  相似文献   

14.
1. Understanding factors that regulate the assembly of communities is a main focus of ecology. Human‐engineered habitats, such as reservoirs, may provide insight into these assembly processes because they represent novel habitats that are subjected to colonization by fishes from the surrounding river basin or transported by humans. By contrasting community similarity within and among reservoirs from different drainage basins to nearby stream communities, we can test the relative constraints of reservoir habitats and regional species pools in determining species composition of reservoirs. 2. We used a large spatial database that included intensive collections from 143 stream and 28 reservoir sites within three major river basins in the Great Plains, U.S.A., to compare patterns of species diversity and community structure between streams and reservoirs and to characterize variation in fish community structure within and among major drainage basins. We expected reservoir fish faunas to reflect the regional species pool, but would be more homogeneous that stream communities because similar species are stocked and thrive in reservoirs (e.g. planktivores and piscivores), and they lack obligate stream organisms that are not shared among regional species pools. 3. We found that fish communities from reservoirs were a subset of fishes collected from streams and dominant taxa had ecological traits that would be favoured in lentic environments. Although there were regional differences in reservoir fish communities, species richness, patterns of rank abundance and community structure in reservoir communities were more homogonous across three major drainage basins than for stream communities. 4. The general pattern of convergence of reservoir fish community structure suggests their assembly is constrained by local factors such as habitat and biotic interactions, and facilitated by the introduction of species among basins. Because there is a reciprocal transfer of biota between reservoirs and streams, understanding factors structuring both habitats is necessary to evaluate the long‐term dynamics of impounded river networks.  相似文献   

15.
中国森林生物多样性监测网络(CForBio)目前已经沿纬度梯度从寒温带到热带布设23个大型森林动态样地, 监测1,893种木本植物, 代表我国木本植物种类的近1/6。CForBio的主要目标之一是研究森林群落的构建机制。本文综述了近20年来CForBio在群落构建机制探索方面取得的进展, 包括生物多样性时空格局、生境过滤、生物相互作用、局域扩散和区域因素以及利用新技术取得的新认知等。CForBio研究发现: (1)生境过滤和扩散限制共同决定种-面积关系及β多样性等多样性格局, 但二者的相对作用在不同样地及不同尺度存在差异; (2)生境过滤对局域群落构建的作用广泛存在, 但很难量化其对群落构建的重要性; (3)同种负密度制约在不同气候带样地普遍存在, 负密度制约的强度主要由植物菌根类型介导, 并随植物生活史类型、功能性状及环境变化而变化; (4)扩散限制在局域群落构建中发挥关键作用, 而区域因素如区域地质历史、区域物种库大小等塑造不同生物地理区群落之间的生物多样性差异; (5)宏观和微观两个方面的新技术促进群落构建机制的研究。在宏观方面, 遥感技术以低成本使大范围、多尺度的连续群落生物多样性监测和时空比较研究成为可能; 另一方面, 叶绿体基因技术和代谢组学等微观技术能促进推导群落构建的分子机制。同时, 本文还总结了以往研究的不足, 并展望了基于森林动态样地开展群落构建机制研究的未来发展, 特别强调了: (1)关注群落构建研究中的尺度问题; (2)深入开展多维度(物种、功能和系统发育)、多营养级生物互作相关的研究; (3)拓展全球变化对群落构建影响的研究; (4)融合观测-实验-模型多种手段开展群落构建机制的研究; (5)连结“群落构建理论研究”和“森林管理实践”。总之, 中国森林生物多样性监测网络的长期监测和联网研究是森林群落构建机制研究的重要基础, 也是推动群落构建理论、解决森林管理难题的重要平台。  相似文献   

16.
Aims Studying plant ecological succession provides insights into the spatiotemporal processes underlying community assembly and is of primary importance for restoration ecology. We investigate here colonization events and local community assembly over an original primary succession occurring on roadcuts after roadwork. For this, we addressed both the changes in species presence-absence (incidence data) to highlight pre-establishment filters and in species relative abundances to further assess the influence of local biotic processes.Methods We studied 43 limestone roadcuts in Mediterranean France, covering five age classes up to an age of 80 years, along with 13 natural cliffs as a reference, and we counted 14322 plant individuals on these sites. We applied a constrained nonsymmetric correspondence analysis of both the incidence (presence-absence) and abundance data to assess the variation of these data along the chronosequence.Important findings Along the first 30 years, the initially abundant short-lived species declined both in terms of incidence and abundance and were replaced by longer lived herbaceous and woody species. This first phase was characterized by species that are widespread in the surrounding scrublands and was comparable to an early secondary succession there. After 30 years, there were continuing changes in incidence data with age, but no more significant change in species' abundances. This second phase was marked by the late colonization of specialists that did not become dominant. Although colonization and establishment limitation was thereby apparent for specialist species, a slow convergence of community composition toward the situation of natural cliffs could be detected in the older stages of the chronosequence. These findings convey insights into the natural dynamics of man-made outcrop plant communities and may be useful for the ecological management and restoration of such contexts. It also illustrates the interest of comparing incidence and abundance data to investigate the relative influence of ecological determinants on the assembly of plant communities.  相似文献   

