首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
旨在筛选定量PCR检测不同骨骼肌纤维类型的稳定内参基因,为骨骼肌的能量和糖代谢等功能研究提供基础数据.试验选用6周龄小鼠,采集腓肠肌(Gastrocnemius muscle,GAS)、比目鱼肌(Soleus,SOL)、胫骨前肌(Tibialis anterior muscle,TA)和趾长伸肌(Extensor di...  相似文献   

2.
Hedgehog信号通路在动物胚胎期及出生后骨骼肌的生长发育过程中发挥着重要作用。本文综述了Hedgehog信号通路对骨骼肌细胞增殖分化及肌纤维特性的调控作用及其在骨骼肌发育过程中与其它信号通路交互作用最新研究进展,为畜禽肉品质改良和肌肉相关疾病治疗提供理论基础。  相似文献   

3.
《IRBM》2020,41(1):48-57
ObjectivesThe primary objective of the study was to optimize micropatterning environments using the microchannel flowed plasma process for controlling the orientation and behaviour of skeletal muscle cells. We have studied the cellular patterning and alignment of skeletal myoblast cells on the various micropattern widths developed on glass substrates.Materials and MethodsIn this method, we have utilized the microchannel flowed plasma process to create micropatterned self-assembled monolayers of octadecyltrichlorosilane and 3-aminopropyltrichlorosilane for creating cell adhesive widths of 20, 200 and 1000 microns on the glass substrates. The micropatterned substrates were characterized by using fluorescein 5(6)-isothiocyanate. Thereafter, the substrates were used to culture and pattern C2C12 and primary rat skeletal muscle cells. Further, we have studied the spatiotemporal variation in the orientation of the cells by using bright field and fluorescence microscopy. The microscopic images were analysed by using orientation order parameter and orientation distribution analysis.ResultsFITC based characterization of micropatterns reveals that the adopted process for micropatterning can effectively create cell adhesive widths with dimensions comparable to the diameter of myofiber. Microscopic observations and the orientation order parameter analysis reveal the precise alignment and specific orientation of myoblasts along the designated cell adhesive widths that closely mimics the physiological scenario. Both the cells showed immediate alignment within smaller cell adhesive widths of 20 and 200 μm. Actin cytoskeletal staining and its orientation distribution analysis of micropattrned C2C12 cells emphasises the influence of micropatterned environment on cytoskeletal actin orientation.ConclusionThis study corroborates the alignment of the myoblasts using surface cues facilitated by changing surface chemistry of the glass substrates. The study promotes the application of a simple micropatterning technique as a useful tool to regulate the orientation and behaviour of skeletal muscle cells. Also, the study emphasizes the role of spatial topography created by surface modification and its effect on cell adhesion and communication of alignment information across the micropatterns. The microchannel flowed plasma process could be applied to selectively pattern different adherent cell types, which could prove to be a useful platform for the exploration of various cellular processes.  相似文献   

4.
骨骼肌是机体生命活动和能量代谢的重要场所,其代谢紊乱会诱发一系列肌肉疾病。Ca2+作为肌肉收缩过程的重要调节器,在骨骼肌的功能行使中发挥重要作用。骨骼肌细胞中Ca2+浓度主要受肌浆网/内质网钙ATP酶(sarcoplasmic/endoplasmic reticulum Ca2+ATPase, SERCA)的调节。SERCA利用ATP水解产生的能量介导胞质Ca2+进入肌浆网内腔,维持胞质Ca2+平衡。SERCA功能的失调会引发一系列骨骼肌疾病,而SERCA活性受部分肌浆网蛋白质的调控,跨膜蛋白质PLN、SLN、MRLN、DWORF和sAnk1以及胞质蛋白质THADA和SAR,其通过磷酸化,进而调控SERCA的功能。本文对骨骼肌中SERCA的功能、调控SERCA的相关功能蛋白质的结构及其作用机制进行了总结,以期为骨骼肌相关疾病的治疗提供最新的思路和方法。  相似文献   

