首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
叶芽花芽需热量差异导致植物先花后叶   总被引:1,自引:0,他引:1  
为探究植物先花后叶的影响因素,本研究以1963—1988年间北京地区杏和山桃展叶和始花物候资料及相应的日最高、最低温度数据为基础,利用偏最小二乘回归法确定杏和山桃叶芽及花芽的需冷期和需热期,进而利用动态模型和生长度小时模型分别估算叶芽和花芽的需冷和需热量。结果表明,依据长期物候观测资料,利用偏最小二乘回归法进行植物需冷和需热量的估算非常有效。先花后叶植物叶芽和花芽需冷量几乎相同,需热量的差异是导致植物先花后叶的主要原因。杏和山桃花芽的需热量分别为2829.7±876.2和1457.2±581.2生长度小时,而相应叶芽需热量却是花芽的两倍之多。基于物候观测的重要性及实用性.中国物种水平上的地面观测应得到进一步深入发展。  相似文献   

2.
Experiments using controlled environment facilities showed that flowering of Dichondra repens was promoted by chilling plants at 10 C or below. Optimum length of the chilling period was 5–6 weeks. Unchilled plants did not flower. The flowering stimulus resulting from chilling was destroyed by temperatures above 21 C. Rate of flowering was increased by short days during chilling, but short days could not substitute for the chilling requirement. Optimum daylength for flower initiation following chilling was approximately 14 hr and the optimum temperature was approximately 15 C. Flower buds developed in leaf axils of primary stems and laterals, but stem apices remained vegetative. When the chilling requirement was met flowering continued indefinitely as the plants grew.  相似文献   

3.
With global warming, an advance in spring leaf phenology has been reported worldwide. However, it is difficult to forecast phenology for a given species, due to a lack of knowledge about chilling requirements. We quantified chilling and heat requirements for leaf unfolding in two European tree species and investigated their relative contributions to phenological variations between and within populations. We used an extensive database containing information about the leaf phenology of 14 oak and 10 beech populations monitored over elevation gradients since 2005. In parallel, we studied the various bud dormancy phases, in controlled conditions, by regularly sampling low- and high-elevation populations during fall and winter. Oak was 2.3 times more sensitive to temperature for leaf unfolding over the elevation gradient and had a lower chilling requirement for dormancy release than beech. We found that chilling is currently insufficient for the full release of dormancy, for both species, at the lowest elevations in the area studied. Genetic variation in leaf unfolding timing between and within oak populations was probably due to differences in heat requirement rather than differences in chilling requirement. Our results demonstrate the importance of chilling for leaf unfolding in forest trees and indicate that the advance in leaf unfolding phenology with increasing temperature will probably be less pronounced than forecasted. This highlights the urgent need to determine experimentally the interactions between chilling and heat requirements in forest tree species, to improve our understanding and modeling of changes in phenological timing under global warming.  相似文献   

4.
钙在植物花发育过程中的作用   总被引:11,自引:0,他引:11  
对于园林观赏植物,开花是一个非常重要的发育阶段,它直接影响花卉的品质。近年来,植物花发育的分子生物学研究进展迅速,并取得了一些突破性成果。钙作为第二信使在植物信号转导中起着非常重要的作用,大量研究显示,钙有可能参与开花控制。本文总结了钙信号与植物花发育这一领域的最新研究进展,包括以下几个方面的内容:钙在植物成花诱导(包括光周期诱导和低温诱导)中的作用;花芽分化时期钙在植物叶芽和花芽中的动态分布及组织培养条件下不同钙浓度对花芽分化的影响;钙与花衰老的关系。  相似文献   

