首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims We conducted a simulated nitrogen (N) and sulfur (S) deposition experiment from 2006 to 2012 to answer the following questions: (i) does chronic N and S deposition decrease cation concentrations in the soil and foliage of understory plant species, and (ii) does chronic N and S deposition decrease plant diversity and alter species composition of the understory plant community in a boreal forest in western Canada where intensifying industrial activities are increasing N and S deposition. Methods Our field site was a mixedwood boreal forest stand located ~100 km southeast of Fort McMurray, Alberta, Canada. The experiment involved a 2 × 2 factorial design, with two levels each of N (0 and 30 kg N ha-1 yr-1; applied as NH4NO3) and S addition (0 and 30 kg S ha-1 yr-1; applied as Na2SO4). Four blocks were established in July 2006, each with four plots of 20 × 20 m randomly assigned to the treatments. Soil and understory vegetation were sampled and cover (%) of individual species of herb (height ≤ 0.5 m) and shrub (height 0.5–1 m) layers was determined in August 2012. Important findings Seven years after the treatments began, N addition increased dissolved organic carbon and N in the mineral soil (P < 0.05), whereas S addition decreased exchangeable cations (P < 0.05) in the forest floor. In the shrub layer, species evenness, and overall diversity were decreased by N addition (P < 0.05) due to increases in abundance of nitrophilous species and S addition (P < 0.01) due to decreased cation concentrations in soils. Total shrub cover decreased with S addition (P < 0.10). Nitrogen and S addition affected neither species richness nor evenness in the herb layer. However, permutational multivariate analysis of variance and non-metric multidimensional scaling analyses (based on plant cover) indicated that the effect of N and S addition on understory plant species composition in the both shrub and herb layers was species-specific. Addition of N decreased foliar phosphorus and potassium concentrations in some species, suggesting potential risk of N-meditated nutrient imbalance in those species. Our results indicate that long-term elevated levels of N and S deposition can negatively impact plant nutrition and decrease the diversity of the understory plant community in boreal forests in northern Alberta, Canada. However, considering that the current N and S deposition rates in northern Alberta are much lower than the rates used in this study, N and S deposition should not negatively affect plant diversity in the near future.  相似文献   

2.
Aims Identifying the amount of production and the partitioning to above- and belowground biomass is generally the first step toward selecting bioenergy systems. There are very few existing studies on the dynamics of production following land conversion. The objectives of this study were to (i) determine the differences in aboveground net primary production (ANPP), belowground net primary production (BNPP), shoot-to-root ratio (S:R) and leaf area index in three bioenergy crop systems and (ii) evaluate the production of these three systems in two different land use conversions.Methods This investigation included biometric analysis of NPP on three agricultural sites converted from conservation reserve program (CRP) management to bioenergy crop production (corn, switchgrass and prairie mix) and three sites converted from traditional agriculture production to bioenergy crop production.Important findings The site converted from conventional agriculture produced smaller ANPP in corn (19.03±1.90 standard error [SE] Mg ha-1 year-1) than the site converted from CRP to corn (24.54±1.43 SE Mg ha-1 year-1). The two land conversions were similar in terms of ANPP for switchgrass (4.88±0.43 SE for CRP and 2.04±0.23 SE Mg ha-1 year-1 for agriculture) and ANPP for prairie mix (4.70±0.50 SE for CRP and 3.38±0.33 SE Mg ha-1 year-1 for agriculture). The BNPP at the end of the growing season in all the bioenergy crop systems was not significantly different (P = 0.75, N = 8).  相似文献   