5.
The cDNA sequence of troponin I (TnI), one of the subunits of the skeletal muscle regulatory protein, differs between slow-twitch muscle and fast-twitch muscle. We prepared monoclonal antibodies td the slow and fast isoforms of human TnI for the purpose of differentiating muscle fiber types in human neuromuscular disorders. Slow TnI antibody was labeled with tetramethylrhodamine isothiocyanate while fast TnI antibody was labeled with fluorescein isothiocyanate; then these two antibodies were mixed. This mixture was then used to stain biopsied muscle from patients with neuromuscular disorders. It was possible to differentiate muscle fibers into slow, fast and intermediate fibers having various contents of slow and fast TnI. In tissue composed of small muscle fibers, this method facilitated differentiation of types of muscle fibers by allowing staining of only a single section. The usefulness of our technique using slow and fast TnI antibodies is discussed in comparison with ATPase staining. Because our staining method can distinguish slow and fast fiber components, it is useful for clinical application.  相似文献   

6.
The aim of this work was to improve the constitutive model of the human mandible and dentition system by taking into account the non-linear material properties of the structural boney matrix that forms the human jaw bone or mandible. Due to the specific structure of the jaw bone the time dependence of the mechanical properties also forms an important stage of the quantification process. The lack of specific experimental data of this type of material prevents the implementation of these properties into finite element simulations which results in poor quality modelling. Here an attempt was made to determine elastic and viscoelastic mechanical characteristics of the compact bone tissue forming the mandible. The elastic properties of compact bone were determined experimentally from 3 point bending tests and the viscoelastic properties were evaluated from creep tests in compression. A particular human jaw from this complex study was used to reconstruct a geometric model for further numerical experiments.  相似文献   

7.
8.
Phosphoenolpyruvate (PEP) generated from pyruvate is required for de novo synthesis of glycerol and glycogen in skeletal muscle. One possible pathway involves synthesis of PEP from the citric acid cycle intermediates via PEP carboxykinase, whereas another could involve reversal of pyruvate kinase (PK). Earlier studies have reported that reverse flux through PK can contribute carbon precursors for glycogen synthesis in muscle, but the physiological importance of this pathway remains uncertain especially in the setting of high plasma glucose. In addition, although PEP is a common intermediate for both glyconeogenesis and glyceroneogenesis, the importance of reverse PK in de novo glycerol synthesis has not been examined. Here we studied the contribution of reverse PK to synthesis of glycogen and the glycerol moiety of acylglycerols in skeletal muscle of animals with high plasma glucose. Rats received a single intraperitoneal bolus of glucose, glycerol, and lactate under a fed or fasted state. Only one of the three substrates was 13C-labeled in each experiment. After 3 h of normal awake activity, the animals were sacrificed, and the contribution from each substrate to glycogen and the glycerol moiety of acylglycerols was evaluated. The fraction of 13C labeling in glycogen and the glycerol moiety exceeded the possible contribution from either plasma glucose or muscle oxaloacetate. The reverse PK served as a common route for both glyconeogenesis and glyceroneogenesis in the skeletal muscle of rats with high plasma glucose. The activity of pyruvate carboxylase was low in muscle, and no PEP carboxykinase activity was detected.  相似文献   

9.
Terminal deoxynucleotidyl transferase (TdT) deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) is the method of using the TdT enzyme to covalently attach a tagged form of dUTP to 3’ ends of double- and single-stranded DNA breaks in cells. It is a reliable and useful method to detect DNA damage and cell death in situ. This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method of semi-automated TUNEL signal quantitation. Inherent normal tissue features and tissue processing conditions affect the ability of the TdT enzyme to efficiently label DNA. Tissue processing may also add undesirable autofluorescence that will interfere with TUNEL signal detection. Therefore, it is important to empirically determine tissue processing and TUNEL labeling methods that will yield the optimal signal-to-noise ratio for subsequent quantitation. The fluorescence-based assay described here provides a way to exclude autofluorescent signal by digital channel subtraction. The TUNEL assay, used with appropriate tissue processing techniques and controls, is a relatively fast, reproducible, quantitative method for detecting apoptosis in tissue. It can be used to confirm DNA damage and apoptosis as pathological mechanisms, to identify affected cell types, and to assess the efficacy of therapeutic treatments in vivo.  相似文献   

