首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Understanding what drives the variation in species composition and diversity among local communities can provide insights into the mechanisms of community assembly. Because ecological traits are often thought to be phylogenetically conserved, there should be patterns in phylogenetic structure and phylogenetic diversity in local communities along ecological gradients. We investigate potential patterns in angiosperm assemblages along an elevational gradient with a steep ecological gradient in Changbaishan, China.Methods We used 13 angiosperm assemblages in forest plots (32×32 m) distributed along an elevational gradient from 720 to 1900 m above sea level. We used Faith's phylogenetic diversity metric to quantify the phylogenetic alpha diversity of each forest plot, used the net relatedness index to quantify the degree of phylogenetic relatedness among angiosperm species within each forest plot and used a phylogenetic dissimilarity index to quantify phylogenetic beta diversity among forest plots. We related the measures of phylogenetic structure and phylogenetic diversity to environmental (climatic and edaphic) factors.Important findings Our study showed that angiosperm assemblages tended to be more phylogenetically clustered at higher elevations in Changbaishan. This finding is consistent with the prediction of the phylogenetic niche conservatism hypothesis, which highlights the role of niche constraints in governing the phylogenetic structure of assemblages. Our study also showed that woody assemblages differ from herbaceous assemblages in several major aspects. First, phylogenetic clustering dominated in woody assemblages, whereas phylogenetic overdispersion dominated in herbaceous assemblages; second, patterns in phylogenetic relatedness along the elevational and temperature gradients of Changbaishan were stronger for woody assemblages than for herbaceous assemblages; third, environmental variables explained much more variations in phylogenetic relatedness, phylogenetic alpha diversity and phylogenetic beta diversity for woody assemblages than for herbaceous assemblages.  相似文献   

2.
3.
Understanding what drives biodiversity patterns across scales is a central goal of ecology. Both environmental gradients and spatial landscape structure have been found to be important factors influencing species distributions and community composition, and partly reflect the balance of underlying deterministic and stochastic community processes. In some systems, environmental gradients and spatial connectivity are intertwined in that steep environmental gradients serve as boundaries on species movements and impose environment‐derived complex spatial structure to metacommunities. Mountainous landscapes are prime examples of this, and recent theory has linked principles of geomorphology, environmental gradients, and spatial structure to make predictions for resulting community patterns. In this context, we examine variation in taxonomic and phylogenetic ant diversity patterns along a geographic transect spanning > 5000 m in elevational range in the Hengduan mountains of southern China. We found that environmental gradients dominate variation in both alpha and beta diversity in this landscape, with alpha diversity strongly declining with elevation and beta diversity driven by elevational differences. However, within an elevational band spatial connectivity predicts beta diversity better than geographic distance. Our findings deviate from theoretical predictions in several ways, notably alpha diversity is monotonically declining and within‐band beta diversity is invariant with increasing elevation. The discrepancies between theory and observation may be explained by differences in the Hengduan landscape from idealized fluvial landscapes, such as a lack of a mid‐elevation peak in connectivity, as well as evolutionary limits on the source pool of species available to populate metacommunities at different elevations. The latter is supported by variation in phylogenetic community structure with elevation. Our results demonstrate the power of conceptual, statistical, and theoretical frameworks that integrate the roles of environment and spatial structure in metacommunities, but that additional work is needed to bridge the gap between abstract theory and real systems.  相似文献   

4.
Ecological and evolutionary processes influence community assembly at both local and regional scales. Adding a phylogenetic dimension to studies of species turnover allows tests of the extent to which environmental gradients, geographic distance and the historical biogeography of lineages have influenced speciation and dispersal of species throughout a region. We compare measures of beta diversity, phylogenetic community structure and phylobetadiversity (phylogenetic distance among communities) in 34 plots of Amazonian trees across white‐sand and clay terra firme forests in a 60 000 square kilometer area in Loreto, Peru. Dominant taxa in white‐sand forests were phylogenetically clustered, consistent with environmental filtering of conserved traits. Phylobetadiversity measures found significant phylogenetic clustering between terra firme communities separated by geographic distances of <200–300 km, consistent within recent local speciation at the watershed scale in the Miocene‐aged clay‐soil forests near the foothills of the Andes. Although both distance and habitat type yielded statistically significant effects on both species and phylogenetic turnover, the patterns we observed were more consistent with an effect of habitat specialization than dispersal limitation. Our results suggest a role for both broad‐scale biogeographic and evolutionary processes, as well as habitat specialization, influencing community structure in Amazonian forests.  相似文献   