5.
Leaf phenology in 22 North American tree species during the 21st century   总被引:2,自引:0,他引:2  
Recent shifts in phenology are the best documented biological response to current anthropogenic climate change, yet remain poorly understood from a functional point of view. Prevailing analyses are phenomenological and approximate, only correlating temperature records to imprecise records of phenological events. To advance our understanding of phenological responses to climate change, we developed, calibrated, and validated process-based models of leaf unfolding for 22 North American tree species. Using daily meteorological data predicted by two scenarios (A2: +3.2 °C and B2: +1 °C) from the HadCM3 GCM, we predicted and compared range-wide shifts of leaf unfolding in the 20th and 21st centuries for each species. Model predictions suggest that climate change will affect leaf phenology in almost all species studied, with an average advancement during the 21st century of 5.0 days in the A2 scenario and 9.2 days in the B2 scenario. Our model also suggests that lack of sufficient chilling temperatures to break bud dormancy will decrease the rate of advancement in leaf unfolding date during the 21st century for many species. Some temperate species may even have years with abnormal budburst due to insufficient chilling. Species fell into two groups based on their sensitivity to climate change: (1) species that consistently had a greater advance in their leaf unfolding date with increasing latitude and (2) species in which the advance in leaf unfolding differed from the center to the northern vs. southern margins of their range. At the interspecific level, we predicted that early-leafing species tended to show a greater advance in leaf unfolding date than late-leafing species; and that species with larger ranges tend to show stronger phenological changes. These predicted changes in phenology have significant implications for the frost susceptibility of species, their interspecific relationships, and their distributional shifts.  相似文献   

6.
高新月  戴君虎  陶泽兴 《生态学报》2022,42(24):10253-10263
植物物候是植物生活史中的重要性状,也是指示气候与自然环境变化的重要指标,现已成为全球变化领域的研究热点之一。传统物候研究多假设物候由气候因素决定,如气温、降水、光照等,并主要从植物物候的年际变化角度探讨了气候因素对物候特征的影响。然而,不同物种的物候存在较大差异表明植物物候还与自身生物学特性(如系统发育和功能性状)有关,但植物生物学特性如何影响植物物候仍缺乏深入研究。基于北京地区44种木本植物1965-2018年的展叶始期和开花始期观测资料,以展叶始期和开花始期的3类物候特征(平均物候期、物候对温度的响应敏感度和物候期的积温需求)为例,探究植物物候特征与系统发育和功能性状的关系。首先,利用系统发育信号Blomberg’s K和进化模型检验植物物候特征是否具有系统发育保守性,并通过系统发育信号表征曲线直观表达植物物候特征的进化模式;之后,利用广义估计方程分析植物生活型、传粉型与物候特征的关系,以揭示不同植物的资源利用方式及生存策略的差异。研究发现:(1)除展叶始期的温度敏感度外,其余物候特征的进化均受随机遗传漂变和自然选择力的共同作用,可推断物候特征具有系统发育保守性,即亲缘关系越近的物种物候特征越相似。(2)开花始期的系统发育信号强度比展叶始期更大,表明繁殖物候的系统发育可能比生长物候更保守。(3)植物展叶始期及其积温需求与生活型密切相关。灌木比乔木的展叶时间早、积温需求少。植物开花始期与传粉型相关,风媒植物开花显著早于虫媒植物。研究成果有助于深入理解物候变化的生物学机制,对于丰富物候学的理论研究有重要意义,同时对植物保护也具有重要的指导价值。  相似文献   

7.
Chilling and heat requirements for flowering in temperate fruit trees   总被引:2,自引:0,他引:2  
Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.  相似文献   

8.

Background and Aims

In temperate woody perennials, flower bud development is halted during the winter, when the buds enter dormancy. This dormant period is a prerequisite for adequate flowering, is genetically regulated, and plays a clear role in possibly adapting species and cultivars to climatic areas. However, information on the biological events underpinning dormancy is lacking. Stamen development, with clear differentiated stages, appears as a good framework to put dormancy in a developmental context. Here, stamen developmental changes are characterized in apricot (Prunus armeniaca) and are related to dormancy.

Methods

Stamen development was characterized cytochemically from the end of August to March, over 4 years. Developmental changes were related to dormancy, using the existing empirical information on chilling requirements.

Key Results

Stamen development continued during the autumn, and the flower buds entered dormancy with a fully developed sporogenous tissue. Although no anatomical changes were observed during dormancy, breaking of dormancy occurred following a clear sequence of events. Starch accumulated in particular places, pre-empting further development in those areas. Vascular bundles developed and pollen mother cells underwent meiosis followed by microspore development.

