首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The role of competition in forbidding similar species from co-occurring has long been debated. A difficulty in identifying this repulsion of similar species is that similar species share similar environmental requirements and hence show an attraction to communities where these requirements are met. To disentangle these opposing patterns, we use phylogenetic relatedness as an objective metric of species similarities. Studying 11 sunfishes (Centrarchidae) from 890 lakes, we first show no phylogenetic pattern in the raw community data. We then regressed sunfish presence/absence against seven environmental variables and show that lakes with similar water clarity and latitude likely contain closely related species. After statistically removing the environmental effects, phylogenetic repulsion was apparent, with closely related sunfishes less likely to co-occur. Thus, both phylogenetic attraction, driven by environmental filtering, and phylogenetic repulsion, possibly caused by competition, simultaneously occur and obscure one another in the overall phylogenetic structure of sunfish communities.  相似文献   

2.
Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species‐ and individual‐level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between‐plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late‐successional stages, there was high presence‐/absence‐based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.  相似文献   

3.
Congeneric species may coexist at fine spatial scales through niche differentiation, however, the magnitude to which the effects of functional traits and phylogenetic relatedness contribute to their distribution along elevational gradients remains understudied. To test the hypothesis that trait and elevational range overlap can affect local speciesʼ coexistence, we first compared phylogenetic relatedness and trait (including morphological traits and leaf elements) divergence among closely related species of Rhododendron L. on Yulong Mountain, China. We then assessed relationships between the overlap of multiple functional traits and the degree of elevational range overlap among species pairs in a phylogenetic context. We found that phylogeny was a good predictor for most functional traits, where closely related species showed higher trait similarity and occupied different elevational niches at our study site. Species pairs of R. subgen. Hymenanthes (Blume) K. Koch showed low elevational range overlap and some species pairs of R. subgen. Rhododendron showed obvious niche differentiation. Trait divergence is greater for species in R. subgen. Rhododendron, and it plays an important role between species pairs with low elevational range overlap. Trait convergent selection takes place between co-occurring closely related species that have high elevational range overlap, which share more functional trait space due to environmental filtering or ecological adaptation in more extreme habitats. Our results highlight the importance of evolutionary history and trait selection for species coexistence at fine ecological scales along environmental gradients.  相似文献   

4.
Most existing functional diversity indices focus on a single facet of functional diversity. Although these indices are useful for quantifying specific aspects of functional diversity, they often present some conceptual or practical limitations in estimating functional diversity. Here, we present a new functional extension and evenness (FEE) index that encompasses two important aspects of functional diversity. This new index is based on the straightforward notion that a community has high diversity when its species are distant from each other in trait space. The index quantifies functional diversity by evaluating the overall extension of species traits and the interspecific differences of a species assemblage in trait space. The concept of minimum spanning tree (MST) of points was adopted to obtain the essential distribution properties for a species assembly in trait space. We combined the total length of MST branches (extension) and the variation of branch lengths (evenness) into a raw FEE0 metric and then translated FEE0 to a species richness‐independent FEE index using a null model approach. We assessed the properties of FEE and used multiple approaches to evaluate its performance. The results show that the FEE index performs well in quantifying functional diversity and presents the following desired properties: (a) It allows a fair comparison of functional diversity across different species richness levels; (b) it preserves the essence of single‐facet indices while overcoming some of their limitations; (c) it standardizes comparisons among communities by taking into consideration the trait space of the shared species pool; and (d) it has the potential to distinguish among different community assembly processes. With these attributes, we suggest that the FEE index is a promising metric to inform biodiversity conservation policy and management, especially in applications at large spatial and/or temporal scales.  相似文献   

5.
Patterns of phylogenetic relatedness within communities have been widely used to infer the importance of different ecological and evolutionary processes during community assembly, but little is known about the relative ability of community phylogenetics methods and null models to detect the signature of processes such as dispersal, competition and filtering under different models of trait evolution. Using a metacommunity simulation incorporating quantitative models of trait evolution and community assembly, I assessed the performance of different tests that have been used to measure community phylogenetic structure. All tests were sensitive to the relative phylogenetic signal in species metacommunity abundances and traits; methods that were most sensitive to the effects of niche-based processes on community structure were also more likely to find non-random patterns of community phylogenetic structure under dispersal assembly. When used with a null model that maintained species occurrence frequency in random communities, several metrics could detect niche-based assembly when there was strong phylogenetic signal in species traits, when multiple traits were involved in community assembly, and in the presence of environmental heterogeneity. Interpretations of the causes of community phylogenetic structure should be modified to account for the influence of dispersal.  相似文献   

6.
7.
8.
It is widely recognized that colonists and competitors dominate early and late succession, respectively, with selected species having different colonizing and competitive abilities. However, it remains unknown whether colonizing and competitive ability can determine species abundance directly over succession. The data for five key functional traits were collected (photosynthesis rate, leaf turgor loss point, leaf proline content, seed mass, and seed germination rate), which are direct indicators of plant competitive and colonizing abilities including growth, drought and cold stress resistance, dispersal, and seed dormancy. Here, we tested the effects of colonizing and competitive abilities on species abundance, by employing a linear mixed‐effects model to examine the shifts in the relationship between species abundance and these five colonization and competition‐related traits in species‐rich subalpine secondary successional meadows (at 4, 6, 10, 13 years of age, and undisturbed, respectively) of the Qinghai–Tibetan Plateau. The abundant species at the early‐successional meadows tend to have high photosynthetic rate, high leaf proline content, low seed mass, and seed germination rate for having high colonizing ability, but low competitive ability. By contrast, late‐successional communities tend to be dominated by species with high competitive ability, but low colonizing ability, indicated by large seeds, high seed germination rate, low photosynthetic rate, and leaf proline content. The observed directional shifts in the relationships between traits (photosynthetic rate, leaf proline content, seed mass, and seed germination rate) and abundance with successional age, bring two new understandings of community assembly during succession of subalpine meadows in the Qinghai–Tibetan Plateau. First, it discloses that the differences in species abundance over succession can be directly attributed to differences in colonizing and competitive abilities of different species. Second, it expands the effects of multiple life historical differences including growth, resource competitive ability, cold stress resistance, dispersal, and seed germination strategy, represented by functional traits on community assembly along succession, that is, from the species to the community level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号