5.
We investigated spatial patterns of evolutionary diversity along Neotropical Non-Flooded Evergreen Forests (NEF). We addressed the following questions: (i) What are the main NEF evolutionary groups? (ii) How evolutionary diversity varies across NEF environmental gradients? Based on a phylogeny of 1248 tree genera distributed over 1824 NEF assemblages, we examined the evolutionary differentiation using UPGMA and evopca. We measured lineage diversity (ses.PD) and structure (ses.MPD and ses.MNTD) and tested their response to environmental gradients using linear models. Phylogenetic dissimilarity segregated NEF into 12 evolutionary groups that largely confirm groups obtained in our previous work based on floristic similarity. However, one discrepancy was the amalgamation of Amazon and northern Atlantic Forest assemblages, while the southern Atlantic Forest remained an isolated group. Furthermore, Mesoamerica, which had been recognized as a single group, here split into six evolutionary groups. We found greater lineage diversity as altitude and latitude increased and temperature decreased. Evolutionary groups with the highest mean values of lineage diversity were those composed of Mesoamerican cloud forests, which harbor a mixture of tropical and temperate lineages representing a confluence of South and North American floras. We found that variations in phylogenetic diversity in NEF are primarily related to the coexistence of lineages of temperate and tropical climates in the mountain and nebular environments of NEF, indicating the strong contribution of extratropical niche conservatism in structuring evolutionary diversity.  相似文献   

6.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   

7.
Aims Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps.Methods Using the quadratic diversity measure based on six functional traits—specific leaf area, leaf dry matter content, plant height, leaf carbon content, leaf nitrogen content and leaf carbon to nitrogen content alongside a species-resolved phylogenetic tree—we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps.Important findings Our study highlights two main points. First, climate and land-use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land-use factors in plant functional and phylogenetic community turnover and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.  相似文献   

8.
Evidence of phylogenetic conservatism in plant ecological traits has accumulated over the past few years, suggesting an interplay between the distribution of phylogenetic clades and major environmental gradients. Nonetheless, determining what environmental factors underlie the distribution of phylogenetic lineages remains a challenge because environmental factors are correlated with spatial gradients where the latter might indicate some degree of dispersal limitation in phylogenetic pools. We analyzed the phylogenetic structure of plant assemblages across the Brazilian Araucaria forests and assessed how phylogenetic structure responds to environmental and spatial gradients. We compiled data on plant occurrence in 45 plots across the Araucaria forest biome. The phylogenetic structure of the plots was characterized using phylogenetic fuzzy‐weighting followed by principal coordinates of phylogenetic structure (PCPS). We used distance‐based redundancy analysis (db‐RDA) to analyze the relationships between phylogenetic clades and environmental and spatial factors. Variation partitioning showed that the phylogenetic structure of Brazilian Araucaria forests was better explained by environment factors (altitude and annual mean temperature) than by space. Yet, spatially‐structured environmental variation explained about one‐third of total variation in the phylogenetic structure. Thus, the influence of spatial filters on the phylogenetic structure was more related to environmental gradients across the Brazilian Araucaria forest biome than to dispersal limitation of phylogenetic lineages. Furthermore, the influence of explanatory factors on the phylogenetic structure was concentrated in few nodes, the one splitting tree ferns from seed plants, and a second splitting malvids from other eurosids. Assessing the functional links between species distribution patterns and environmental gradients is not an easy task when we have to deal with large species pools. Identifying major phylogenetic gradients across an environmental and/or geographical range of interest can represent a first step towards a better understanding of general assembly processes in ecological communities.  相似文献   