Conclusions

Dormancy appears to mark a boundary between the development of the sporogenous tissue and the occurrence of meiosis for further microspore development. Breaking of dormancy occurs following a clear sequence of events, providing a developmental context in which to study winter dormancy and to evaluate differences in chilling requirements among genotypes.  相似文献   

9.
开展气候变化背景下苹果冷热积累变化及其对始花期的影响研究,对指导苹果种植及生产具有重要意义。本研究选取山东福山、山西万荣、甘肃西峰和新疆阿克苏代表中国北方苹果主产地,利用1996—2018年红富士苹果的始花期观测资料和逐时气温数据,采用动态模型、生长度小时模型分别计算逐日冷积累量(CP)和热积累量(GDH),并利用偏最小二乘回归法,对逐日冷、热积累量和各地苹果始花期进行相关分析,以明确各地苹果冷、热积累起止日期和积累量,以及冷、热积累期内温度变化对始花期的影响规律。结果表明: 我国北方主产地苹果冷积累时段集中于10月1日前后至2月中下旬或3月中旬,积累量为74.1~89.3 CP;热积累时段集中于1月下旬前后至始花期,积累量为4010~5770 GDH。西峰和阿克苏冷积累期内平均气温每升高1 ℃,冷积累量将分别增加3.8和5.0 CP;各地热积累期内平均气温每升高1 ℃,热积累量将增加725~967 GDH。与冷积累期内温度变化的影响效应相比,热积累期内温度变化主控我国北方主产地苹果始花期,且气候变暖总体有利于冷积累期内平均气温较低地区的苹果开花和生产。  相似文献   

10.
The impact of climate change on the advancement of plant phenological events has been heavily studied in the last decade. Although the majority of spring plant phenological events have been trending earlier, this is not universally true. Recent work has suggested that species that are not advancing in their spring phenological behavior are responding more to lack of winter chill than increased spring heat. One way to test this hypothesis is by evaluating the behavior of a species known to have a moderate to high chilling requirement and examining how it is responding to increased warming. This study used a 60‐year data set for timing of leaf‐out and male flowering of walnut (Juglans regia) cultivar ‘Payne’ to examine this issue. The spring phenological behavior of ‘Payne’ walnut differed depending on bud type. The vegetative buds, which have a higher chilling requirement, trended toward earlier leaf‐out until about 1994, when they shifted to later leaf‐out. The date of male bud pollen shedding advanced over the course of the whole record. Our findings suggest that many species which have exhibited earlier bud break are responding to warmer spring temperatures, but may shift into responding more to winter temperatures (lack of adequate chilling) as warming continues.  相似文献   

11.
矮牵牛花期一些生理指标的变化   总被引:12,自引:0,他引:12  
选择了 3种颜色的矮牵牛 (PetuniahybridaVilm) :粉红色、杂色和红色 ,将其开花过程分为 4个时期 :未出现花芽、花芽期、花蕾期和开花期 ,测定各时期MDA、可溶性糖、激素水平和多胺含量等指标的变化。结果表明 ,从无花芽期到开花期MDA含量有所升高 ;可溶性糖含量呈现降低的趋势。在粉红色的矮牵牛叶片中 ,IAA含量在开花期升高 ;GA含量在无花芽期和花芽期时较高 ;而ZRs则在花蕾期较低 ,在开花期时含量上升。 3种多胺含量的变化不同 ,腐胺在整个花期略有上升 ,精胺和亚精胺则略有下降  相似文献   

12.
Leaf discs from vegetative plants greatly increase their phenolic content when cultivated in vitro. Under long days the values remained constant, and were higher when compared with short days cultures. Under short days total phenolics decreased after 10 d, corresponding to the induction and expression of in vitro flowering. The effect of photoperiod and chlorogenic acid (0.01 mM) on leaf discs cultured from induced and non-induced plants, were analyzed regarding the neo-formation of roots, as well as vegetative and flower buds. Chlorogenic acid enhances the regeneration of roots in all treatments tested, with the highest stimulation on induced leaf discs cultivated in short days. The flowering was not affected by chlorogenic acid, but an inhibitory effect was observed on the neo-formation of vegetative buds in non-induced explants maintained in short days. Vegetative buds were reduced by 50% in flower-induced leaf discs cultivated under short days.  相似文献   