10.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme whose activity is inhibited in settings of insulin resistance. Exposure to a high glucose concentration has recently been shown to increase phosphorylation of AMPK at Ser485/491 of its α1/α2 subunit; however, the mechanism by which it does so is not known. Diacylglycerol (DAG), which is also increased in muscle exposed to high glucose, activates a number of signaling molecules including protein kinase (PK)C and PKD1. We sought to determine whether PKC or PKD1 is involved in inhibition of AMPK by causing Ser485/491 phosphorylation in skeletal muscle cells. C2C12 myotubes were treated with the PKC/D1 activator phorbol 12-myristate 13-acetate (PMA), which acts as a DAG mimetic. This caused dose- and time-dependent increases in AMPK Ser485/491 phosphorylation, which was associated with a ∼60% decrease in AMPKα2 activity. Expression of a phosphodefective AMPKα2 mutant (S491A) prevented the PMA-induced reduction in AMPK activity. Serine phosphorylation and inhibition of AMPK activity were partially prevented by the broad PKC inhibitor Gö6983 and fully prevented by the specific PKD1 inhibitor CRT0066101. Genetic knockdown of PKD1 also prevented Ser485/491 phosphorylation of AMPK. Inhibition of previously identified kinases that phosphorylate AMPK at this site (Akt, S6K, and ERK) did not prevent these events. PMA treatment also caused impairments in insulin-signaling through Akt, which were prevented by PKD1 inhibition. Finally, recombinant PKD1 phosphorylated AMPKα2 at Ser491 in cell-free conditions. These results identify PKD1 as a novel upstream kinase of AMPKα2 Ser491 that plays a negative role in insulin signaling in muscle cells.  相似文献   

11.
Non-linear and anisotropic heart valve leaflet tissue mechanics manifest principally from the stratification, orientation, and inhomogeneity of their collagenous microstructures. Disturbance of the native collagen fiber network has clear consequences for valve and leaflet tissue mechanics and presumably, by virtue of their intimate embedment, on the valvular interstitial cell stress–strain state and concomitant phenotype. In the current study, a set of virtual biaxial stretch experiments were conducted on porcine pulmonary valve leaflet tissue photomicrographs via an image-based finite element approach. Stress distribution evolution during diastolic valve closure was predicted at both the tissue and cellular levels. Orthotropic material properties consistent with distinct stages of diastolic loading were applied. Virtual experiments predicted tissue- and cellular-level stress fields, providing insight into how matrix-to-cell stress transfer may be influenced by the inhomogeneous collagen fiber architecture, tissue anisotropic material properties, and the cellular distribution within the leaflet tissue. To the best of the authors’ knowledge, this is the first study reporting on the evolution of stress fields at both the tissue and cellular levels in valvular tissue and thus contributes toward refining our collective understanding of valvular tissue micromechanics while providing a computational tool enabling the further study of valvular cell–matrix interactions.  相似文献   

12.
Small ankyrin 1 (sAnk1) is a 17-kDa transmembrane (TM) protein that binds to the cytoskeletal protein, obscurin, and stabilizes the network sarcoplasmic reticulum in skeletal muscle. We report that sAnk1 shares homology in its TM amino acid sequence with sarcolipin, a small protein inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). Here we investigate whether sAnk1 and SERCA1 interact. Our results indicate that sAnk1 interacts specifically with SERCA1 in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle, and in COS7 cells transfected to express these proteins. This interaction was demonstrated by co-immunoprecipitation and an anisotropy-based FRET method. Binding was reduced ∼2-fold by the replacement of all of the TM amino acids of sAnk1 with leucines by mutagenesis. This suggests that, like sarcolipin, sAnk1 interacts with SERCA1 at least in part via its TM domain. Binding of the cytoplasmic domain of sAnk1 to SERCA1 was also detected in vitro. ATPase activity assays show that co-expression of sAnk1 with SERCA1 leads to a reduction of the apparent Ca2+ affinity of SERCA1 but that the effect of sAnk1 is less than that of sarcolipin. The sAnk1 TM mutant has no effect on SERCA1 activity. Our results suggest that sAnk1 interacts with SERCA1 through its TM and cytoplasmic domains to regulate SERCA1 activity and modulate sequestration of Ca2+ in the sarcoplasmic reticulum lumen. The identification of sAnk1 as a novel regulator of SERCA1 has significant implications for muscle physiology and the development of therapeutic approaches to treat heart failure and muscular dystrophies linked to Ca2+ misregulation.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号