9.
为探讨喀斯特森林落叶阔叶植物(DBL)与常绿阔叶植物(EBL)比例和生物多样性差异及其驱动因素,该研究以贵州省普定县43个喀斯特次生林样地作为研究对象,采用广义线性回归模型、模型选择和Mantel检验的多元回归方法,分析地理距离、环境(包括地形和基岩类型)和人类活动等因素对样地内落叶阔叶植物和常绿阔叶植物所占比例以及谱系多样性的影响。结果表明:(1)普定喀斯特次生林样地内落叶阔叶植物与常绿阔叶植物虽在物种丰富度和个体多度上总体相当,但样地间差异较大;样地落叶与常绿阔叶植物谱系alpha多样性(即SES.MPD)无明显差异,但落叶阔叶植物谱系beta多样性(即SES.betaMPD)明显小于常绿阔叶植物。(2)落叶阔叶植物丰富度占比和相对多度随基岩类型改变而变化,均表现为泥灰岩森林高于石灰岩森林,而落叶阔叶植物丰富度占比随人类活动增强而上升。(3)样地落叶阔叶植物谱系alpha多样性随人类活动增强而升高,而常绿阔叶植物谱系alpha多样性受环境和人类活动等因素的作用不明显;落叶阔叶植物和常绿阔叶植物谱系beta多样性受不同因素调节,前者随基岩类型和人类活动等因素变化而升高,后者则随地理距...  相似文献   

10.
The relative importance of environmental filtering, biotic interactions and neutral processes in community assembly remains an openly debated question and one that is increasingly addressed using phylogenetic approaches. Closely related species may occur together more frequently than expected (phylogenetic clustering) if environmental filtering operates on traits with significant phylogenetic signal. Recent studies show that phylogenetic clustering tends to increase with spatial scale, presumably because greater environmental variation is encompassed at larger spatial scales, providing opportunities for species to sort across environmental gradients. However, if environmental filtering is the cause of species sorting along environmental gradients, then environmental variation rather than spatial scale per se should drive the processes governing community assembly. Using species abundance and light availability data from a long‐term experiment in Minnesota oak savanna understory communities, we explicitly test the hypothesis that greater environmental variation results in greater phylogenetic clustering when spatial scale is held constant. Concordant with previous studies, we found that phylogenetic community structure varied with spatial extent. At the landscape scale (~1000 ha), communities were phylogenetically clustered. At the local scale (0.375ha), phylogenetic community structure varied among plots. As hypothesized, plots encompassing the greatest environmental variation in light availability exhibited the strongest phylogenetic clustering. We also found strong correlations between species functional traits, particularly specific leaf area (SLA) and perimeter per area (PA), and species light availability niche. There was also a phylogenetic signal in both functional traits and species light availability niche, providing a mechanistic explanation for phylogenetic clustering in relation to light availability. We conclude that the pattern of increased phylogenetic clustering with increased environmental variation is a consequence of environmental filtering acting on phylogenetically conserved functional traits. These results indicate that the importance of environmental filtering in community assembly depends not on spatial scale per se, but on the steepness of the environmental gradient.  相似文献   