17.
Ecological approaches to community assembly have emphasized the interplay between neutral processes, niche-based environmental filtering and niche-based species sorting in an interactive milieu. Recently, progress has been made in terms of aligning our vocabulary with conceptual advances, assessing how trait-based community functional parameters differ from neutral expectation and assessing how traits vary along environmental gradients. Experiments have confirmed the influence of these processes on assembly and have addressed the role of dispersal in shaping local assemblages. Community phylogenetics has forged common ground between ecologists and biogeographers, but it is not a proxy for trait-based approaches. Community assembly theory is in need of a comparative synthesis that addresses how the relative importance of niche and neutral processes varies among taxa, along environmental gradients, and across scales. Towards that goal, we suggest a set of traits that probably confer increasing community neutrality and regionality and review the influences of stress, disturbance and scale on the importance of niche assembly. We advocate increasing the complexity of experiments in order to assess the relative importance of multiple processes. As an example, we provide evidence that dispersal, niche processes and trait interdependencies have about equal influence on trait-based assembly in an experimental grassland.  相似文献   

18.
Despite decades of research, it remains controversial whether ecological communities converge towards a common structure determined by environmental conditions irrespective of assembly history. Here, we show experimentally that the answer depends on the level of community organization considered. In a 9‐year grassland experiment, we manipulated initial plant composition on abandoned arable land and subsequently allowed natural colonization. Initial compositional variation caused plant communities to remain divergent in species identities, even though these same communities converged strongly in species traits. This contrast between species divergence and trait convergence could not be explained by dispersal limitation or community neutrality alone. Our results show that the simultaneous operation of trait‐based assembly rules and species‐level priority effects drives community assembly, making it both deterministic and historically contingent, but at different levels of community organization.  相似文献   

19.
Understanding and disentangling different processes underlying the assembly and diversity of communities remains a key challenge in ecology. Species can assemble into communities either randomly or due to deterministic processes. Deterministic assembly leads to species being more similar (underdispersed) or more different (overdispersed) in certain traits than would be expected by chance. However, the relative importance of those processes is not well understood for many organisms, including terrestrial invertebrates. Based on knowledge of a broad range of species traits, we tested for the presence of trait underdispersion (indicating dispersal or environmental filtering) and trait overdispersion (indicating niche partitioning) and their relative importance in explaining land snail community composition on lake islands. The analysis of community assembly was performed using a functional diversity index (Rao's quadratic entropy) in combination with a null model approach. Regression analysis with the effect sizes of the assembly tests and environmental variables gave information on the strength of under‐ and overdispersion along environmental gradients. Additionally, we examined the link between community weighted mean trait values and environmental variables using a CWM‐RDA. We found both trait underdispersion and trait overdispersion, but underdispersion (eight traits) was more frequently detected than overdispersion (two traits). Underdispersion was related to four environmental variables (tree cover, habitat diversity, productivity of ground vegetation, and location on an esker ridge). Our results show clear evidence for underdispersion in traits driven by environmental filtering, but no clear evidence for dispersal filtering. We did not find evidence for overdispersion of traits due to diet or body size, but overdispersion in shell shape may indicate niche differentiation between snail species driven by small‐scale habitat heterogeneity. The use of species traits enabled us to identify key traits involved in snail community assembly and to detect the simultaneous occurrence of trait underdispersion and overdispersion.  相似文献   

20.
Aim Epiphytic bryophyte communities of tropical forests show a gradient in species composition from the base to the top of the host trees, indicating a strong role of niche assembly. This pattern, however, has never been tested at a regional scale. The aim of this study was to test whether niche assembly, rather than dispersal limitation, predominantly drives species composition of bryophyte communities across large spatial scales. Location Three lowland forests in the Guianas: one near Saul, French Guiana; and two near Mabura Hill, Guyana. Methods Communities of epiphytic bryophytes were sampled from six different height zones of several trees in three lowland forests. We analysed the composition of these communities using detrended correspondence analysis in order to find the best explanatory variable for the variation in community composition. A multi‐response permutation procedure was used to test the significance of grouping communities by height zone. We conducted an indicator species analysis to classify species as specialists or generalists and then tested, through weighted averaging, if specialists would indeed maintain their preferred height zone across the Guianas. Results Community composition was explained mainly by height zone. The similarity among communities inhabiting the same height zone of trees, across a distance of up to 640 km, was higher than the similarity among communities established along the vertical gradient of a single standing tree (30–50 m). More than half (57%) of the species had a preferred height zone, and the preference was consistent: species occupied roughly the same height zone on host trees in the different localities. The three local communities investigated were found to belong to the same regional species pool. Main conclusions Throughout the Guianas, epiphytic bryophyte communities are drawn from the same regional species pool, and their composition is shaped by micro‐environmental conditions. The predominance of niche assembly over dispersal assembly rules is consistently found at both local and regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号