13.
过去几十年来暖春等异常气候事件发生的频次和强度显著增加, 使植物春季物候期发生了明显变化。但异常气候事件对植物春季物候积温需求的影响仍不清楚, 限制了对未来物候变化预测精度的提升。该研究利用西安植物园1963-2018年39种木本植物的展叶始期和相应气象数据, 首先根据3-4月平均气温划分了偏冷年、正常年和偏暖年, 对比了冷暖年相对于正常年的展叶始期变化。其次, 利用3种积温算法计算了各植物逐年的展叶始期积温需求, 比较了积温需求在冷暖年和正常年的差异。最后, 评估了传统积温模型在模拟偏冷或偏暖年展叶始期时的误差。结果表明, 所有植物的展叶始期在偏暖年比正常年平均早8.6天, 而在偏冷年平均晚8.2天。在偏暖年, 大多数物种展叶始期的积温需求(以5 ℃为阈值, 平均257.5度日)显著高于正常年(平均195.1度日); 在偏冷年的积温需求(平均168.0度日)低于正常年, 但在统计上差异不显著。就不同类群而言, 古老类群相对于年轻类群在偏冷年的推迟天数更多, 积温需求变化较小, 但在偏暖年无显著差异。不同生活型间物候与积温需求变化也无显著差异。造成偏暖年积温需求增加的可能原因是偏暖年冬季气温较高, 导致植物受到的冷激程度减轻, 从而抑制了后续的展叶。在正常年, 积温模型模拟木本植物展叶始期的平均误差仅为0.4-1.9天。在偏暖年和偏冷年, 模拟值分别比观测值平均早4.1天和晚3.0天。因此在预测未来物候变化时, 需要考虑气候波动条件下的积温需求变化。  相似文献   

14.
The effect of light on peach leaf and flower bud break was examined. It was found that leafless dormant shoots were light-perceptive organs. Darkness, after light preconditioning during dormancy, reduced leaf bud opening; however, light was obligatory when the shoots were preconditioned in the dark. Relatively short exposures to light were sufficient to stimulate leaf bud break. Terminal buds were less inhibited by darkness than were laterals. Flower bud break was inhibited in light after dark preconditioning. The red region of the spectrum was found to be active; the phytochorome system seems to be involved in the light reactions, as the red light effect was reversible with subsequent far-red illumination. Supplementary light, producing long-day conditions, could partly compensate for insufficient chilling. A possible sequence of reactions in the plant is suggested.  相似文献   

15.
Recent studies have revealed large unexplained variation in heat requirement‐based phenology models, resulting in large uncertainty when predicting ecosystem carbon and water balance responses to climate variability. Improving our understanding of the heat requirement for spring phenology is thus urgently needed. In this study, we estimated the species‐specific heat requirement for leaf flushing of 13 temperate woody species using long‐term phenological observations from Europe and North America. The species were defined as early and late flushing species according to the mean date of leaf flushing across all sites. Partial correlation analyses were applied to determine the temporal correlations between heat requirement and chilling accumulation, precipitation and insolation sum during dormancy. We found that the heat requirement for leaf flushing increased by almost 50% over the study period 1980–2012, with an average of 30 heat units per decade. This temporal increase in heat requirement was observed in all species, but was much larger for late than for early flushing species. Consistent with previous studies, we found that the heat requirement negatively correlates with chilling accumulation. Interestingly, after removing the variation induced by chilling accumulation, a predominantly positive partial correlation exists between heat requirement and precipitation sum, and a predominantly negative correlation between heat requirement and insolation sum. This suggests that besides the well‐known effect of chilling, the heat requirement for leaf flushing is also influenced by precipitation and insolation sum during dormancy. However, we hypothesize that the observed precipitation and insolation effects might be artefacts attributable to the inappropriate use of air temperature in the heat requirement quantification. Rather than air temperature, meristem temperature is probably the prominent driver of the leaf flushing process, but these data are not available. Further experimental research is thus needed to verify whether insolation and precipitation sums directly affect the heat requirement for leaf flushing.  相似文献   