11.
Aims While using phylogenetic and functional approaches to test the mechanisms of community assembly, functional traits often act as the proxy of niches. However, there is little detailed knowledge regarding the correlation between functional traits of tree species and their niches in local communities. We suggest that the co-varying correlation between functional traits and niches should be the premise for using phylogenetic and functional approaches to test mechanisms of community assembly. Using functional traits, phylogenetic and environmental data, this study aims to answer the questions: (i) within local communities, do functional traits of co-occurring species co-vary with their environmental niches at the species level? and (ii) what is the key ecological process underlying community assembly in Xishuangbanna and Ailaoshan forest dynamic plots (FDPs)?Methods We measured seven functional traits of 229 and 36 common species in Xishuangbanna and Ailaoshan FDPs in tropical and subtropical China, respectively. We also quantified the environmental niches for these species based on conditional probability. We then analyzed the correlations between functional traits and environmental niches using phylogenetic independent contrasts. After examining phylogenetic signals of functional traits using Pagel's λ, we quantified the phylogenetic and functional dispersion along environmental gradients within local tree communities.Important findings For target species, functional traits do co-vary with environmental niches at the species level in both of the FDPs, supporting that functional traits can be used as a proxy for local-scale environmental niches. Functional traits show significant phylogenetic signals in both of the FDPs. We found that the phylogenetic and functional dispersion were significantly clustered along topographical gradients in the Ailaoshan FDP but overdispersion in the Xishuangbanna FDP. These patterns of phylogenetic and functional dispersion suggest that environmental filtering plays a key role in structuring local tree assemblages in Ailaoshan FDP, while competition exclusion plays a key role in Xishuangbanna FDP.  相似文献   

12.
Aims Forest vegetation variability may be explained by the complex interplay among several spatial structuring factors, including climate and topography. We modelled the spatial variability of forest vegetation assemblages and significant environmental variables along a complex environmental gradient or coenocline to produce a detailed cartographic database portraying the distribution of forests along it.Methods We combined an analysis of ordination coenoclines with kriging over 772 field data plots from the third Spanish National Forest Inventory in an Atlantic–Mediterranean transitional area (northern Spain).Important findings The best fitted empirical semivariogram revealed a strong spatial structure of forest species composition along the complex environmental gradient considered (the climatic–topographic gradient from north to south). The steady and gradual increase of semivariance with a marked lag distance indicates a gradual turnover of forest assemblages according to the climatic–topographic variations (regional or local). Two changes in the slope of the semivariogram suggest the existence of two different scales of spatial variation. The interpolation map by Kriging of forest vegetation assemblages along the main coenocline shows a clear spatial distribution pattern of trees and shrubs in accordance with the spatial variation of significant environmental variables. We concluded that the multivariate geostatistical approach is a suitable technique for spatial analysis of forest systems employing data from national forest inventories based on a regular network of field plots. The development of an assortment of maps describing changes in vegetation assemblages and variation in environmental variables is expected to be a suitable tool for an integrated forest management and planning.  相似文献   

13.
Using complementary metrics to evaluate phylogenetic diversity can facilitate the delimitation of floristic units and conservation priority areas. In this study, we describe the spatial patterns of phylogenetic alpha and beta diversity, phylogenetic endemism, and evolutionary distinctiveness of the hyperdiverse Ecuador Amazon forests and define priority areas for conservation. We established a network of 62 one‐hectare plots in terra firme forests of Ecuadorian Amazon. In these plots, we tagged, collected, and identified every single adult tree with dbh ≥10 cm. These data were combined with a regional community phylogenetic tree to calculate different phylogenetic diversity (PD) metrics in order to create spatial models. We used Loess regression to estimate the spatial variation of taxonomic and phylogenetic beta diversity as well as phylogenetic endemism and evolutionary distinctiveness. We found evidence for the definition of three floristic districts in the Ecuadorian Amazon, supported by both taxonomic and phylogenetic diversity data. Areas with high levels of phylogenetic endemism and evolutionary distinctiveness in Ecuadorian Amazon forests are unprotected. Furthermore, these areas are severely threatened by proposed plans of oil and mining extraction at large scales and should be prioritized in conservation planning for this region.  相似文献   