3.
Aims Understanding carbon (C) and nitrogen (N) dynamics and their dependence on the stand density of an even-aged, mature forest provides knowledge that is important for forest management. This study investigated the differences in ecosystem total C and N storage and flux between a low-density stand (LD) and a high-density stand (HD) and examined the effects of stand density on aboveground net primary productivity (ANPP), total belowground C allocation (TBCA) and net ecosystem production (NEP) in a naturally regenerated, 65- to 75-year-old Pinus densiflora S. et Z. forest.Methods LD (450 trees ha-1) and HD (842 trees ha-1) were established in an even-aged, mature P. densiflora forest in September 2006. The forest had been naturally regenerated following harvesting, and the stand density was naturally maintained without any artificial management such as thinning. The diameter at breast height (DBH ≥ 5.0cm) of all live stems within the stands was measured yearly from 2007 to 2011. To compare C and N storage and fluxes in LD and HD, C and N pools in aboveground and belowground biomass, the forest floor, coarse woody debris (CWD) and soil; soil CO2 efflux (R S); autotrophic respiration (R A); litter production; and soil N availability were measured. Further, ANPP, TBCA and NEP were estimated from plot-based measurement data.Important findings Ecosystem C (Mg C ha-1) and N (Mg N ha-1) storage was, respectively, 173.0±7.3 (mean ± SE) and 4.69±0.30 for LD and 162±11.8 and 4.08±0.18 for HD. There were no significant differences in C and N storage in the ecosystem components, except for soils, between the two stands. In contrast, there were significant differences in aboveground ANPP and TBCA between the two stands (P < 0.05). Litterfall, biomass increment and R S were major C flux components with values of, respectively, 3.89, 3.74 and 9.07 Mg C ha-1 year-1 in LD and 3.15, 2.94 and 7.06 Mg C ha-1 year-1 in HD. Biometric-based NEP (Mg C ha-1 year-1) was 4.18 in LD and 5.50 in HD. Although the even-aged, mature P. densiflora forest had similar C and N allocation patterns, it showed different C and N dynamics depending on stand density. The results of the current study will be useful for elucidating the effects of stand density on C and N storage and fluxes, which are important issues in managing natural mature forest ecosystems.  相似文献   

4.
Aims We aimed to evaluate the changes in water-use efficiency (WUE) in native tree species in forests of subtropical China, and determine how coexisting species would be responding to increases in atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition.Methods We used model forest ecosystems in open-top chambers to study the effects of elevated CO2 (ca. 700 μmol mol-1) alone and together with N addition (NH 4 NO 3 applied at 100kg N ha-1 year-1) on WUE of four native tree species (Schima superba, Ormosia pinnata, Castanopsis hystrix and Acmena acuminatissima) from 2006 to 2010.Important findings Our result indicated that all species increased their WUE when they were exposed to elevated CO2. Although higher WUE was shown in faster-growing species (S. superba and O. pinnata) than that of slower-growing species (C. hystrix and Acmena acuminatissima), the increased extent of WUE induced by elevated CO2 was higher in the slower-growing species than that of the faster-growing species (P < 0.01). The N treatment decreased WUE of S. superba, while the effects on other species were not significant. The interactions between elevated CO2 and N addition increased intrinsic WUE of S. superba significantly (P < 0.001), however, it did not affect WUE of the other tree species significantly. We conclude that the responses of native tree species to elevated CO2 and N addition are different in subtropical China. The species-specific effects of elevated CO2 and N addition on WUE would have important implications on species composition in China's subtropics in response to global change.  相似文献   

5.
Aims Government policy in Ireland is to increase the national forest cover from the current 10% to 18% of the total land area by 2020. This represents a major land use change that is expected to impact on the national carbon (C) stocks. While the C stocks of ecosystem biomass and soils of Irish grasslands and coniferous forests have been quantified, little work has been done to assess the impact of broadleaf afforestation on C stocks.Methods In this study, we sampled a chronosequence of ash (Fraxinus excelsior) forests aged 12, 20, 27, 40 and 47 years on brown earth soils. A grassland site, representative of the pre-afforestation land use, was sampled as a control.Important findings Our results show that there was a significant decline (P < 0.05) in the carbon density of the soil (0–30cm) following afforestation from the grassland (90.2 Mg C ha-1) to the 27-year-old forest (66.7 Mg C ha-1). Subsequently, the forest soils switched from being a C source to a C sink and began to sequester C to 71.3 Mg C ha-1 at the 47-year-old forest. We found the amount of C stored in the above- and belowground biomass increased with age of the forest stands and offset the amount of C lost from the soil. The amount of C stored in the above- and belowground biomass increased on average by 1.83 Mg C ha-1 year-1. The increased storage of C in the biomass led to an increase in the total ecosystem C, from 90.2 Mg C ha-1 at the grassland site to 162.6 Mg C ha-1 at the 47-year-old forest. On a national scale, projected rates of ash afforestation to the year 2020 may cause a loss of 290 752 Mg C from the soil compared to 2 525 936 Mg C sequestered into the tree biomass. The effects of harvesting and reforestation may further modify the development of ecosystem C stocks over an entire ash rotation.  相似文献   