16.
Summary Peach buds (floral and vegetative) were periodically collected from midsummer until the spring flowering and sprouted under continuous light, 100% relative humidity and 20–25°C. Treatments with 200 ppm gibberellin A3 (GA3) or chilling (2–4°C for 30 days before planting) were applied. Vegetative buds showed well-defined phenological stages: pre-dormancy, true dormancy, and end of dormancy. Both GA3 and chilling treatments shortened the sprouting times of vegetative dormant buds close to those in predormancy. Isolated floral buds were irresponsive under all conditions and did not sprout even with the GA3 or chilling treatments. In a comparative study with buds immediately after collection anatomical analysis demonstrated that vegetative buds were almost completely developed by midsummer/early automn and remained in a resting state until the end of winter. Floral buds developed continuously over the same period. Both types of verticils began to differentiate in midsummer. Sepals and petals developed mainly in late summer, androecious floral parts developed throughout the resting period, while gynoecious floral parts showed differentiation in late winter. The flower was completely formed a few days prior to blossoming. Thus, in isolated peach buds fertile verticils are not sufficiently developed during the resting time to allow sprouting.  相似文献   

17.
The flowering response of axillary buds of seedlings of Pharbitis nil Choisy, cv. Violet, was examined in relation to the timing of apical bud removal (plumule including the first leaf or second leaf) before or after a flower-inductive 16-h dark period. When the apical bud was removed well before the dark period, flower buds formed on the axillary shoots that subsequently developed, but when removed just before, or after, the dark period, different results were observed depending on the timing of the apical bud removal and plant age. In the case of 8-day-old seedlings, fewer flower buds formed on the axillary shoots developing from the cotyledonary node when plumules were removed 20 to 0 h before the dark period. When the apical bud was removed after the dark period, no flower buds formed. Using 14-day-old seedlings a similar reduction of flowering response was observed on the axillary shoots developing from the first leaf node when the apical bud was removed just after the dark period. To further elucidate the relationship between apical dominance and flowering, kinetin or IAA was applied to axillary buds or the cut site where the apical bud was located. Both chemicals influenced flowering, probably by modulating apical dominance which normally forces axillary buds to be dormant.  相似文献   

18.
Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. ‘Schneiders späte Knorpelkirsche’ trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. ‘Schneiders späte Knorpelkirsche’ cherries at Bonn exhibited a chilling requirement of 68.6?±?5.7 chill portions (or 1,375?±?178 chilling hours or 1,410?±?238 Utah chill units) and a heat requirement of 3,473?±?1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (‘chillR’) and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. ‘Payne’) at Davis, California.  相似文献   

19.
The in vitro phenylalanine incorporation by polyribosomes of peach flower buds (Prunus persica Stokes) during dormancy, dormancy break and flowering was investigated. Protein synthesis was measured using as catalyst either calf liver soluble factors or the ribosomal supernatant from the peach flower buds in the presence or the absence of the synthetic mRNA, polyuridylic acid. In the presence of polyuridylic acid, the activity of protein synthesis of dormant ribosomes is the same as that of ribosomes during dormancy break and flowering. The absence of synthetic messenger did not cause a change in activity. The ribosomal supernatant of dormant buds, but not of flowering buds, reduces the phenylalanine incorporation by polyribosomes from buds harvested at dormancy break.  相似文献   

20.
Peach flowers are often killed during bloom by spring frosts. LAB 173711, a compound with abscisic (ABA)-like activity, and ethephon delayed flowering in peach trees. In greenhouse experiments, LAB 173711, at concentrations of 10?3–10?2 M, was most effective in delaying bloom when applied after a 5°C cold storage period, rather than before the dormancy breaking treatment. In contrast, ethephon delayed bloom most effectively when applied before 5°C cold storage; ethephon caused flower bud abscission when treatments were made after the chilling requirement had been satisfied. In field experiments, ethephon delayed flowering by 6–7 days, which reduced bud injury after a spring frost during bloom. No flower bud injury was found on ethephon-treated trees after temperatures of ?4.3°C; whereas without ethephon 25% of the flower buds were frost damaged. LAB 173711 delayed the time to 50% bloom by 2–3 days. However, this was not long enough to avoid low-temperature injury to the flower buds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号