14.
Phylogenetic examinations of communities sampled along geochemical gradients provide a framework for inferring the relative importance of niche-based ecological interactions (competition, environmental filtering) and neutral-based evolutionary interactions in structuring biodiversity. Great Salt Lake (GSL) in Utah exhibits strong spatial gradients due to both seasonal variation in freshwater input into the watershed and restricted fluid flow within North America’s largest saline terminal lake ecosystem. Here, we examine the phylogenetic structure and composition of archaeal, bacterial, and eukaryal small subunit (SSU) rRNA genes sampled along a stratified water column (DWR3) in the south arm of GSL in order to infer the underlying mechanism of community assembly. Communities sampled from the DWR3 epilimnion were phylogenetically clustered (i.e., coexistence of close relatives due to environmental filtering) whereas those sampled from the DWR3 hypolimnion were phylogenetically overdispersed (i.e., coexistence of distant relatives due to competitive interactions), with minimal evidence for a role for neutral processes in structuring any assemblage. The shift from phylogenetically clustered to overdispersed assemblages was associated with an increase in salinity and a decrease in dissolved O2 (DO) concentration. Likewise, the phylogenetic diversity and phylogenetic similarity of assemblages was strongly associated with salinity or DO gradients. Thus, salinity and/or DO appeared to influence the mechanism of community assembly as well as the phylogenetic diversity and composition of communities. It is proposed that the observed patterns in the phylogenetic composition and structure of DWR3 assemblages are attributable to the meromictic nature of GSL, which prevents significant mixing between the epilimnion and the hypolimnion. This leads to strong physicochemical gradients at the halocline, which are capable of supporting a greater diversity. However, concomitant shifts in nutrient availability (e.g., DO) at and below the halocline drive competitive interactions leading to hypolimnion assemblages with minimal niche overlap.  相似文献   

15.
The evolution of a particular trait or combination of traits within lineages may affect subsequent evolutionary outcomes, leading closely related species to exhibit higher phenotypic similarity than expected under a simple Brownian‐motion evolutionary model. Niche theory postulates that phenotypes determine species distribution across environmental gradients, leading to a phylogenetic signature in the community assembly. Thus, the incorporation of species phylogeny in the analysis of community ecology structure allows one to link broader environmental, spatial and temporal factors to local, small‐scale ecological processes, thus enabling understanding of community assembly patterns in a broader context. We used the net relatedness index to assess phylogenetic structure within avian communities across a harshness gradient in coastal habitats in southern Brazil. We also evaluated phylogenetic beta diversity, to test whether closely related species exploit habitats with similar environmental conditions. In order to do so, we scaled up phylogenetic information from the species to site level using phylogenetic fuzzy weighting. We found a pattern of phylogenetic clustering in less‐vegetated habitats, namely sandy beach and dunes, which are subject to harsher conditions because of proximity to the ocean. Basal lineages were associated with the more structurally homogeneous sandy beach, while late‐divergence clades occurred in more complex habitats, which were positively related to vegetation cover and height. The observed pattern of phylogenetic clustering suggested the importance of harsh conditions in constraining the distribution of avian lineages. Furthermore, contrasting environmental features between habitats influenced phylogenetic variation, demonstrating the prevalence of phylogenetic habitat filtering. From an applied point of view, such as planning and management of biological reserves, we showed that the full array of habitat patches embedded within coastal ecological gradients must be included in order to preserve distinct evolutionary lineages.  相似文献   