6.
1.  Nitrogen (N) and phosphorus (P) are essential nutrients for photosynthetic carbon assimilation and most frequently limit primary productivity in terrestrial ecosystems. Efficient use of those nutrients is important for plants growing in nutrient-poor environments.
2.  We investigated the pattern of photosynthetic phosphorus-use efficiency (PPUE) in comparison with photosynthetic nitrogen-use efficiency (PNUE) along gradients of P and N availability across biomes with 340 tree and shrub species. We used both total soil N and P concentration and foliar N/P ratios for indicating nutrient-availability gradients.
3.  Photosynthetic phosphorus-use efficiency increased with greater leaf mass per area (LMA) toward decreasing P availability. By contrast, PNUE decreased with greater LMA towards decreasing N and P availability.
4.  The increase in PPUE with decreasing P availability was caused by the net effects of a relatively greater reduction in foliar P concentration and a relatively constant photosynthetic carbon assimilation rate. The decrease in PNUE with decreasing N availability was caused by the effects of a reduction in photosynthetic carbon assimilation rate with greater LMA.
5. Synthesis . Our results suggest that higher PPUE may be an effective leaf-level adaptation to P-poor soils, especially in tropical tree species. Future research should focus on the difference between PPUE and PNUE in relation to leaf economics, physiology and strategy.  相似文献   

7.
Aims Ecological systems, especially soils, have been recently recognized as an important source of atmospheric nitric oxide (NO). However, the study on the contribution of plants to atmospheric NO budget is significantly lagged. The specific objectives of this study are to reveal the phylogenetic variation in NO emission potential existing in various plant species and find out the possible leaf traits affecting NO emission potential.Methods We measured NO emission potential, leaf N and C content, C:N ratio, specific leaf area, net photosynthetic rate (P n) and estimated photosynthetic N use efficiency (PNUE) of 88 plant species. Further investigation of the relationships between NO emission potential and leaf traits were performed by simple linear regression analysis and pair-wise correlation coefficients analysis.Important findings Major results are as follows: (1) NO emission from plant species exhibited large variations, ranging from 0 to 41.7 nmol m ?2 h-1, and the species frequency distributions of NO emission potential could be fitted to a log-normal curve. (2) Among 88 species, NO emission potential was the highest in Podocarpus macrophyllus, but lowest in Zanthoxylum nitidum and Vernicia montana. (3) NO emission potential has strong correlation to leaf N content, P n and PNUE. The variations in NO emission potential among diverse plant species may be closely related to leaf N level and net photosynthetic ability.  相似文献   

8.
Aims Supplying optimal quantities of mineral nutrients to growing crop plants is one way to improve crop yields. Nutrients need to be used rationally in order to avoid a negative ecological impact and undesirable effects on the sustainability of agricultural production systems. Excessive application of nutrients also affects the farmer's economy. In order to calculate the amount of fertilizer to be applied to crops, it is necessary to develop recommendation programmers that adjust nutrient rates to crop requirements.Methods Experiments in two successive seasons were conducted to investigate the effect of K fertilization and foliar application of Zn and P on yield and fiber properties of cotton cv. Giza 86. Potassium (0.0 and 47.4 kg of K ha-1) was soil applied, while chelated zinc (0.0 and 57.6 g of Zn ha-1, applied twice at 70 and 85 days after sowing 'DAS') and phosphorus (0.0, 576, 1?152 and 1?728 g of P ha-1, applied twice at 80 and 95 DAS) were applied to the foliage.Important findings Dry matter yield, total chlorophyll concentration, K, Zn and P uptake per plant, number of opened bolls per plant, boll weight, seed index, lint index, seed cotton yield per plant, seed cotton and lint yield ha-1 and earliness of harvest increased with the application of K, Zn and P. Treatments generally had no significant effect on lint percentage and fiber properties, with exceptions, for micronaire reading and flat bundle strength, and uniformity ratio, where the mean values of these characters were significantly increased over the untreated control by applying K, and for the micronaire reading in the first season, when applying P at 1?728 g ha-1, and uniformity ratio in the second season, when applying P at 1?152 and 1?728 g ha-1, where the mean values of these characters were significantly increased over the untreated control by applying P. Under the conditions of this study, applying K fertilization at 47.4 kg ha-1 combined with spraying cotton plants with zinc at 57.6 g ha-1 and also with P at 1?728 g ha-1 improved growth and yield of Egyptian cotton.  相似文献   