16.
Aims Studies integrating phylogenetic history and large-scale community assembly are few, and many questions remain unanswered. Here, we use a global coastal dune plant data set to uncover the important factors in community assembly across scales from the local filtering processes to the global long-term diversification and dispersal dynamics. Coastal dune plant communities occur worldwide under a wide range of climatic and geologic conditions as well as in all biogeographic regions. However, global patterns in the phylogenetic composition of coastal dune plant communities have not previously been studied.Methods The data set comprised vegetation data from 18463 plots in New Zealand, South Africa, South America, North America and Europe. The phylogenetic tree comprised 2241 plant species from 149 families. We calculated phylogenetic clustering (Net Relatedness Index, NRI, and Nearest Taxon Index, NTI) of regional dune floras to estimate the amount of in situ diversification relative to the global dune species pool and evaluated the relative importance of land and climate barriers for these diversification patterns by geographic analyses of phylogenetic similarity. We then tested whether dune plant communities exhibit similar patterns of phylogenetic structure within regions. Finally, we calculated NRI for local communities relative to the regional species pool and tested for an association with functional traits (plant height and seed mass) thought to vary along sea–inland gradients.Important findings Regional species pools were phylogenetically clustered relative to the global pool, indicating regional diversification. NTI showed stronger clustering than NRI pointing to the importance of especially recent diversifications within regions. The species pools grouped phylogenetically into two clusters on either side of the tropics suggesting greater dispersal rates within hemispheres than between hemispheres. Local NRI plot values confirmed that most communities were also phylogenetically clustered within regions. NRI values decreased with increasing plant height and seed mass, indicating greater phylogenetic clustering in communities with short maximum height and good dispersers prone to wind and tidal disturbance as well as salt spray, consistent with environmental filtering along sea–inland gradients. Height and seed mass both showed significant phylogenetic signal, and NRI tended to correlate negatively with both at the plot level. Low NRI plots tended to represent coastal scrub and forest, whereas high NRI plots tended to represent herb-dominated vegetation. We conclude that regional diversification processes play a role in dune plant community assembly, with convergence in local phylogenetic community structure and local variation in community structure probably reflecting consistent coastal-inland gradients. Our study contributes to a better understanding of the globally distributed dynamic coastal ecosystems and the structuring factors working on dune plant communities across spatial scales and regions.  相似文献   

17.
Phylogenetic information provides insight into the ecological and evolutionary processes that organize species assemblages. We compared patterns of phylogenetic diversity among macromycete and woody plant communities along a steep elevational gradient in eastern Mexico to better understand the evolutionary processes that structure their communities. Macrofungi and trees were counted and identified in eight sites from 100 to 3500 m asl, and sequence data retrieved from GenBank for the same or closely related species were used to reconstruct their phylogenies. Patterns of species richness and phylogenetic diversity were similar for both macrofungi and trees, but macromycete richness and diversity peaked at mid‐elevations, whereas woody plant richness and diversity did not show significant trends with elevation. Phylogenetic similarity among sites was low for both groups and decreased as elevational distance between sites increased. Macromycete communities displayed phylogenetic overdispersion at low elevations and phylogenetic clustering at high elevations; the latter is consistent with environmental filtering at high elevation sites. Woody plants generally exhibited phylogenetic clustering, consistent with the potential importance of environmental filtering throughout the elevational gradient.  相似文献   

18.
The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.  相似文献   

19.
20.
Soil microbial communities play a key role in ecosystem functioning but still little is known about the processes that determine their turnover (β‐diversity) along ecological gradients. Here, we characterize soil microbial β‐diversity at two spatial scales and at multiple phylogenetic grains to ask how archaeal, bacterial and fungal communities are shaped by abiotic processes and biotic interactions with plants. We characterized microbial and plant communities using DNA metabarcoding of soil samples distributed across and within eighteen plots along an elevation gradient in the French Alps. The recovered taxa were placed onto phylogenies to estimate microbial and plant β‐diversity at different phylogenetic grains (i.e. resolution). We then modeled microbial β‐diversities with respect to plant β‐diversities and environmental dissimilarities across plots (landscape scale) and with respect to plant β‐diversities and spatial distances within plots (plot scale). At the landscape scale, fungal and archaeal β‐diversities were mostly related to plant β‐diversity, while bacterial β‐diversities were mostly related to environmental dissimilarities. At the plot scale, we detected a modest covariation of bacterial and fungal β‐diversities with plant β‐diversity; as well as a distance–decay relationship that suggested the influence of ecological drift on microbial communities. In addition, the covariation between fungal and plant β‐diversity at the plot scale was highest at fine or intermediate phylogenetic grains hinting that biotic interactions between those clades depends on early‐evolved traits. Altogether, we show how multiple ecological processes determine soil microbial community assembly at different spatial scales and how the strength of these processes change among microbial clades. In addition, we emphasized the imprint of microbial and plant evolutionary history on today's microbial community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号