9.
Aims The impact of global warming on belowground processes, especially on fine root production, is poorly understood in comparison with its aboveground counterpart.Methods Here, we compiled 227 measurements to assess the influence of temperature and precipitation on fine root biomass of Norway spruce (Picea abies [L.] Karst) forest ecosystems in the Eurasia boreal region.Important findings We found that fine root biomass decreased significantly with latitudes. There was a biomass increase of 0.63 Mg ha-1 and 0.32 Mg ha-1 for fine roots <2 and <1 mm in diameter, respectively, with 1°C increase of mean annual temperature. There was an increase of 0.5 and 0.1 Mg ha-1 per 100 mm year-1 precipitation for the two size classes of fine roots. If the adaption of root production can match the pace of global warming and water is not a limiting factor for plant growth, fine root biomass would be expected to increase by 40–140% in response to the predicted increase in temperature (3–10°C) over the next century. Our analyses highlighted the strongly positive influences of temperature and precipitation on belowground function, suggesting that predicted future climate change could substantially enhance belowground biomass in the boreal region where the greatest warming is anticipated. This potential increase of belowground biomass, coupled with aboveground biomass, may provide a better understanding of climate–ecosystem feedbacks.  相似文献   

10.
Aim European and North American studies have suggested that nitrogen (N) depositions reduce plant diversity and increase primary productivity due to changes in plant traits. To predict the vegetation response to future global change, experimental validations from other regions are widely needed. We assessed the effects of N treatment by urea fertilization on the diversity and biomass of the herbaceous plant traits (HPTs) in a dry tropical environment of India.Methods Diversity and biomass of different HPTs were determined on the basis of data collected in year 2010, from 135, 1 m × 1 m plots distributed over 15 locations. The plots were treated with urea fertilizer in different doses (Control, 60kgNha-1 yr-1 and 120kg N ha-1 yr-1) since 1st January 2007. The plots were ordinated and data were subjected to appropriate statistical analyses.Important findings Correspondence analysis (CA) suggested uniqueness of species composition due to N amendment. Species number and biomass of the trait categories varied due to N fertilization and traits. All studied trait categories (except N-fixers) yielded maximum mean species number at moderate level of N fertilization. Different levels of N fertilization exhibited different species diversity–primary productivity (D-P) relationships. Further, study showed reduction in plant diversity due to increase in biomass at high rates of N addition.Conclusions Tall, erect, non N-fixers, annuals, grasses HPTs were favoured by N enrichment. N dose above 60kg enhanced the biomass of fast growing, erect, annuals, non N-fixers, nitrophilic HPTs. The changes in traits with N addition, especially the increase in annuals and grasses and decrease in typically N-rich N-fixers, have implications for sustainable cattle production.  相似文献   

11.
Aims Leaf traits of trees exposed to elevated [CO2] in association with other environmental factors are poorly understood in tropical and subtropical regions. Our goal was to investigate the impacts of elevated [CO2] and N fertilization on leaf traits in southern China.Methods Four tree species, Schima superba Gardn. et Champ. (S. superba), Ormosia pinnata (Lour.) Merr (O. pinnata), Castanopsis hystrix AC. DC. (C. hystrix) and Acmena acuminatissima (Blume) Merr. et Perry (A. acuminatissima) were studied in a factorial combination of atmospheric [CO2] (ambient at ~390 μmol mol ? 1 and elevated [CO2] at ~700 μmol mol-1) and N fertilization (ambient and ambient + 100 kg N ha-1 yr-1) in open-top chambers in southern China for 5 years. Leaf mass per unit leaf area (LMA), leaf nutrient concentration and photosynthesis (A sat) were measured.Important findings Results indicated that leaf traits and photosynthesis were affected differently by elevated [CO2] and N fertilization among species. Elevated [CO2] decreased LMA in all species, while N fertilization did not affect LMA. Leaf mass-based N concentration (N M) was significantly greater in O. pinnata and C. hystrix grown in elevated [CO2] but was lower in S. superba. Leaf mass-based P concentration (P M) was significantly greater in C. hystrix and A. acuminatissima exposed to elevated [CO2] but was lower in S. superba. N fertilization significantly increased P M in O. pinnata but decreased P M in S. superba. Photosynthetic stimulation in O. pinnata, C. hystrix and A. acuminatissima was sustained after 5 years of CO2 fumigation. N fertilization did not modify the effects of elevated [CO2] on photosynthesis. Leaf traits (N M, N A, P M, P A) and light-saturated photosynthesis were decreased from the upper to lower canopy. Canopy position did not alter the responses of leaf traits and photosynthesis to elevated [CO2]. Results suggest that photosynthetic stimulation by elevated [CO2] in native species in subtropical regions may be sustained in the long term.  相似文献   

12.
Aims Kobresia meadows, the dominant species of which differ in different habitats, cover a large area of alpine grassland on the Qinghai-Tibetan Plateau and act as potential CO2 sinks. Kobresia meadows with different dominant species may differ in carbon sink strength. We aimed to test the hypothesis and to clarify the differences in CO2 sink strength among three major Kobresia meadows on the plateau and the mechanisms underlying these differences.Methods We measured the net ecosystem exchange flux (NEE), ecosystem respiration flux (ER), aboveground biomass (AGB) and environmental variables in three Kobresia meadows, dominated by K. pygmaea, K. humilis, or K. tibetica, respectively, in Haibei, Qinghai. NEE and ER were measured by a closed-chamber method. Environmental variables, including photosynthetic photon flux density (PPFD), air and soil temperature and air and soil moisture, were monitored during the above flux measurements.Important findings The measured peak AGB increased with soil water content and was 365, 402 and 434 g dry weight m-2<-sup> for K. pygmaea, K. humilis and K. tibetica meadow, respectively. From the maximum ecosystem photosynthetic rate in relation to PPFD measured during the growing season, we estimated gross ecosystem photosynthetic potential (GEP max) as 22.2, 29.9 and 37.8 μmol CO2 m-2<-sup> s-1 for K. pygmaea, K. humilis and K. tibetica meadow, respectively. We estimated the respective gross primary production (GPP) values as 799, 1-063 and 1?158 g C m-2<-sup> year-1 and ER as 722, 914 and 1-011 g C m-2<-sup> year-1. Average net ecosystem production (NEP) was estimated to be 76.9, 149.4 and 147.6 g C m-2<-sup> year-1 in K. pygmaea, K. humilis and K. tibetica meadows, respectively. The results indicate that (i) the three meadows were CO2 sinks during the study period and (ii) Kobresia meadows dominated by different species can differ considerably in carbon sink strength even under the same climatic conditions, which suggests the importance of characterizing spatial heterogeneity of carbon dynamics in the future.  相似文献   

13.
Aims Mycorrhizas play key roles in important ecosystem processes and functions. Carbon (C), nitrogen (N) and phosphorus (P) concentrations and their ratios are very important foliar traits and their cycling constrains most ecosystem processes. Thus, this study addresses the influence of mycorrhizal strategies on these foliar nutrients and their response to climate change.Methods A new database was established including mycorrhizal types and leaf C mass, N mass, P mass, C: N and N: P of each plant species based on He et al. [(2008) Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–10]. The predominant type of mycorrhizal association of each plant species was classified according to the published literature and our own observations. We analyzed leaf C mass, N mass, P mass, C: N and N: P among 112 plant species in 316 samples of ascertained mycorrhizal type in the major grassland biomes of China.Important findings The results show highly significant variation among different mycorrhizal strategy types for foliar C mass, N mass and N: P. The highest foliar C mass was observed in ectotrophic mycorrhiza (ECM) type (469.8mg g-1) followed by that in arbuscular mycorrhiza (AM) type (443.884mg g-1) and nonmycorrhizal (NM) type (434.0mg g-1). The foliar N concentration was significantly higher in NM type (31.0mg g-1). However, the AM type had the greater C:N value (19) than the other types although less variation in C mass and N:P among abuscular types on AM strategy was observed. Foliar traits showed significant variation in response to precipitation (mean growing season and annual precipitation (GSP and MAP)) and temperature (mean growing season and annual temperatures (GST and MAT)) depending on different mycorrhizal strategies and arbuscular types. When the responses of all folia parameters to precipitation and temperature were compared, the influence of GSP on leaf traits was greater than the influence of GST.  相似文献   

14.
《植物生态学报》2016,40(11):1124
Aims Our purpose was to explore the effects of nitrogen addition on foliar nitrogen (N), phosphorus (P) and N:P stoichiometry and to assess their differences among different species and functional groups.
Methods N addition experiment has been conducted in a subtropical evergreen broad-leaved forest in Mount Wuyi, Fujian Province since 2011. Foliar concentrations of nitrogen and phosphorus were measured and foliar stoichiometry was estimated in tree, shrub, herb, fern and moss species following the N addition treatments from 2013 to 2015.
Important findings Generally, foliar N increased for almost all species and herbaceous plants are much more sensitive than trees and shrubs under N addition. Foliar N of Castanopsis carlesii, Amomum villosum, Woodwardia japonica increased significantly under N addition. Foliar P for most species was sensitive to the N addition. Foliar P of herbaceous plants increased significantly but foliar P of Leucobryum chlorophyllosum decreased significantly. The results showed the subtropical evergreen forest in Mount Wuyi was mainly limited by P and mean foliar N:P ratios enhanced from 18.67 to 19.72 under N addition, indicating that the strength of P limitation was enhanced by N addition. N:P ratios of the dominant arboreal species in the communities tended to be stable, while N:P ratios of herbaceous plants and shrubs increased. The changes in N:P ratios were mainly determined by P dynamics instead of N dynamics under N addition, and our results confirmed that increasing N availability can affect P cycling.  相似文献   

15.
该文以福建武夷山亚热带常绿阔叶林为研究对象, 通过设置3个氮(N)添加梯度的野外实验, 研究了群落内乔木植物、灌木植物、草本植物、蕨类植物和苔藓植物叶片N、磷(P)化学计量特征对N沉降的响应, 以及不同功能群和物种化学计量特征对N沉降响应的差异。在已开展5年人工N添加的样地内, 3年的监测结果表明: N添加整体上提高了植物叶片N含量, 草本层植物叶片N含量对N添加的响应比乔木层和灌木层植物更加敏感, 优势种米槠(Castanopsis carlesii)、草本植物砂仁(Amomum villosum)、蕨类植物狗脊(Woodwardia japonica)的叶片N含量显著增加。N添加整体上增加了植物叶片P含量, 乔木层植物和灌木层植物叶片P含量没有显著变化, 草本层植物叶片P含量显著增加, 而苔藓植物叶片P含量显著减少。N添加促使武夷山亚热带常绿阔叶林植物叶片N:P由18.67上升至19.72, 加剧了植物生长的P限制; 乔木物种N:P的变化较灌木和草本物种更加稳定。N添加条件下, 植物叶片N:P的变化主要受到叶片P含量而非N含量变化的影响, N添加对生态系统P循环的影响显著。  相似文献   

16.
Aim Lianas are abundant and diverse throughout the world and constitute an important structural and functional component of tropical forests. This study aims to investigate liana diversity, abundance and their functional traits in Indian tropical dry evergreen forest (TDEF).Methods A total of ten 1-ha plots, one each in 10 Indian TDEF sites were demarcated. Each 1-ha plot was divided into one-hundred 10- × 10-m quadrats to facilitate woody species inventory. All lianas ≥1cm diameter measured at 130cm from the rooting point and all trees ≥10-cm girth at breast height (gbh) were recorded from the study sites to analyze the patterns of liana diversity and abundance and also to compare the contribution of lianas to the total woody species richness, density and basal area. Liana variables across the study sites were compared using one-way analysis of variance. The qualitative functional traits of inventoried lianas and trees were assessed on the field and referring to pertinent field manuals.Important findings A total of 9237 liana individuals (ranged from 408–1658 individuals ha-1) representing 52 species, 45 genera and 28 families were encountered from the 10 study sites. Liana species richness ranged from 11–31 species ha-1 in 10 sites, which averaged 23.4 (±5.7) species ha-1. The total basal area of lianas in the study sites was 7. 3 m 2 (0.20–1.76 m 2 ha-1). There was a significant variation in liana species richness, density and basal area across the studied sites. On the whole, lianas contributed 52%, 49.3% and 4.1% to the total woody species (lianas and trees) richness, density and basal area, respectively. Liana trait analysis revealed the majority (50%) of lianas belonged to brevi-deciduous type. Stem twining was the chief climbing mechanism, exhibited by 21 species (52.6% of total abundance). More than half of the liana species (34 species; 6925 individuals) had microphyllous leaves. Fleshy-fruited lianas mostly bearing berries and drupes constituted the major fruit type in the studied sites. Zoochory was the predominant dispersal mode observed in 63.4% of species. Considering the ecological and functional role of lianas in Indian TDEF, the need for conservation is emphasized.  相似文献   

17.
2006年5月于吉林省抚松县露水河林业局实验林场布设了人工模拟氮沉降控制试验,共设置3个氮(N)添加梯度,分别为对照(CK 0 g·N·m-2·a-1)、低N(LN 2.5 g·N·m-2·a-1)和高N(HN 5.0 g·N·m-2·a-1),旨在探讨N沉降对天然次生林先锋树种白桦(Betula platyphylla)和山杨(Populus davidiana)鲜叶、凋落叶化学计量特征、养分重吸收的影响,以及鲜叶光合特性的变化和各性状之间的相互关系。结果表明:(1)模拟N沉降处理下白桦、山杨鲜叶的C含量较对照均无显著影响,LN处理显著降低了山杨鲜叶N、P含量(P<0.05),显著增加了C:N、C:P和N:P(P<0.05);HN处理显著增加了白桦鲜叶N含量和N:P,显著降低了C:N(P<0.05)。(2)白桦、山杨鲜叶N、P重吸收率在两个梯度N添加下均显著下降(P<0.05),且均为负值。山杨鲜叶N重吸收率与P重吸收率呈显著正相关关系(P<0.05),与鲜叶C:N呈显著负相关关系(P<0.05)。(3)N添加可以提高2种树木叶片氮素光合利用效率(PNUE)(P<0.05)、净光合速率(Pn)(P<0.05)。白桦鲜叶N含量与Pn、PNUE呈显著正相关(P<0.05);白桦、山杨鲜叶比叶重(LMA)与N含量呈显著负相关(P<0.05);Pn与PNUE呈显著正相关(P<0.05)。本试验研究表明:在生长季,白桦、山杨鲜叶中N、P均表现为富集状态,土壤养分及外源N可供林木较快吸收并促进其生长,无需从凋落叶中吸收养分。N添加可以增强白桦、山杨鲜叶的光合性能,进而促进植物养分吸收和叶片发育。HN对长白山天然次生林的生长有促进作用。  相似文献   

18.
采用添加氮素模拟氮沉降和人工气候箱模拟增温的方法,设置了对照、施氮、增温以及增温×施氮交互作用4个处理,分析不同处理对降香黄檀(Dalbergia odorifera T. Chen)幼苗生长形态变化、生物量的积累、叶片和根系生理方面的影响。结果显示:与对照相比,增温、施氮以及增温×施氮交互作用均促进了降香黄檀幼苗的生长形态发育、增加了生物量的积累、光合参数、最大光化学量子产量、叶片硝酸还原酶及根系活力,但降低了叶片相对电导率和丙二醛含量;增温×施氮交互作用下降香黄檀幼苗的生物量积累、光合参数、最大光化学量子产量、叶片硝酸还原酶及根系活力的增幅最大,而叶片相对电导率和丙二醛含量降幅最显著;隶属函数分析结果表明,增温×施氮交互作用对降香黄檀幼苗生长发育的促进效果最好,其次为单独增温,最后为施氮处理。  相似文献   

19.
Aims Boreal larch (Larix gmelinii) forests in Northeast China have been widely disturbed since the 1987 conflagration; however, its long-term effects on the forest carbon (C) cycling have not been explored. The objective of this study thus was to quantify the effects of fire severity and post-fire reforestation on C pools and the changes of these forests.Methods Sixteen permanent plots have been set in two types of larch stands (L. gmelinii -grass, LG; and L. gmelinii-Rhododendron dahurica, LR) with three levels of fire severity (unburned, low-severity and high-severity but replanted), at 1987 burned sites in Daxing'anling, northeastern China, to repeatedly measure ecosystem C pools in 1998 and 2014. C components were partitioned into vegetation (foliage, branch, stem and roots), soil and detritus (standing and fallen woody debris and litter). The fire effects on post-fire C dynamics were examined by comparing the differences of C pools and changes between the two field investigations caused by fire severity.Important findings During the study period, unburned mature stands were C sinks (105g C m ?2 year-1 for LG, and 190g C m ?2 year-1 for LR), whereas the low-severity stands were C-neutral (?4 and 15g C m ?2 year-1 for LG and LR, respectively). The high-severity burned but reforested stands were C sinks, among which, however, magnitudes (88 and 16g C m ?2 year-1 for LG and LR, respectively) were smaller than those of the two unburned stands. Detritus C pools decreased significantly (with a loss ranging from 26 to 38g C m ?2 year-1) in the burned stands during recent restoration. Soil organic C pools increased slightly in the unmanaged stands (unburned and low-severity, with accumulation rates ranging from 4 to 35g C m ?2 year-1), but decreased for the high-severity replanted stands (loss rates of 28 and 36g C m ?2 year-1 for LG and LR, respectively). These results indicate that fire severity has a dynamic post-fire effect on both C pools and distributions of the boreal larch forests, and that effective reforestation practice accelerates forest C sequestration.  相似文献   

20.
Aims Intercropping legumes and non-legumes may affect the root growth of both components in the mixture, and the non-legume is known to be strongly favored by increasing nitrogen (N) supply. The knowledge of how root systems affect the growth of the individual species is useful for understanding the interactions in intercrops as well as for planning cover cropping strategies. The aim of this work was (i) to determine if different levels of N in the topsoil influence root depth (RD) and intensity of barley and vetch as sole crops or as an intercropped mixture and (ii) to test if the choice of a mixture or the N availability in the topsoil will influence the N uptake by deep roots.Methods In this study, we combined rhizotron studies with root extraction and species identification by microscopy with studies of growth, N uptake and 15 N uptake from deeper soil layers, for studying the root interactions of root growth and N foraging for barley (Hordeum vulgare L.) and vetch (Vicia sativa L.), frequently grown in mixtures as cover crops. N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha-1. The roots discrimination relying on the anatomical and morphological differences observed between dicots and monocots proved to be a reliable method providing valuable data for the analysis.Important findings The intercrop and the barley attained slightly higher root intensity (RI) and RD than the vetch, with values around 150 crosses m-1 and 1.4 m, respectively, compared to 50 crosses m-1 and 0.9 m for the vetch. At deep soil layers, intercropping showed slightly larger RI values compared to the sole-cropped barley. The barley and the intercropping had larger root length density (RLD) values (200–600 m m ?3) than the vetch (25–130) at 0.8–1.2 m depth. The topsoil N supply did not show a clear effect on the RI, RD or RLD; however, increasing topsoil N favored the proliferation of vetch roots in the intercropping at deep soil layers, with the barley:vetch root ratio ranging from 25 at N0 to 5 at N2. The N uptake of the barley was enhanced in the intercropping at the expense of the vetch (from ~100mg plant-1 to 200). The intercropped barley roots took up more labeled nitrogen (0.6mg 15 N plant-1) than the sole-cropped barley roots (0.3mg 15 N plant-1) from deep layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号